Methodologies for Transcript Profiling Using Long-Read Technologies
RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, lon...
Saved in:
| Published in: | Frontiers in genetics Vol. 11; p. 606 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Frontiers Media S.A
07.07.2020
|
| Subjects: | |
| ISSN: | 1664-8021, 1664-8021 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development. |
|---|---|
| AbstractList | RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information—for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5′ and 3′ UTRs is still in development. RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development. |
| Author | Djambazian, Haig Ragoussis, Jiannis Berube, Pierre Oikonomopoulos, Spyros Bayega, Anthony Fahiminiya, Somayyeh |
| AuthorAffiliation | 1 McGill Genome Centre, Department of Human Genetics, McGill University , Montréal, QC , Canada 2 Department of Bioengineering, McGill University , Montréal, QC , Canada |
| AuthorAffiliation_xml | – name: 1 McGill Genome Centre, Department of Human Genetics, McGill University , Montréal, QC , Canada – name: 2 Department of Bioengineering, McGill University , Montréal, QC , Canada |
| Author_xml | – sequence: 1 givenname: Spyros surname: Oikonomopoulos fullname: Oikonomopoulos, Spyros – sequence: 2 givenname: Anthony surname: Bayega fullname: Bayega, Anthony – sequence: 3 givenname: Somayyeh surname: Fahiminiya fullname: Fahiminiya, Somayyeh – sequence: 4 givenname: Haig surname: Djambazian fullname: Djambazian, Haig – sequence: 5 givenname: Pierre surname: Berube fullname: Berube, Pierre – sequence: 6 givenname: Jiannis surname: Ragoussis fullname: Ragoussis, Jiannis |
| BookMark | eNp1kc1rGzEQxUVJaRI39x732Ms6kkarj0uhmH4EXFqKcxaydnatsJZcaV3of99d25SmUB2kYTTvNw_eLbmKKSIhbxhdAmhz3_UYcckpp0tKJZUvyA2TUtSacnb1V31N7kp5otMRBgDEK3INXAE0wG_I6guOu9SmIfUBS9WlXG2yi8XncBirbzl1YQixrx7LfK9T7Ovv6Npqg34XL6rX5GXnhoJ3l3dBHj9-2Kw-1-uvnx5W79e1F2DGGpFxpVTXCuSUTutBtJIaL53XU7uRplGOgW8M48II8CAbaDhu9SQx1MOCPJy5bXJP9pDD3uVfNrlgT42Ue-vyGPyAlovGcak5bzsQTintQXvhYMu2zktwE-vdmXU4bvfYeoxjdsMz6POfGHa2Tz-tgkbP3hfk7QWQ048jltHuQ_E4DC5iOpbJATdKS8H0NErPoz6nUjJ2f9Ywauco7SlKO0dpT1FOEvmPxIfRjSHNZsLwf-FvCmykEw |
| CitedBy_id | crossref_primary_10_3724_abbs_2024211 crossref_primary_10_3389_fbioe_2025_1638957 crossref_primary_10_1242_bio_061721 crossref_primary_10_3389_fmicb_2023_1233178 crossref_primary_10_1016_j_csbj_2022_07_007 crossref_primary_10_3389_fbioe_2022_842299 crossref_primary_10_3389_fpls_2022_841618 crossref_primary_10_1007_s41348_024_00941_x crossref_primary_10_1038_s41467_023_41207_8 crossref_primary_10_1016_j_jbiotec_2021_08_005 crossref_primary_10_1039_D5FO00451A crossref_primary_10_1016_j_ygeno_2023_110697 crossref_primary_10_3389_fgene_2022_838534 crossref_primary_10_48130_opr_0025_0029 crossref_primary_10_1016_j_fct_2022_113394 crossref_primary_10_1038_s41598_023_29484_1 crossref_primary_10_1146_annurev_animal_111523_102217 crossref_primary_10_1186_s12983_024_00538_y crossref_primary_10_1186_s12864_024_10791_4 crossref_primary_10_1186_s12864_023_09442_x crossref_primary_10_1098_rsob_250200 crossref_primary_10_1038_s41592_023_02046_z crossref_primary_10_1038_s41467_024_48929_3 crossref_primary_10_1016_j_cell_2023_04_012 crossref_primary_10_1371_journal_pcbi_1011576 crossref_primary_10_3390_ijms222212225 crossref_primary_10_3389_fgene_2022_1031355 crossref_primary_10_1016_j_ymeth_2021_09_010 crossref_primary_10_3390_ani10122236 crossref_primary_10_3390_ani14142058 crossref_primary_10_1371_journal_pone_0265469 crossref_primary_10_1002_wrna_1708 crossref_primary_10_1093_nar_gkab713 crossref_primary_10_3390_life12010030 crossref_primary_10_3390_nu13030763 crossref_primary_10_3389_fpls_2022_911277 crossref_primary_10_1093_nar_gkad810 crossref_primary_10_1016_j_tig_2021_11_003 crossref_primary_10_1007_s11914_022_00726_x crossref_primary_10_1038_s41597_025_05399_6 crossref_primary_10_1007_s00439_024_02678_x crossref_primary_10_1016_j_vas_2024_100382 crossref_primary_10_1111_raq_12689 crossref_primary_10_1093_hr_uhae198 crossref_primary_10_3389_fgene_2021_656334 crossref_primary_10_1016_j_fsigen_2024_103156 crossref_primary_10_1093_nar_gkaf240 crossref_primary_10_1186_s12967_023_04653_y crossref_primary_10_1038_s41592_022_01714_w crossref_primary_10_1158_0008_5472_CAN_20_1943 crossref_primary_10_1128_spectrum_02234_23 crossref_primary_10_1146_annurev_biodatasci_020722_044021 crossref_primary_10_3389_fmolb_2021_647277 crossref_primary_10_1007_s00425_021_03644_x crossref_primary_10_3390_ijms252111845 crossref_primary_10_1038_s41588_024_02038_5 crossref_primary_10_1093_hmg_ddac196 crossref_primary_10_3390_mi14020459 crossref_primary_10_1016_j_aquaculture_2024_741908 crossref_primary_10_3389_fgene_2022_997460 crossref_primary_10_1038_s41597_024_02989_8 crossref_primary_10_1101_gr_275133_120 crossref_primary_10_1093_icb_icae009 crossref_primary_10_1186_s12929_021_00775_x crossref_primary_10_1016_j_cbi_2023_110518 crossref_primary_10_3390_biom14050568 |
| Cites_doi | 10.1093/bioinformatics/btx668 10.1073/pnas.1400447111 10.1038/nbt.4259 10.1093/molbev/msx212 10.3389/fimmu.2018.01012 10.1038/srep31584 10.1038/ncomms16027 10.1016/j.ab.2006.10.009 10.1038/nrg2504 10.1371/journal.pone.0085270 10.1101/pdb.prot5559 10.1101/132274 10.1101/094672 10.1093/gigascience/gix024 10.1039/c8lc01239c 10.1007/978-1-4939-7834-2_11 10.1038/s41598-017-18364-0 10.1007/978-1-4939-7834-2_6 10.1016/j.tibs.2010.02.002 10.1186/s13059-019-1676-5 10.1016/j.cell.2016.02.045 10.1038/nbt.3242 10.1038/nmeth.3327 10.1038/nrm.2017.49 10.1093/bfgp/elw043 10.1101/2020.02.19.953307 10.1038/nmeth.2722 10.1186/gb-2014-15-6-r86 10.1021/bi00245a001 10.1186/s12864-018-4491-6 10.1093/dnares/dsy038 10.1038/nbt.2957 10.1371/journal.pone.0157779 10.3389/fgene.2019.00709 10.1038/nmeth.2714 10.1186/s12885-015-1046-y 10.1101/gr.231100.117 10.1038/s41598-017-05503-w 10.1016/j.tibs.2018.02.007 10.1093/nar/gkv536 10.1186/s12859-019-2996-x 10.1038/emboj.2009.283 10.1093/nar/gkp093 10.1186/1472-6750-7-21 10.3390/genes9010043 10.1016/s0092-8674(00)80369-4 10.1038/nbt.2282 10.1186/s13059-018-1462-9 10.1128/jb.184.17.4658-4665.2002 10.1182/blood-2014-05-573485 10.12688/f1000research.10571.2 10.1093/bioinformatics/bty098 10.1038/ncomms11706 10.1146/annurev-genet-120213-092340 10.1101/463463 10.1038/nrg3160 10.1016/j.gpb.2015.08.002 10.1038/s41467-018-05347-6 10.1101/160085 10.1002/bies.20749 10.1007/978-1-59745-033-1_10 10.1016/s0092-8674(00)80270-6 10.1093/nar/gky834 10.1126/science.1162986 10.1113/jphysiol.2006.115568 10.2144/03344st06 10.1186/1477-3155-11-8 10.1186/s12864-017-3528-6 10.1038/nmeth.2639 10.1038/nmeth.4577 10.1038/nbt.3432 10.1093/nar/gkv444 10.1007/978-1-60327-369-5_1 10.1038/nrg2695 10.1101/102905 10.1073/pnas.1806447115 10.1101/459529 10.1038/nature11233 10.1007/s13577-017-0168-8 10.1016/j.ab.2006.06.020 10.1038/nprot.2014.006 10.5808/gi.2019.17.3.e32 10.1093/bioinformatics/bti310 10.1093/nar/29.11.2217 10.1073/pnas.1320101110 10.1186/s13742-016-0140-7 10.1038/srep31602 10.1101/gr.135350.111 10.1038/nmeth.4184 10.1038/celldisc.2017.31 10.1038/nbt.2705 10.1101/gr.230516.117 10.1161/hh2301.100981 10.1101/gr.141705.112 10.1093/nar/27.21.e31-i 10.1126/science.1079700 10.1038/nrg.2017.117 10.1038/s41594-018-0042-8 10.1101/478172 10.1038/s41467-018-05997-6 10.1038/nrm1645 10.1016/j.ygeno.2005.12.013 10.1038/nature08390 10.1101/410282 10.1146/annurev.biochem.72.121801.161720 10.1016/j.celrep.2015.12.050 10.1038/nnano.2017.176 10.1101/gr.237610.118 10.1261/rna.2242610 10.1186/1471-2105-13-238 10.1128/jvi.00669-14 10.1021/bi201075b 10.1101/077750 10.1093/nar/gku118 10.1038/nrg.2016.49 10.1093/nar/gky066 10.1038/nrg3642 10.1038/nmeth.2772 10.1038/s41598-018-26955-8 10.1101/424945 10.1038/nature22401 10.1093/bioinformatics/bty191 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis. Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis. 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis |
| Copyright_xml | – notice: Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis. – notice: Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis. 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fgene.2020.00606 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-8021 |
| ExternalDocumentID | oai_doaj_org_article_245a26822df34a778c38c4a3b1bac63a PMC7358353 10_3389_fgene_2020_00606 |
| GrantInformation_xml | – fundername: Canada Foundation for Innovation |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c439t-ee12777fd4e20035334d609c6ac877f56957a13c59124943c365352eb8fd490c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-8021 |
| IngestDate | Fri Oct 03 12:46:02 EDT 2025 Tue Sep 30 15:41:57 EDT 2025 Thu Sep 04 17:13:27 EDT 2025 Sat Nov 29 03:49:28 EST 2025 Tue Nov 18 22:03:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-ee12777fd4e20035334d609c6ac877f56957a13c59124943c365352eb8fd490c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Robert Hitzemann, Oregon Health & Science University, United States; Xuanxuan Xing, The Ohio State University, United States Edited by: Youri I. Pavlov, University of Nebraska Medical Center, United States This article was submitted to Genomic Assay Technology, a section of the journal Frontiers in Genetics |
| OpenAccessLink | https://doaj.org/article/245a26822df34a778c38c4a3b1bac63a |
| PMID | 32733532 |
| PQID | 2429786418 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_245a26822df34a778c38c4a3b1bac63a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7358353 proquest_miscellaneous_2429786418 crossref_primary_10_3389_fgene_2020_00606 crossref_citationtrail_10_3389_fgene_2020_00606 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-07 |
| PublicationDateYYYYMMDD | 2020-07-07 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in genetics |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Zhang (B127) 2017; 34 Owens (B85) 2016; 14 Eid (B33) 2009; 323 Rhoads (B93) 2015; 13 An (B2) 2018; 9 Lu (B70) 2018; 9 Ebhardt (B32) 2009; 37 Tilgner (B116) 2014; 111 Bajak (B7) 2008; 419 Jack (B53) 2015 Steijger (B113) 2013; 10 Sims (B108) 2014; 15 Workman (B123) 2018 Moldovan (B75) 2018; 8 Consortium (B24) 2014; 32 Cavelier (B20) 2015; 15 Keller (B57) 2018; 8 Nattestad (B80) 2018; 28 Shahbabian (B103) 2009; 28 Chen (B22) 2017; 7 Nordgard (B81) 2006; 356 Schoenberg (B101) 2012; 13 Luhtala (B71) 2010; 35 Bayega (B11); 1783 Matlin (B74) 2005; 6 Lahens (B62) 2014; 15 Zajac (B126) 2013; 8 Engstrom (B34) 2013; 10 Hussain (B50) 2018; 43 Jeon (B55) 2019; 17 Krizanovic (B59) 2017 Tan (B115) 2018 Shen (B105) 2016 Novoa (B82) 2017; 18 Volden (B121) 2018; 115 Faria (B35) 2017; 546 Oesterreich (B83) 2016; 165 Brinzevich (B15) 2014; 88 Bayega (B9); 1783 Cocquet (B23) 2006; 88 Freeman (B36) 2013; 1027 Cooper (B25) 2014; 42 Garalde (B38) 2018; 15 Hui (B49) 2014; 48 Larkin (B63) 2017; 12 Krjutskov (B60) 2016; 6 Weirather (B122) 2017; 6 Dougherty (B30) 2018; 28 Schmidt (B100) 1999; 27 Bang (B8) 2001; 89 Ghildiyal (B39) 2009; 10 Zhao (B128) 2015; 43 Cartolano (B18) 2016; 11 Arezi (B4) 2007; 360 Gustincich (B42) 2006; 575 Roy (B94) 2008; 30 Yan (B125) 2018; 9 Abdel-Ghany (B1) 2016; 7 Castro-Wallace (B19) 2017; 7 Bushnell (B16) 2014 Skelley (B110) 2015 Vilfan (B120) 2013; 11 Karlsson (B56) 2017; 18 Drmanac (B31) 2020 Hu (B47) 2017 Islam (B52) 2014; 11 Simpson (B107) 2017; 14 Loomis (B69) 2013; 23 Loman (B68) 2015; 12 Hawkins (B46) 2003; 34 Trotta (B119) 1997; 89 Marinov (B73) 2017; 16 Fu (B37) 2018; 34 Parker (B87) 2014; 124 Stoiber (B114) 2017 Marchet (B72) 2018; 47 Salimullah (B96) 2011; 2011 Boutabout (B14) 2001; 29 Salk (B97) 2018; 19 Li (B66) 2018; 34 Munafo (B76) 2010; 16 Picelli (B89) 2013; 10 Harrow (B45) 2012; 22 Cuchillo (B26) 2011; 50 Rang (B92) 2018; 19 Bayega (B10) Oikonomopoulos (B84) 2016; 6 Peach (B88) 2015; 43 Wu (B124) 2005; 21 Au (B5) 2013; 110 Dard-Dascot (B27) 2018; 19 Myers (B77) 1991; 30 Gupta (B41) 2018; 36 Jain (B54) 2016; 17 Seki (B102) 2019; 26 Schlecht (B99) 2017; 7 Bagnoli (B6) 2018; 9 Hardwick (B44) 2019; 10 Sahlin (B95) 2018 Sharon (B104) 2013; 31 Huang (B48) 2017; 6 Byrne (B17) 2017; 8 Sidrauski (B106) 1997; 90 Tilgner (B117) 2015; 33 Sorek (B112) 2010; 11 Ibrahim (B51) 2018; 25 Zheng (B129) 2016; 34 Levene (B64) 2003; 299 Salomon (B98) 2019; 19 Ozsolak (B86) 2009; 461 Black (B12) 2003; 72 Ardui (B3) 2018; 46 Kushner (B61) 2002; 184 Krizanovic (B58) 2018; 34 Goodwin (B40) 2016; 17 Li (B65) 2016; 5 Nakano (B78) 2017; 30 Ramskold (B91) 2012; 30 Smith (B111) 2017 Haddad (B43) 2007; 7 Li (B67) 2017; 3 Tilgner (B118) 2018; 28 Boratyn (B13) 2019; 20 Djebali (B29) 2012; 489 Chaisson (B21) 2012; 13 Natarajan (B79) 2019; 20 Picelli (B90) 2014; 9 Singh (B109) 2018 Davidson (B28) 2017 |
| References_xml | – volume: 34 start-page: 748 year: 2018 ident: B58 article-title: Evaluation of tools for long read RNA-seq splice-aware alignment. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx668 – volume: 111 start-page: 9869 year: 2014 ident: B116 article-title: Defining a personal, allele-specific, and single-molecule long-read transcriptome. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1400447111 – volume: 36 start-page: 1197 year: 2018 ident: B41 article-title: Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4259 – volume: 34 start-page: 2453 year: 2017 ident: B127 article-title: Isoform evolution in primates through independent combination of alternative RNA processing events. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msx212 – volume: 9 year: 2018 ident: B70 article-title: Immune modulation by human secreted rnases at the extracellular space. publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01012 – volume: 6 year: 2016 ident: B60 article-title: Globin mRNA reduction for whole-blood transcriptome sequencing. publication-title: Sci. Rep. doi: 10.1038/srep31584 – volume: 8 year: 2017 ident: B17 article-title: Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. publication-title: Nat. Commun. doi: 10.1038/ncomms16027 – volume: 360 start-page: 84 year: 2007 ident: B4 article-title: Escherichia coli DNA polymerase III epsilon subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures. publication-title: Anal. Biochem. doi: 10.1016/j.ab.2006.10.009 – volume: 10 start-page: 94 year: 2009 ident: B39 article-title: Small silencing RNAs: an expanding universe. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2504 – volume: 8 year: 2013 ident: B126 article-title: Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. publication-title: PLoS One doi: 10.1371/journal.pone.0085270 – volume: 2011 year: 2011 ident: B96 article-title: NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot5559 – year: 2017 ident: B111 article-title: Reading canonical and modified nucleotides in 16S ribosomal RNA using nanopore direct RNA sequencing. publication-title: bioRxiv doi: 10.1101/132274 – year: 2017 ident: B114 article-title: De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. publication-title: bioRxiv doi: 10.1101/094672 – volume: 6 start-page: 1 year: 2017 ident: B48 article-title: A reference human genome dataset of the BGISEQ-500 sequencer. publication-title: Gigascience doi: 10.1093/gigascience/gix024 – volume: 19 start-page: 1706 year: 2019 ident: B98 article-title: Droplet-based single cell RNAseq tools: a practical guide. publication-title: Lab Chip doi: 10.1039/c8lc01239c – volume: 1783 start-page: 209 ident: B9 article-title: Current and future methods for mrna analysis: a drive toward single molecule sequencing. publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7834-2_11 – volume: 7 year: 2017 ident: B19 article-title: Nanopore DNA sequencing and genome assembly on the international space station. publication-title: Sci. Rep. doi: 10.1038/s41598-017-18364-0 – volume: 1783 start-page: 121 ident: B11 article-title: Transcript profiling using long-read sequencing technologies. publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7834-2_6 – volume: 35 start-page: 253 year: 2010 ident: B71 article-title: T2 Family ribonucleases: ancient enzymes with diverse roles. publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.02.002 – volume: 20 year: 2019 ident: B79 article-title: Comparative analysis of sequencing technologies for single-cell transcriptomics. publication-title: Genome Biol. doi: 10.1186/s13059-019-1676-5 – volume: 165 start-page: 372 year: 2016 ident: B83 article-title: Splicing of nascent rna coincides with intron exit from RNA Polymerase II. publication-title: Cell doi: 10.1016/j.cell.2016.02.045 – volume: 33 start-page: 736 year: 2015 ident: B117 article-title: Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3242 – volume: 12 start-page: 303 year: 2015 ident: B68 article-title: Successful test launch for nanopore sequencing. publication-title: Nat. Methods doi: 10.1038/nmeth.3327 – volume: 18 start-page: 339 year: 2017 ident: B82 article-title: Charting the unknown epitranscriptome. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.49 – volume: 16 start-page: 326 year: 2017 ident: B73 article-title: On the design and prospects of direct RNA sequencing. publication-title: Brief. Funct. Genomics doi: 10.1093/bfgp/elw043 – year: 2020 ident: B31 article-title: CoolMPS: advanced massively parallel sequencing using antibodies specific to each natural nucleobase. publication-title: bioRxiv doi: 10.1101/2020.02.19.953307 – volume: 10 start-page: 1185 year: 2013 ident: B34 article-title: Systematic evaluation of spliced alignment programs for RNA-seq data. publication-title: Nat. Methods doi: 10.1038/nmeth.2722 – volume: 15 year: 2014 ident: B62 article-title: IVT-seq reveals extreme bias in RNA sequencing. publication-title: Genome Biol. doi: 10.1186/gb-2014-15-6-r86 – volume: 30 start-page: 7661 year: 1991 ident: B77 article-title: Reverse transcription and DNA amplification by a thermus thermophilus DNA polymerase. publication-title: Biochemistry doi: 10.1021/bi00245a001 – volume: 19 year: 2018 ident: B27 article-title: Systematic comparison of small RNA library preparation protocols for next-generation sequencing. publication-title: BMC Genomics doi: 10.1186/s12864-018-4491-6 – volume: 26 start-page: 55 year: 2019 ident: B102 article-title: Evaluation and application of RNA-Seq by MinION. publication-title: DNA Res. doi: 10.1093/dnares/dsy038 – volume: 32 start-page: 903 year: 2014 ident: B24 article-title: A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2957 – volume: 11 year: 2016 ident: B18 article-title: cDNA library enrichment of full length transcripts for smrt long read sequencing. publication-title: PLoS One doi: 10.1371/journal.pone.0157779 – volume: 10 year: 2019 ident: B44 article-title: Getting the entire message: progress in isoform sequencing. publication-title: Front. Genet. doi: 10.3389/fgene.2019.00709 – volume: 10 start-page: 1177 year: 2013 ident: B113 article-title: Assessment of transcript reconstruction methods for RNA-seq. publication-title: Nat. Methods doi: 10.1038/nmeth.2714 – volume: 15 year: 2015 ident: B20 article-title: Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing. publication-title: BMC Cancer doi: 10.1186/s12885-015-1046-y – volume: 28 start-page: 1126 year: 2018 ident: B80 article-title: Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line. publication-title: Genome Res. doi: 10.1101/gr.231100.117 – volume: 7 year: 2017 ident: B99 article-title: ConcatSeq: a method for increasing throughput of single molecule sequencing by concatenating short DNA fragments. publication-title: Sci. Rep. doi: 10.1038/s41598-017-05503-w – volume: 43 start-page: 225 year: 2018 ident: B50 article-title: Native RNA-sequencing throws its hat into the transcriptomics ring. publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2018.02.007 – volume: 43 year: 2015 ident: B88 article-title: Global analysis of RNA cleavage by 5’-hydroxyl RNA sequencing. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv536 – volume: 20 year: 2019 ident: B13 article-title: Magic-BLAST, an accurate RNA-seq aligner for long and short reads. publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2996-x – volume: 28 start-page: 3523 year: 2009 ident: B103 article-title: RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. publication-title: EMBO J. doi: 10.1038/emboj.2009.283 – volume: 37 start-page: 2461 year: 2009 ident: B32 article-title: Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp093 – volume: 7 year: 2007 ident: B43 article-title: Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR. publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-7-21 – volume: 9 year: 2018 ident: B2 article-title: Isoform sequencing and state-of-art applications for unravelling complexity of plant transcriptomes. publication-title: Genes doi: 10.3390/genes9010043 – volume: 90 start-page: 1031 year: 1997 ident: B106 article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. publication-title: Cell doi: 10.1016/s0092-8674(00)80369-4 – volume: 30 start-page: 777 year: 2012 ident: B91 article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2282 – volume: 19 year: 2018 ident: B92 article-title: From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. publication-title: Genome Biol. doi: 10.1186/s13059-018-1462-9 – volume: 184 start-page: 4658 year: 2002 ident: B61 article-title: mRNA decay in Escherichia coli comes of age. publication-title: J. Bacteriol. doi: 10.1128/jb.184.17.4658-4665.2002 – volume: 124 start-page: 153 year: 2014 ident: B87 article-title: Many BCR-ABL1 compound mutations reported in chronic myeloid leukemia patients may actually be artifacts due to PCR-mediated recombination. publication-title: Blood doi: 10.1182/blood-2014-05-573485 – volume: 6 year: 2017 ident: B122 article-title: Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. publication-title: F1000Res. doi: 10.12688/f1000research.10571.2 – volume: 34 start-page: 2168 year: 2018 ident: B37 article-title: IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty098 – volume: 7 year: 2016 ident: B1 article-title: A survey of the sorghum transcriptome using single-molecule long reads. publication-title: Nat. Commun. doi: 10.1038/ncomms11706 – volume: 48 start-page: 537 year: 2014 ident: B49 article-title: Messenger RNA degradation in bacterial cells. publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120213-092340 – year: 2018 ident: B95 article-title: De novo clustering of long-read transcriptome data using a greedy, quality-value based algorithm. publication-title: bioRxiv doi: 10.1101/463463 – volume: 7 year: 2017 ident: B22 article-title: A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing. publication-title: Sci. Rep. – volume: 13 start-page: 246 year: 2012 ident: B101 article-title: Regulation of cytoplasmic mRNA decay. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3160 – volume: 13 start-page: 278 year: 2015 ident: B93 article-title: PacBio sequencing and its applications. publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2015.08.002 – volume: 9 year: 2018 ident: B6 article-title: Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. publication-title: Nat. Commun. doi: 10.1038/s41467-018-05347-6 – year: 2016 ident: B105 publication-title: Kinetic Exclusion Amplification of Nucleic Acid Libraries. – year: 2017 ident: B59 article-title: RNA transcriptome mapping with graphmap. publication-title: bioRxiv doi: 10.1101/160085 – volume: 30 start-page: 601 year: 2008 ident: B94 article-title: When good transcripts go bad: artifactual RT-PCR ‘splicing’ and genome analysis. publication-title: Bioessays doi: 10.1002/bies.20749 – volume: 419 start-page: 147 year: 2008 ident: B7 article-title: Efficient 5’ cap-dependent RNA purification : use in identifying and studying subsets of RNA. publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-033-1_10 – volume: 89 start-page: 849 year: 1997 ident: B119 article-title: The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. publication-title: Cell doi: 10.1016/s0092-8674(00)80270-6 – volume: 47 year: 2018 ident: B72 article-title: De novo clustering of long reads by gene from transcriptomics data. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky834 – volume: 323 start-page: 133 year: 2009 ident: B33 article-title: Real-time DNA sequencing from single polymerase molecules. publication-title: Science doi: 10.1126/science.1162986 – volume: 8 year: 2018 ident: B57 article-title: Direct RNA sequencing of the coding complete influenza a virus genome. publication-title: Sci. Rep. – volume: 575 start-page: 321 year: 2006 ident: B42 article-title: The complexity of the mammalian transcriptome. publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.115568 – volume: 34 start-page: 768 year: 2003 ident: B46 article-title: Full-length cDNA synthesis for long-distance RT-PCR of large mRNA transcripts. publication-title: Biotechniques doi: 10.2144/03344st06 – volume: 11 year: 2013 ident: B120 article-title: Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-11-8 – year: 2015 ident: B110 publication-title: MatchAnnot; GitHub Respository. – volume: 18 year: 2017 ident: B56 article-title: Single-cell mRNA isoform diversity in the mouse brain. publication-title: BMC Genomics doi: 10.1186/s12864-017-3528-6 – volume: 10 start-page: 1096 year: 2013 ident: B89 article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells. publication-title: Nat. Methods doi: 10.1038/nmeth.2639 – volume: 15 start-page: 201 year: 2018 ident: B38 article-title: Highly parallel direct RNA sequencing on an array of nanopores. publication-title: Nat. Methods doi: 10.1038/nmeth.4577 – volume: 34 start-page: 303 year: 2016 ident: B129 article-title: Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3432 – volume: 43 start-page: 5550 year: 2015 ident: B128 article-title: Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv444 – volume: 1027 start-page: 3 year: 2013 ident: B36 article-title: Cloning full-length transcripts and transcript variants using 5’ and 3’. publication-title: RACE. Methods Mol. Biol. doi: 10.1007/978-1-60327-369-5_1 – volume: 11 start-page: 9 year: 2010 ident: B112 article-title: Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2695 – year: 2017 ident: B47 article-title: Interactive analysis of Long-read RNA isoforms with Iso-Seq Browser. publication-title: bioRxiv doi: 10.1101/102905 – volume: 115 year: 2018 ident: B121 article-title: Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1806447115 – year: 2018 ident: B123 article-title: Nanopore native RNA sequencing of a human poly(A) transcriptome. publication-title: bioRxiv doi: 10.1101/459529 – volume: 489 start-page: 101 year: 2012 ident: B29 article-title: Landscape of transcription in human cells. publication-title: Nature doi: 10.1038/nature11233 – volume: 30 start-page: 149 year: 2017 ident: B78 article-title: Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. publication-title: Hum. Cell doi: 10.1007/s13577-017-0168-8 – volume: 356 start-page: 182 year: 2006 ident: B81 article-title: Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. publication-title: Anal. Biochem. doi: 10.1016/j.ab.2006.06.020 – volume: 9 start-page: 171 year: 2014 ident: B90 article-title: Full-length RNA-seq from single cells using Smart-seq2. publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 17 year: 2019 ident: B55 article-title: Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing. publication-title: Genomics Inform. doi: 10.5808/gi.2019.17.3.e32 – volume: 21 start-page: 1859 year: 2005 ident: B124 article-title: GMAP: a genomic mapping and alignment program for mRNA and EST sequences. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti310 – volume: 29 start-page: 2217 year: 2001 ident: B14 article-title: DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.11.2217 – year: 2014 ident: B16 publication-title: BBMap: A Fast, Accurate, Splice-Aware Aligner. – volume: 110 start-page: E4821 year: 2013 ident: B5 article-title: Characterization of the human ESC transcriptome by hybrid sequencing. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1320101110 – volume: 5 year: 2016 ident: B65 article-title: INC-Seq: accurate single molecule reads using nanopore sequencing. publication-title: Gigascience doi: 10.1186/s13742-016-0140-7 – volume: 6 year: 2016 ident: B84 article-title: Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. publication-title: Sci. Rep. doi: 10.1038/srep31602 – volume: 22 start-page: 1760 year: 2012 ident: B45 article-title: GENCODE: the reference human genome annotation for The ENCODE Project. publication-title: Genome Res. doi: 10.1101/gr.135350.111 – volume: 14 start-page: 407 year: 2017 ident: B107 article-title: Detecting DNA cytosine methylation using nanopore sequencing. publication-title: Nat. Methods doi: 10.1038/nmeth.4184 – volume: 3 year: 2017 ident: B67 article-title: Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis. publication-title: Cell Discov. doi: 10.1038/celldisc.2017.31 – volume: 31 start-page: 1009 year: 2013 ident: B104 article-title: A single-molecule long-read survey of the human transcriptome. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2705 – volume: 28 start-page: 231 year: 2018 ident: B118 article-title: Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome. publication-title: Genome Res. doi: 10.1101/gr.230516.117 – volume: 89 start-page: 1065 year: 2001 ident: B8 article-title: The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. publication-title: Circ. Res. doi: 10.1161/hh2301.100981 – volume: 23 start-page: 121 year: 2013 ident: B69 article-title: Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. publication-title: Genome Res. doi: 10.1101/gr.141705.112 – volume: 27 year: 1999 ident: B100 article-title: CapSelect: a highly sensitive method for 5’ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.21.e31-i – volume: 299 start-page: 682 year: 2003 ident: B64 article-title: Zero-mode waveguides for single-molecule analysis at high concentrations. publication-title: Science doi: 10.1126/science.1079700 – volume: 19 start-page: 269 year: 2018 ident: B97 article-title: Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2017.117 – volume: 25 start-page: 302 year: 2018 ident: B51 article-title: Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0042-8 – ident: B10 article-title: Transcriptome landscape of the developing olive fruit fly embryo delineated by Oxford Nanopore long-read RNA-Seq. publication-title: bioRxiv doi: 10.1101/478172 – volume: 9 year: 2018 ident: B125 article-title: SMRT-Cappable-seq reveals complex operon variants in bacteria. publication-title: Nat. Commun. doi: 10.1038/s41467-018-05997-6 – volume: 6 start-page: 386 year: 2005 ident: B74 article-title: Understanding alternative splicing: towards a cellular code. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1645 – volume: 88 start-page: 127 year: 2006 ident: B23 article-title: Reverse transcriptase template switching and false alternative transcripts. publication-title: Genomics doi: 10.1016/j.ygeno.2005.12.013 – volume: 461 start-page: 814 year: 2009 ident: B86 article-title: Direct RNA sequencing. publication-title: Nature doi: 10.1038/nature08390 – year: 2018 ident: B115 article-title: A novel method for the capture-based purification of whole viral native RNA genomes. publication-title: bioRxiv doi: 10.1101/410282 – volume: 72 start-page: 291 year: 2003 ident: B12 article-title: Mechanisms of alternative pre-messenger RNA splicing. publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.72.121801.161720 – volume: 17 year: 2016 ident: B54 article-title: The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. publication-title: Genome Biol. – volume: 14 start-page: 632 year: 2016 ident: B85 article-title: Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.12.050 – volume: 12 start-page: 1169 year: 2017 ident: B63 article-title: Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.176 – volume: 28 start-page: 1566 year: 2018 ident: B30 article-title: Transcriptional fates of human-specific segmental duplications in brain. publication-title: Genome Res. doi: 10.1101/gr.237610.118 – volume: 16 start-page: 2537 year: 2010 ident: B76 article-title: Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. publication-title: RNA doi: 10.1261/rna.2242610 – volume: 13 year: 2012 ident: B21 article-title: Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-238 – volume: 88 start-page: 6213 year: 2014 ident: B15 article-title: HIV-1 interacts with human endogenous retrovirus K (HML-2) envelopes derived from human primary lymphocytes. publication-title: J. Virol. doi: 10.1128/jvi.00669-14 – volume: 50 start-page: 7835 year: 2011 ident: B26 article-title: Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. publication-title: Biochemistry doi: 10.1021/bi201075b – year: 2017 ident: B28 article-title: SuperTranscript: a data driven reference for analysis and visualisation of transcriptomes. publication-title: bioRxiv doi: 10.1101/077750 – volume: 42 start-page: 5202 year: 2014 ident: B25 article-title: Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku118 – volume: 17 start-page: 333 year: 2016 ident: B40 article-title: Coming of age: ten years of next-generation sequencing technologies. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.49 – volume: 46 start-page: 2159 year: 2018 ident: B3 article-title: Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky066 – volume: 15 start-page: 121 year: 2014 ident: B108 article-title: Sequencing depth and coverage: key considerations in genomic analyses. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3642 – volume: 11 start-page: 163 year: 2014 ident: B52 article-title: Quantitative single-cell RNA-seq with unique molecular identifiers. publication-title: Nat. Methods doi: 10.1038/nmeth.2772 – volume: 8 year: 2018 ident: B75 article-title: Third-generation sequencing reveals extensive polycistronism and transcriptional overlapping in a baculovirus. publication-title: Sci. Rep. doi: 10.1038/s41598-018-26955-8 – year: 2018 ident: B109 article-title: High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. publication-title: bioRxiv doi: 10.1101/424945 – volume: 546 start-page: 406 year: 2017 ident: B35 article-title: Establishment and cryptic transmission of Zika virus in Brazil and the Americas. publication-title: Nature doi: 10.1038/nature22401 – year: 2015 ident: B53 publication-title: IsoView; GitHub Respository. – volume: 34 start-page: 3094 year: 2018 ident: B66 article-title: Minimap2: pairwise alignment for nucleotide sequences. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 |
| SSID | ssj0000493334 |
| Score | 2.5089087 |
| SecondaryResourceType | review_article |
| Snippet | RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 606 |
| SubjectTerms | Genetics long read nanopore next-generation sequencing PacBio RNA-Seq transcriptome |
| Title | Methodologies for Transcript Profiling Using Long-Read Technologies |
| URI | https://www.proquest.com/docview/2429786418 https://pubmed.ncbi.nlm.nih.gov/PMC7358353 https://doaj.org/article/245a26822df34a778c38c4a3b1bac63a |
| Volume | 11 |
| WOSCitedRecordID | wos000553411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swED20RgN0CZImRZW0gQp06SDYEikeNaZGggyJ4SEBvAkkRaYpCrnwR4Au-e05nhzDWtoliwaKhMQ7ifeOPLwH8I1yHlV6DJmVDjMZMZxt4o6YCNgYKawdBRabwMlEz2bVdEfqK9aEdfTAneGGhSxNoSiMNUFIg6id0E4aYXNrnBIMjQj17CRTvzrcK4SQ3bkkZWHVMJA_Ii1mwaVcUeBoJw4xXX8PY_YrJHdCzuUB7G-wYnreveMhvPHtB9jr1CP_HsH4htWfefXyy5TQZ8qRh9eBdMpi3BSYUq4KSK_n7X0WS-bT7W46jTqGu8uL2_FVttFEyBxBh1XmfV4gYmikZy5TmmSjRpVTxmlqLlVVosmFK6uoKi2FEyoSuHiraUg1cuIjDNp56z9BiqoJRe4phhVBWllqE5rcELyx6LzGJoHhi4VqtyEMj7oVv2tKHKJNa7ZpHW1as00T-L4d8acjy_hH3x_R6Nt-keaaG8j59cb59f-cn8DXF5fV9FvEsw7T-vl6SSMLyo-VzHUC2PNl74n9O-3DTybYRlESMBUnr_GKp_A-TporfPEzDFaLtf8C79zj6mG5OIO3ONNn_O3S9ebp4hlAc_TE |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodologies+for+Transcript+Profiling+Using+Long-Read+Technologies&rft.jtitle=Frontiers+in+genetics&rft.au=Spyros+Oikonomopoulos&rft.au=Anthony+Bayega&rft.au=Somayyeh+Fahiminiya&rft.au=Haig+Djambazian&rft.date=2020-07-07&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-8021&rft.volume=11&rft_id=info:doi/10.3389%2Ffgene.2020.00606&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_245a26822df34a778c38c4a3b1bac63a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |