The state of the art and taxonomy of big data analytics: view from new big data framework
Big data has become a significant research area due to the birth of enormous data generated from various sources like social media, internet of things and multimedia applications. Big data has played critical role in many decision makings and forecasting domains such as recommendation systems, busin...
Uloženo v:
| Vydáno v: | The Artificial intelligence review Ročník 53; číslo 2; s. 989 - 1037 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.02.2020
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0269-2821, 1573-7462 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Big data has become a significant research area due to the birth of enormous data generated from various sources like social media, internet of things and multimedia applications. Big data has played critical role in many decision makings and forecasting domains such as recommendation systems, business analysis, healthcare, web display advertising, clinicians, transportation, fraud detection and tourism marketing. The rapid development of various big data tools such as Hadoop, Storm, Spark, Flink, Kafka and Pig in research and industrial communities has allowed the huge number of data to be distributed, communicated and processed. Big data applications use big data analytics techniques to efficiently analyze large amounts of data. However, choosing the suitable big data tools based on batch and stream data processing and analytics techniques for development a big data system are difficult due to the challenges in processing and applying big data. Practitioners and researchers who are developing big data systems have inadequate information about the current technology and requirement concerning the big data platform. Hence, the strengths and weaknesses of big data technologies and effective solutions for Big Data challenges are needed to be discussed. Hence, due to that, this paper presents a review of the literature that analyzes the use of big data tools and big data analytics techniques in areas like health and medical care, social networking and internet, government and public sector, natural resource management, economic and business sector. The goals of this paper are to (1) understand the trend of big data-related research and current frames of big data technologies; (2) identify trends in the use or research of big data tools based on batch and stream processing and big data analytics techniques; (3) assist and provide new researchers and practitioners to place new research activity in this domain appropriately. The findings of this study will provide insights and knowledge on the existing big data platforms and their application domains, the advantages and disadvantages of big data tools, big data analytics techniques and their use, and new research opportunities in future development of big data systems. |
|---|---|
| AbstractList | Big data has become a significant research area due to the birth of enormous data generated from various sources like social media, internet of things and multimedia applications. Big data has played critical role in many decision makings and forecasting domains such as recommendation systems, business analysis, healthcare, web display advertising, clinicians, transportation, fraud detection and tourism marketing. The rapid development of various big data tools such as Hadoop, Storm, Spark, Flink, Kafka and Pig in research and industrial communities has allowed the huge number of data to be distributed, communicated and processed. Big data applications use big data analytics techniques to efficiently analyze large amounts of data. However, choosing the suitable big data tools based on batch and stream data processing and analytics techniques for development a big data system are difficult due to the challenges in processing and applying big data. Practitioners and researchers who are developing big data systems have inadequate information about the current technology and requirement concerning the big data platform. Hence, the strengths and weaknesses of big data technologies and effective solutions for Big Data challenges are needed to be discussed. Hence, due to that, this paper presents a review of the literature that analyzes the use of big data tools and big data analytics techniques in areas like health and medical care, social networking and internet, government and public sector, natural resource management, economic and business sector. The goals of this paper are to (1) understand the trend of big data-related research and current frames of big data technologies; (2) identify trends in the use or research of big data tools based on batch and stream processing and big data analytics techniques; (3) assist and provide new researchers and practitioners to place new research activity in this domain appropriately. The findings of this study will provide insights and knowledge on the existing big data platforms and their application domains, the advantages and disadvantages of big data tools, big data analytics techniques and their use, and new research opportunities in future development of big data systems. |
| Audience | Academic |
| Author | Wah, Yap Bee Mohamed, Azlinah Zaman, Ezzatul Akmal Kamaru Maskat, Ruhaila Najafabadi, Maryam Khanian |
| Author_xml | – sequence: 1 givenname: Azlinah surname: Mohamed fullname: Mohamed, Azlinah organization: Advanced Analytics Engineering Centre, Faculty Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) – sequence: 2 givenname: Maryam Khanian surname: Najafabadi fullname: Najafabadi, Maryam Khanian email: maryam.najafabadi@newinti.edu.my organization: Faculty of Information Technology, INTI International University & Colleges – sequence: 3 givenname: Yap Bee surname: Wah fullname: Wah, Yap Bee organization: Advanced Analytics Engineering Centre, Faculty Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) – sequence: 4 givenname: Ezzatul Akmal Kamaru surname: Zaman fullname: Zaman, Ezzatul Akmal Kamaru organization: Advanced Analytics Engineering Centre, Faculty Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) – sequence: 5 givenname: Ruhaila surname: Maskat fullname: Maskat, Ruhaila organization: Advanced Analytics Engineering Centre, Faculty Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) |
| BookMark | eNp9kctuHCEQRVHkSBlP8gNZIXndDjTQDd5Zlu1EspTNbLJCNTwmONONA_gxf59yOkqkLEYsgOKeEnXvKTmZ8xwI-cjZOWds_FQ5k0PfMW46ZgatOvOGrLgaRTdi_YSsWD-Yrtc9f0dOa71njKleihX5tvkeaG3QAs2RNrxAaRRmTxu85DlPh9f6Nu2ohwb4APtDS65e0KcUnmkseaIzHv4qYoEpPOfy4z15G2Ffw4c_-5psbq43V5-7u6-3X64u7zonhWmdFyzILbjBCfAqbr1XXkbDmPeuZzFoGYTyMY5SDAAehIcxCr11igeDA67J2dL2oeSfj6E2e58fC36zWsGN0nqQ4qiq56NU6JnWqDpfVDvYB5vmmFsBh8uHKTl0PCasX44cfVRcMwT0AriSay0hWpfQy5RnBNPecmZf47FLPBbjsb_jsQbR_j_0oaQJyuE4JBaoonjehfJvjCPUL2Q8pDE |
| CitedBy_id | crossref_primary_10_1016_j_pce_2023_103370 crossref_primary_10_1007_s10922_025_09969_2 crossref_primary_10_1155_2021_6667275 crossref_primary_10_1155_2022_3567697 crossref_primary_10_1155_2022_5477390 crossref_primary_10_1007_s11036_024_02297_w crossref_primary_10_1109_ACCESS_2023_3323160 crossref_primary_10_1016_j_techfore_2023_122612 crossref_primary_10_1016_j_afres_2025_101234 crossref_primary_10_1007_s11036_023_02180_0 crossref_primary_10_1016_j_is_2024_102460 crossref_primary_10_56294_dm202221 crossref_primary_10_3390_ijerph17155330 crossref_primary_10_1007_s13748_020_00210_6 crossref_primary_10_1007_s10723_022_09627_w crossref_primary_10_47495_okufbed_1481893 crossref_primary_10_1016_j_ins_2023_119899 crossref_primary_10_3390_info14050292 crossref_primary_10_1155_2022_3464221 crossref_primary_10_1007_s42044_023_00158_5 crossref_primary_10_1155_2022_6989374 crossref_primary_10_1108_JFRA_11_2023_0689 crossref_primary_10_1155_2022_6927170 crossref_primary_10_1016_j_future_2024_07_032 crossref_primary_10_3390_su151310690 crossref_primary_10_1108_SJME_03_2022_0035 crossref_primary_10_1108_BPMJ_01_2023_0015 crossref_primary_10_3390_en16104025 crossref_primary_10_1186_s40537_024_00914_9 crossref_primary_10_1371_journal_pone_0319707 crossref_primary_10_29333_ejosdr_15434 crossref_primary_10_1007_s11631_025_00813_7 crossref_primary_10_1155_2022_1027518 crossref_primary_10_1155_2021_3224190 crossref_primary_10_1155_2022_1788797 crossref_primary_10_1155_2022_1158509 crossref_primary_10_3390_min15050467 crossref_primary_10_1155_2022_5795021 crossref_primary_10_1007_s10586_025_05108_3 crossref_primary_10_4018_IJWLTT_336483 crossref_primary_10_1007_s00354_023_00211_8 crossref_primary_10_3233_JCM_247513 crossref_primary_10_1515_geo_2022_0577 crossref_primary_10_1007_s11042_020_10499_z crossref_primary_10_1155_2022_3237282 crossref_primary_10_2478_amns_2024_0664 crossref_primary_10_1016_j_sasc_2025_200205 crossref_primary_10_1155_2023_3976302 crossref_primary_10_1108_MD_12_2021_1624 crossref_primary_10_1155_2022_3141568 crossref_primary_10_3390_buildings15132167 crossref_primary_10_4018_IJWLTT_380729 crossref_primary_10_1007_s10462_024_10811_5 crossref_primary_10_1007_s11277_023_10817_2 crossref_primary_10_3390_s21020568 crossref_primary_10_1155_2022_7020190 crossref_primary_10_1016_j_jjimei_2024_100306 crossref_primary_10_1155_2022_6711470 crossref_primary_10_1155_2022_4857155 crossref_primary_10_3390_ijerph191710805 crossref_primary_10_1007_s10462_023_10515_2 crossref_primary_10_3390_buildings14071891 crossref_primary_10_4018_IJGHPC_373908 crossref_primary_10_4018_IJITSA_319039 crossref_primary_10_1155_2022_4524811 crossref_primary_10_1016_j_cie_2022_108037 crossref_primary_10_4018_IJeC_378251 crossref_primary_10_1002_VIW_20200164 crossref_primary_10_1061_JUPDDM_UPENG_5191 crossref_primary_10_1155_2022_2835992 crossref_primary_10_1155_2022_3178763 crossref_primary_10_1155_2022_7380776 crossref_primary_10_2478_amns_2024_3355 crossref_primary_10_1007_s11063_023_11275_4 crossref_primary_10_1007_s11227_019_03132_w crossref_primary_10_1155_2021_5515095 crossref_primary_10_1007_s40747_020_00261_1 crossref_primary_10_1016_j_dcan_2024_10_002 crossref_primary_10_12688_f1000research_160959_1 crossref_primary_10_1016_j_jnca_2025_104130 crossref_primary_10_3390_app15105430 crossref_primary_10_3390_systems11080405 crossref_primary_10_1016_j_oregeorev_2023_105653 crossref_primary_10_1155_2022_6156799 crossref_primary_10_1002_jsc_2525 crossref_primary_10_1016_j_compeleceng_2021_107544 crossref_primary_10_2478_cait_2024_0001 crossref_primary_10_1007_s10586_022_03568_5 crossref_primary_10_3390_foods12244511 crossref_primary_10_1080_09537325_2024_2410349 crossref_primary_10_1186_s40537_022_00659_3 crossref_primary_10_21511_im_21_3__2025_13 crossref_primary_10_3390_electronics11172777 crossref_primary_10_1007_s11042_023_17381_8 crossref_primary_10_1155_2022_7876119 crossref_primary_10_1108_DPRG_06_2024_0131 crossref_primary_10_1155_2022_6824493 crossref_primary_10_1007_s11600_025_01638_x crossref_primary_10_3390_su151511521 crossref_primary_10_1145_3718364 crossref_primary_10_1016_j_jobe_2025_111924 crossref_primary_10_1007_s41060_025_00753_8 crossref_primary_10_1016_j_foodchem_2024_138800 crossref_primary_10_1155_2021_9933330 crossref_primary_10_1016_j_jnca_2023_103796 crossref_primary_10_24857_rgsa_v18n2_119 crossref_primary_10_1007_s10462_023_10505_4 crossref_primary_10_1016_j_iot_2023_100878 crossref_primary_10_3390_ijgi14010012 crossref_primary_10_1111_coin_12633 crossref_primary_10_1080_03091902_2022_2096133 crossref_primary_10_1155_2022_7321073 crossref_primary_10_1155_2022_2768336 crossref_primary_10_1177_14727978251372299 crossref_primary_10_3390_app12189174 crossref_primary_10_1155_2023_5596605 crossref_primary_10_3233_JIFS_223295 crossref_primary_10_1155_2021_9974891 crossref_primary_10_1155_2022_5947769 crossref_primary_10_3390_su15107908 crossref_primary_10_1155_2022_8325677 crossref_primary_10_1007_s00500_021_05711_7 crossref_primary_10_1155_2021_9925567 crossref_primary_10_5937_ekonomika2501039M crossref_primary_10_1111_acfi_70024 |
| Cites_doi | 10.1016/j.future.2015.10.023 10.1016/j.neucom.2016.11.077 10.1016/j.jnca.2017.03.013 10.1016/j.dcan.2016.06.002 10.1016/j.jss.2016.11.037 10.1016/j.knosys.2017.11.005 10.1016/j.jss.2016.06.010 10.1016/j.knosys.2015.09.005 10.1016/j.neucom.2015.09.129 10.1016/j.future.2017.09.028 10.1016/j.ins.2014.01.015 10.1016/j.future.2015.11.015 10.1016/j.jpdc.2017.10.020 10.1016/j.im.2015.04.006 10.1016/j.eswa.2017.05.079 10.1016/j.jocs.2017.05.023 10.1016/j.bdr.2017.07.003 10.1109/FSKD.2016.7603392 10.1016/j.knosys.2016.08.021 10.1016/j.jss.2014.05.068 10.1016/j.bdr.2017.10.004 10.1016/j.future.2014.06.009 10.1016/j.future.2015.03.023 10.1016/j.dcan.2016.05.002 10.1016/j.future.2017.08.006 10.1016/j.is.2017.09.002 10.1016/j.future.2017.03.028 10.1016/j.ins.2016.07.075 10.1016/j.future.2016.03.020 10.1016/j.future.2017.08.011 10.1007/s10462-015-9443-9 10.1016/j.jpdc.2017.02.002 10.1016/j.future.2017.03.026 10.1016/j.knosys.2017.06.027 10.1016/j.ins.2014.03.043 10.1016/j.asoc.2016.01.045 10.1016/j.neucom.2014.03.076 10.1016/j.future.2016.05.005 10.1016/j.future.2017.08.023 10.1016/j.bdr.2016.02.002 10.1016/j.jocs.2015.09.008 10.1016/j.ins.2016.09.012 10.1016/j.bdr.2017.07.001 10.1016/j.knosys.2016.06.012 10.1016/j.future.2016.02.010 10.1016/j.comnet.2015.12.023 10.1016/j.compeleceng.2017.03.009 10.1016/j.bdr.2015.10.001 10.1016/j.neucom.2014.04.078 10.1016/j.ins.2015.03.027 10.1016/j.future.2015.12.015 10.1016/j.chb.2016.11.010 10.1016/j.jpdc.2016.06.004 10.1016/j.knosys.2016.06.013 10.1016/j.future.2017.07.003 10.1016/j.future.2017.07.029 10.1016/j.future.2017.10.045 10.1016/j.compeleceng.2017.10.008 10.1016/j.ins.2015.10.041 10.1016/j.bdr.2017.01.002 10.1016/j.future.2016.09.017 10.1016/j.ins.2017.01.016 10.1016/j.future.2017.03.004 10.1016/j.knosys.2014.09.001 10.1016/j.bdr.2015.01.002 10.1016/j.jpdc.2014.04.001 10.1016/j.bdr.2017.01.005 10.1016/j.ins.2014.03.066 10.1016/j.ins.2017.03.020 10.1016/j.bdr.2017.05.002 10.1016/j.future.2017.04.010 10.1016/j.jpdc.2016.04.001 10.1016/j.future.2017.07.026 10.1016/j.ins.2017.05.001 10.1016/j.neucom.2015.04.105 10.1016/j.neucom.2015.07.140 10.1016/j.neucom.2016.06.080 10.1016/j.jnca.2016.03.004 10.1016/j.knosys.2014.11.007 10.1016/j.inffus.2017.09.005 10.1016/j.future.2016.07.018 10.1016/j.neucom.2015.11.121 10.1016/j.future.2017.04.006 10.1016/j.jpdc.2016.11.002 10.1016/j.neucom.2015.04.109 10.1016/j.jocs.2016.07.002 10.1109/FUZZ-IEEE.2017.8015544 10.1016/j.ins.2017.06.039 10.1016/j.asoc.2017.05.004 10.1016/j.ins.2016.07.007 10.1016/j.dss.2017.06.010 10.1016/j.compeleceng.2016.05.018 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2019 COPYRIGHT 2020 Springer Artificial Intelligence Review is a copyright of Springer, (2019). All Rights Reserved. Copyright Springer Nature B.V. Feb 2020 |
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: COPYRIGHT 2020 Springer – notice: Artificial Intelligence Review is a copyright of Springer, (2019). All Rights Reserved. – notice: Copyright Springer Nature B.V. Feb 2020 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-019-09685-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College Library & information science collection. ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Business |
| EISSN | 1573-7462 |
| EndPage | 1037 |
| ExternalDocumentID | A718215180 10_1007_s10462_019_09685_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c439t-d30e4bac6c3ad5fbdd5d4f900ddc20fe84e35dff7436aada3da7f38bc51e9573 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 143 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513275100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Fri Nov 14 18:45:35 EST 2025 Sat Nov 15 05:52:28 EST 2025 Sat Nov 29 09:49:10 EST 2025 Sat Nov 29 02:43:24 EST 2025 Tue Nov 18 22:06:30 EST 2025 Fri Feb 21 02:37:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Domain area Parallel and distributed computing Big data analytics techniques Big data tools |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-d30e4bac6c3ad5fbdd5d4f900ddc20fe84e35dff7436aada3da7f38bc51e9573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2174596888 |
| PQPubID | 36790 |
| PageCount | 49 |
| ParticipantIDs | proquest_journals_3195886437 proquest_journals_2174596888 gale_infotracacademiconefile_A718215180 crossref_citationtrail_10_1007_s10462_019_09685_9 crossref_primary_10_1007_s10462_019_09685_9 springer_journals_10_1007_s10462_019_09685_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Mohapatra, Sahoo, Wu (CR58) 2016; 66 Bei, Yu, Luo, Jiang, Xu, Feng (CR15) 2018; 79 CR37 Higashino, Capretz, Bittencourt (CR39) 2016; 65 CR34 Chen, Zhang (CR19) 2014; 275 Lin, Dou, Zhou, Liu (CR51) 2015; 102 Manco, Ritacco, Rullo, Gallucci, Astill, Kimber, Antonelli (CR53) 2017; 87 De Maio, Fenza, Loia, Orciuoli (CR23) 2017; 110 Liang, Wu, Liu, Li, Gao, Ma, Wu (CR50) 2016; 2 Mohapatra, Sahoo, Wu (CR59) 2016; 66 Sun, Zhang, Yang, Zheng, Khan, Li (CR82) 2015; 319 Nghiem, Figueira (CR64) 2016; 95 Ruan, Zhang (CR76) 2017; 8 Chen, Li, Cai, Luo, Fujita (CR21) 2016; 373 CR42 Mestre, Pires, Nascimento (CR57) 2017; 101 Bechini, Marcelloni, Segatori (CR14) 2016; 332 Pulgar-Rubio, Rivera-Rivas, Pérez-Godoy, González, Carmona, del Jesus (CR71) 2017; 117 Tennant, Stahl, Rana, Gomes (CR83) 2017; 75 Chen, Crespi, Ortiz, Shu (CR22) 2017; 379 Najafabadi, Mahrin, Chuprat, Sarkan (CR63) 2017; 67 Rathore, Ahmad, Paul, Rho (CR74) 2016; 101 Singh, Guntuku, Thakur, Hota (CR79) 2014; 278 Ahmad, Paul, Rathore (CR2) 2016; 174 Pedersen, Bongo (CR67) 2017; 67 Peralta, García, Benitez, Herrera (CR68) 2017; 408 CR54 Zhang, Cao, Khan, Li, Hwang (CR96) 2015; 43 Agerri, Artola, Beloki, Rigau, Soroa (CR1) 2015; 79 Zhang, Chen, Chen, Ng (CR97) 2016; 198 Kovalchuk, Krotov, Smirnov, Nasonov, Yakovlev (CR47) 2018; 79 Singh, Bawa (CR78) 2017; 73 Batarseh, Latif (CR13) 2016; 4 Maillo, Ramírez, Triguero, Herrera (CR52) 2017; 117 Mavridis, Karatza (CR56) 2017; 125 Jiang, Lu, Choo (CR44) 2018; 78 Del Río, López, Benítez, Herrera (CR24) 2014; 285 Rahman, Esmailpour, Zhao (CR73) 2016; 5 CR66 CR62 Wang, Belhassena (CR89) 2017; 388 CR60 He, Wu, Yan, Akula, Shen (CR36) 2015; 52 Apiletti, Baralis, Cerquitelli, Garza, Pulvirenti, Michiardi (CR6) 2017; 10 Babar, Arif (CR9) 2017; 77 Kousiouris, Akbar, Sancho, Ta-shma, Psychas, Kyriazis, Varvarigou (CR46) 2018; 78 Guo, Song, Yu, Yan, Yang (CR35) 2017; 76 Carcillo, Dal Pozzolo, Le Borgne, Caelen, Mazzer, Bontempi (CR17) 2018; 41 Huang, Wang, Qiu, Yao, Wang, Yu (CR40) 2016; 174 Wang, He, Liu, Tian, Peng, Xing, Wang (CR92) 2017; 402 Huang, Tsai, Huang, Su, Lee (CR41) 2017; 93 Yuan, Chen, Jiang, Li (CR95) 2017; 132 Kranjc, Orač, Podpečan, Lavrač, Robnik-Šikonja (CR48) 2017; 68 CR77 CR75 Basanta-Val, Fernández-García, Wellings, Audsley (CR11) 2015; 52 Arias, Gamez, Puerta (CR7) 2017; 117 Nguyen, Larsen, O’Dea, Nguyen, Yearwood, Phung, Christensen (CR65) 2017; 102 Wang, Huang, Qiu, Liu, Wang (CR90) 2015; 149 CR4 Spivak, Razumovskiy, Nasonov, Boukhanovsky, Redice (CR81) 2018; 79 CR3 Bharti, Vachha, Pradhan, Babu, Jena (CR16) 2016; 2 CR5 Aufaure, Chiky, Curé, Khrouf, Kepeklian (CR8) 2016; 63 CR86 Fonseca, Cabral (CR31) 2017; 8 CR80 Ferranti, Marcelloni, Segatori, Antonelli, Ducange (CR30) 2017; 415 Vennila, Kannan (CR88) 2016; 56 Fernández-Rodríguez, Álvarez-García, Fisteus, Luaces, Magaña (CR29) 2017; 72 Gadiraju, Verma, Davis, Talaga (CR32) 2016; 63 Wang, Xu, Fujita, Liu (CR91) 2016; 367 Plimpton, Shead (CR69) 2014; 74 Jayasena, Li, Xie (CR43) 2017; 253 Tripathy, Mittal (CR85) 2016; 46 CR18 Elsebakhi, Lee, Schendel, Haque, Kathireason, Pathare, Al-Ali (CR28) 2015; 11 Karunaratne, Karunasekera, Harwood (CR45) 2017; 108 CR12 Chen, Wu, Wang (CR20) 2015; 2 CR10 Eiras-Franco, Bolón-Canedo, Ramos, González-Domínguez, Alonso-Betanzos, Touriño (CR26) 2016; 17 Ding, Liu, Han, Zhang, Song (CR25) 2017; 261 Kumar, Rath (CR49) 2015; 89 CR93 Um, Lee, Kim, Jeong, Song, Jung (CR87) 2016; 209 Hidalgo, Wladdimiro, Rosas (CR38) 2017; 127 Genuer, Poggi, Tuleau-Malot, Villa-Vialaneix (CR33) 2017; 9 Maté, Peral, Ferrández, Gil, Trujillo (CR55) 2016; 63 CR27 Qian, Lv, Yue, Liu, Jing (CR72) 2015; 73 Triguero, Peralta, Bacardit, García, Herrera (CR84) 2015; 150 Najafabadi, Mahrin (CR61) 2016; 45 Xia, Chen, Lu, Wang, Xu (CR94) 2016; 181 Prajapati, Garg, Chauhan (CR70) 2017; 9 V Vennila (9685_CR88) 2016; 56 R Jiang (9685_CR44) 2018; 78 M Kumar (9685_CR49) 2015; 89 D Peralta (9685_CR68) 2017; 408 9685_CR80 G Kousiouris (9685_CR46) 2018; 78 G Manco (9685_CR53) 2017; 87 CP Chen (9685_CR19) 2014; 275 C Maio De (9685_CR23) 2017; 110 G Ruan (9685_CR76) 2017; 8 B Wang (9685_CR90) 2015; 149 9685_CR86 BK Tripathy (9685_CR85) 2016; 46 JY Fernández-Rodríguez (9685_CR29) 2017; 72 A Ferranti (9685_CR30) 2017; 415 Z Bei (9685_CR15) 2018; 79 D Apiletti (9685_CR6) 2017; 10 S Río Del (9685_CR24) 2014; 285 CY Zhang (9685_CR97) 2016; 198 MA Aufaure (9685_CR8) 2016; 63 Gang Chen (9685_CR20) 2015; 2 E Elsebakhi (9685_CR28) 2015; 11 P Karunaratne (9685_CR45) 2017; 108 DJ Prajapati (9685_CR70) 2017; 9 M Tennant (9685_CR83) 2017; 75 9685_CR77 D Sun (9685_CR82) 2015; 319 R Genuer (9685_CR33) 2017; 9 CS Huang (9685_CR41) 2017; 93 9685_CR75 H Singh (9685_CR78) 2017; 73 SK Mohapatra (9685_CR59) 2016; 66 A Fonseca (9685_CR31) 2017; 8 9685_CR60 L Ding (9685_CR25) 2017; 261 MK Najafabadi (9685_CR61) 2016; 45 R Agerri (9685_CR1) 2015; 79 9685_CR66 9685_CR62 Y Chen (9685_CR22) 2017; 379 I Triguero (9685_CR84) 2015; 150 K Singh (9685_CR79) 2014; 278 MN Rahman (9685_CR73) 2016; 5 KPN Jayasena (9685_CR43) 2017; 253 SK Mohapatra (9685_CR58) 2016; 66 SJ Plimpton (9685_CR69) 2014; 74 J Yuan (9685_CR95) 2017; 132 S Huang (9685_CR40) 2016; 174 9685_CR54 J Kranjc (9685_CR48) 2017; 68 SK Bharti (9685_CR16) 2016; 2 J Guo (9685_CR35) 2017; 76 A Bechini (9685_CR14) 2016; 332 T Nguyen (9685_CR65) 2017; 102 W He (9685_CR36) 2015; 52 J Wang (9685_CR92) 2017; 402 9685_CR42 JH Um (9685_CR87) 2016; 209 FA Batarseh (9685_CR13) 2016; 4 SV Kovalchuk (9685_CR47) 2018; 79 9685_CR5 KK Gadiraju (9685_CR32) 2016; 63 9685_CR4 Y Xia (9685_CR94) 2016; 181 I Mavridis (9685_CR56) 2017; 125 MM Rathore (9685_CR74) 2016; 101 DG Mestre (9685_CR57) 2017; 101 J Arias (9685_CR7) 2017; 117 WA Higashino (9685_CR39) 2016; 65 E Pedersen (9685_CR67) 2017; 67 9685_CR34 MK Najafabadi (9685_CR63) 2017; 67 9685_CR37 N Hidalgo (9685_CR38) 2017; 127 F Zhang (9685_CR96) 2015; 43 Y Liang (9685_CR50) 2016; 2 W Lin (9685_CR51) 2015; 102 H Chen (9685_CR21) 2016; 373 M Babar (9685_CR9) 2017; 77 F Pulgar-Rubio (9685_CR71) 2017; 117 PP Nghiem (9685_CR64) 2016; 95 C Eiras-Franco (9685_CR26) 2016; 17 J Qian (9685_CR72) 2015; 73 A Spivak (9685_CR81) 2018; 79 H Wang (9685_CR91) 2016; 367 9685_CR27 A Maté (9685_CR55) 2016; 63 A Ahmad (9685_CR2) 2016; 174 9685_CR3 9685_CR93 F Carcillo (9685_CR17) 2018; 41 H Wang (9685_CR89) 2017; 388 9685_CR12 9685_CR10 P Basanta-Val (9685_CR11) 2015; 52 J Maillo (9685_CR52) 2017; 117 9685_CR18 |
| References_xml | – volume: 388 start-page: 62 year: 2017 end-page: 83 ident: CR89 article-title: Parallel trajectory search based on distributed index publication-title: Inf Sci – volume: 285 start-page: 112 year: 2014 end-page: 137 ident: CR24 article-title: On the use of MapReduce for imbalanced big data using random forest publication-title: Inf Sci – volume: 174 start-page: 352 year: 2016 end-page: 367 ident: CR40 article-title: Parallel ensemble of online sequential extreme learning machine based on map reduce publication-title: Neurocomputing – volume: 43 start-page: 149 year: 2015 end-page: 160 ident: CR96 article-title: A task-level adaptive MapReduce framework for real-time streaming data in healthcare applications publication-title: Future Gener Comput Syst – ident: CR54 – ident: CR80 – ident: CR77 – volume: 127 start-page: 205 year: 2017 end-page: 216 ident: CR38 article-title: Self-adaptive processing graph with operator fission for elastic stream processing publication-title: J Syst Softw – volume: 209 start-page: 39 year: 2016 end-page: 45 ident: CR87 article-title: Semantic complex event processing model for reasoning research activities publication-title: Neurocomputing – ident: CR42 – volume: 63 start-page: 100 year: 2016 end-page: 107 ident: CR8 article-title: From business intelligence to semantic data stream management publication-title: Future Gener Comput Syst – volume: 79 start-page: 1 year: 2018 end-page: 15 ident: CR15 article-title: Configuring in-memory cluster computing using random forest publication-title: Future Gener Comput Syst – ident: CR60 – volume: 2 start-page: 97 issue: 3 year: 2016 end-page: 107 ident: CR50 article-title: Big data-enabled multiscale serviceability analysis for aging bridges publication-title: Digit Commun Netw – volume: 63 start-page: 131 year: 2016 end-page: 147 ident: CR55 article-title: A hybrid integrated architecture for energy consumption prediction publication-title: Future Gener Comput Syst – ident: CR5 – volume: 332 start-page: 33 year: 2016 end-page: 55 ident: CR14 article-title: A MapReduce solution for associative classification of big data publication-title: Inf Sci – volume: 4 start-page: 13 year: 2016 end-page: 24 ident: CR13 article-title: Assessing the quality of service using big data analytics: with application to healthcare publication-title: Big Data Res – volume: 72 start-page: 62 year: 2017 end-page: 76 ident: CR29 article-title: Benchmarking real-time vehicle data streaming models for a Smart City publication-title: Inf Syst – volume: 52 start-page: 22 year: 2015 end-page: 36 ident: CR11 article-title: Improving the predictability of distributed stream processors publication-title: Future Gener Comput Syst – volume: 174 start-page: 439 year: 2016 end-page: 453 ident: CR2 article-title: An efficient divide-and-conquer approach for big data analytics in machine-to-machine communication publication-title: Neurocomputing – volume: 319 start-page: 92 year: 2015 end-page: 112 ident: CR82 article-title: Re-stream: real-time and energy-efficient resource scheduling in big data stream computing environments publication-title: Inf Sci – volume: 73 start-page: 18 year: 2015 end-page: 31 ident: CR72 article-title: Hierarchical attribute reduction algorithms for big data using MapReduce publication-title: Knowl-Based Syst – volume: 46 start-page: 886 year: 2016 end-page: 923 ident: CR85 article-title: Hadoop based uncertain possibilistic kernelized c-means algorithms for image segmentation and a comparative analysis publication-title: Appl Soft Comput – ident: CR18 – ident: CR66 – volume: 117 start-page: 3 year: 2017 end-page: 15 ident: CR52 article-title: kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data publication-title: Knowl-Based Syst – volume: 101 start-page: 63 year: 2016 end-page: 80 ident: CR74 article-title: Urban planning and building smart cities based on the internet of things using big data analytics publication-title: Comput Netw – volume: 45 start-page: 167 issue: 2 year: 2016 end-page: 201 ident: CR61 article-title: A systematic literature review on the state of research and practice of collaborative filtering technique and implicit feedback publication-title: Artif Intell Rev – volume: 67 start-page: 113 year: 2017 end-page: 128 ident: CR63 article-title: Improving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit data publication-title: Comput Hum Behav – volume: 132 start-page: 215 year: 2017 end-page: 225 ident: CR95 article-title: Complete tolerance relation based parallel filling for incomplete energy big data publication-title: Knowl-Based Syst – ident: CR10 – volume: 77 start-page: 65 year: 2017 end-page: 76 ident: CR9 article-title: Smart urban planning using big data analytics to contend with the interoperability in Internet of Things publication-title: Future Gener Comput Syst – ident: CR86 – volume: 73 start-page: 32 year: 2017 end-page: 43 ident: CR78 article-title: A MapReduce-based scalable discovery and indexing of structured big data publication-title: Future Gener Comput Syst – volume: 198 start-page: 4 year: 2016 end-page: 11 ident: CR97 article-title: MapReduce based distributed learning algorithm for restricted Boltzmann machine publication-title: Neurocomputing – volume: 79 start-page: 36 year: 2015 end-page: 42 ident: CR1 article-title: Big data for natural language processing: a streaming approach publication-title: Knowl-Based Syst – ident: CR27 – volume: 79 start-page: 144 year: 2018 end-page: 154 ident: CR47 article-title: Distributed data-driven platform for urgent decision making in cardiological ambulance control publication-title: Future Gener Comput Syst – volume: 87 start-page: 141 year: 2017 end-page: 156 ident: CR53 article-title: Fault detection and explanation through big data analysis on sensor streams publication-title: Expert Syst Appl – volume: 89 start-page: 584 year: 2015 end-page: 602 ident: CR49 article-title: Classification of microarray using MapReduce based proximal support vector machine classifier publication-title: Knowl-Based Syst – volume: 56 start-page: 831 year: 2016 end-page: 841 ident: CR88 article-title: Symmetric matrix-based predictive classifier for big data computation and information sharing in cloud publication-title: Comput Electr Eng – volume: 125 start-page: 133 year: 2017 end-page: 151 ident: CR56 article-title: Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark publication-title: J Syst Softw – volume: 95 start-page: 29 year: 2016 end-page: 41 ident: CR64 article-title: Towards efficient resource provisioning in MapReduce publication-title: J Parallel Distrib Comput – ident: CR3 – volume: 415 start-page: 319 year: 2017 end-page: 340 ident: CR30 article-title: A distributed approach to multi-objective evolutionary generation of fuzzy rule-based classifiers from big data publication-title: Inf Sci – volume: 78 start-page: 392 year: 2018 end-page: 401 ident: CR44 article-title: Achieving high performance and privacy-preserving query over encrypted multidimensional big metering data publication-title: Future Gener Comput Syst – volume: 117 start-page: 16 year: 2017 end-page: 26 ident: CR7 article-title: Learning distributed discrete Bayesian network classifiers under MapReduce with Apache spark publication-title: Knowl-Based Syst – volume: 261 start-page: 184 year: 2017 end-page: 192 ident: CR25 article-title: HB-file: an efficient and effective high-dimensional big data storage structure based on US-ELM publication-title: Neurocomputing – volume: 2 start-page: 108 issue: 3 year: 2016 end-page: 121 ident: CR16 article-title: Sarcastic sentiment detection in tweets streamed in real time: a big data approach publication-title: Digital Commun Netw – volume: 373 start-page: 351 year: 2016 end-page: 368 ident: CR21 article-title: Parallel attribute reduction in dominance-based neighborhood rough set publication-title: Inf Sci – volume: 52 start-page: 801 issue: 7 year: 2015 end-page: 812 ident: CR36 article-title: A novel social media competitive analytics framework with sentiment benchmarks publication-title: Inf Manag – ident: CR93 – volume: 66 start-page: 236 year: 2016 end-page: 249 ident: CR58 article-title: Big data analytic architecture for intruder detection in heterogeneous wireless sensor networks publication-title: J Netw Comput Appl – ident: CR4 – volume: 67 start-page: 481 year: 2017 end-page: 489 ident: CR67 article-title: Large-scale biological meta-database management publication-title: Future Gener Comput Syst – volume: 101 start-page: 27 year: 2017 end-page: 40 ident: CR57 article-title: Towards the efficient parallelization of multi-pass adaptive blocking for entity matching publication-title: J Parallel Distrib Comput – ident: CR12 – volume: 2 start-page: 65 issue: 2 year: 2015 end-page: 73 ident: CR20 article-title: The Evolvement of Big Data Systems: From the Perspective of an Information Security Application publication-title: Big Data Research – volume: 93 start-page: 27 year: 2017 end-page: 37 ident: CR41 article-title: Distributed asteroid discovery system for large astronomical data publication-title: J Netw Comput Appl – volume: 253 start-page: 135 year: 2017 end-page: 143 ident: CR43 article-title: Multi-modal multimedia big data analyzing architecture and resource allocation on cloud platform publication-title: Neurocomputing – volume: 150 start-page: 331 year: 2015 end-page: 345 ident: CR84 article-title: MRPR: a MapReduce solution for prototype reduction in big data classification publication-title: Neurocomputing – volume: 5 start-page: 9 year: 2016 end-page: 15 ident: CR73 article-title: Machine learning with big data an efficient electricity generation forecasting system publication-title: Big Data Res – volume: 9 start-page: 18 year: 2017 end-page: 27 ident: CR70 article-title: MapReduce based multilevel consistent and inconsistent association rule detection from big data using interestingness measures publication-title: Big Data Res – volume: 408 start-page: 198 year: 2017 end-page: 212 ident: CR68 article-title: Minutiae-based fingerprint matching decomposition: methodology for big data frameworks publication-title: Inf Sci – ident: CR75 – volume: 367 start-page: 747 year: 2016 end-page: 765 ident: CR91 article-title: Towards felicitous decision making: an overview on challenges and trends of big data publication-title: Inf Sci – volume: 11 start-page: 69 year: 2015 end-page: 81 ident: CR28 article-title: Large-scale machine learning based on functional networks for biomedical big data with high performance computing platforms publication-title: J Comput Sci – volume: 379 start-page: 82 year: 2017 end-page: 93 ident: CR22 article-title: Reality mining: a prediction algorithm for disease dynamics based on mobile big data publication-title: Inf Sci – volume: 108 start-page: 74 year: 2017 end-page: 84 ident: CR45 article-title: Distributed stream clustering using micro-clusters on Apache Storm publication-title: J Parallel Distrib Comput – volume: 17 start-page: 609 year: 2016 end-page: 619 ident: CR26 article-title: Multithreaded and spark parallelization of feature selection filters publication-title: J Comput Sci – volume: 181 start-page: 139 year: 2016 end-page: 146 ident: CR94 article-title: Big traffic data processing framework for intelligent monitoring and recording systems publication-title: Neurocomputing – volume: 110 start-page: 31 year: 2017 end-page: 41 ident: CR23 article-title: Distributed online temporal fuzzy concept analysis for stream processing in smart cities publication-title: J Parallel Distrib Comput – volume: 10 start-page: 53 year: 2017 end-page: 69 ident: CR6 article-title: A parallel MapReduce algorithm to efficiently support itemset mining on high dimensional data publication-title: Big Data Res – volume: 68 start-page: 38 year: 2017 end-page: 58 ident: CR48 article-title: ClowdFlows: online workflows for distributed big data mining publication-title: Future Gener Comput Syst – volume: 65 start-page: 122 year: 2016 end-page: 139 ident: CR39 article-title: CEPSim: modelling and simulation of complex event processing systems in cloud environments publication-title: Future Gener Comput Syst – volume: 102 start-page: 22 year: 2017 end-page: 31 ident: CR65 article-title: Kernel-based features for predicting population health indices from geocoded social media data publication-title: Decis Support Syst – volume: 102 start-page: 192 year: 2015 end-page: 206 ident: CR51 article-title: A cloud-based framework for home-diagnosis service over big medical data publication-title: J Syst Softw – volume: 278 start-page: 488 year: 2014 end-page: 497 ident: CR79 article-title: Big data analytics framework for peer-to-peer botnet detection using random forests publication-title: Inf Sci – volume: 75 start-page: 187 year: 2017 end-page: 199 ident: CR83 article-title: Scalable real-time classification of data streams with concept drift publication-title: Future Gener Comput Syst – ident: CR37 – volume: 41 start-page: 182 year: 2018 end-page: 194 ident: CR17 article-title: Scarff: a scalable framework for streaming credit card fraud detection with spark publication-title: Inf Fusion – volume: 8 start-page: 12 year: 2017 end-page: 26 ident: CR76 article-title: Closed-loop big data analysis with visualization and scalable computing publication-title: Big Data Res – volume: 63 start-page: 148 year: 2016 end-page: 156 ident: CR32 article-title: Benchmarking performance for migrating a relational application to a parallel implementation publication-title: Future Gener Comput Syst – volume: 9 start-page: 28 year: 2017 end-page: 46 ident: CR33 article-title: Random forests for big data publication-title: Big Data Res – volume: 74 start-page: 2687 issue: 8 year: 2014 end-page: 2698 ident: CR69 article-title: Streaming data analytics via message passing with application to graph algorithms publication-title: J Parallel Distrib Comput – volume: 78 start-page: 516 year: 2018 end-page: 530 ident: CR46 article-title: An integrated information lifecycle management framework for exploiting social network data to identify dynamic large crowd concentration events in smart cities applications publication-title: Future Gener Comput Syst – volume: 149 start-page: 224 year: 2015 end-page: 232 ident: CR90 article-title: Parallel online sequential extreme learning machine based on MapReduce publication-title: Neurocomputing – volume: 117 start-page: 70 year: 2017 end-page: 78 ident: CR71 article-title: MEFASD-BD: multi-objective evolutionary fuzzy algorithm for subgroup discovery in big data environments-A MapReduce solution publication-title: Knowl-Based Syst – volume: 66 start-page: 236 year: 2016 end-page: 249 ident: CR59 article-title: Big data analytic architecture for intruder detection in heterogeneous wireless sensor networks publication-title: J Netw Comput Appl – volume: 275 start-page: 314 year: 2014 end-page: 347 ident: CR19 article-title: Data-intensive applications, challenges, techniques and technologies: a survey on big data publication-title: Inf Sci – ident: CR34 – volume: 76 start-page: 519 year: 2017 end-page: 527 ident: CR35 article-title: Object detection among multimedia big data in the compressive measurement domain under mobile distributed architecture publication-title: Future Gener Comput Syst – volume: 79 start-page: 618 year: 2018 end-page: 629 ident: CR81 article-title: Storage tier-aware replicative data reorganization with prioritization for efficient workload processing publication-title: Future Gener Comput Syst – volume: 8 start-page: 50 year: 2017 end-page: 56 ident: CR31 article-title: Prototyping a GPGPU neural network for deep-learning big data analysis publication-title: Big Data Res – ident: CR62 – volume: 402 start-page: 1 year: 2017 end-page: 14 ident: CR92 article-title: Efficient alarm behavior analytics for telecom networks publication-title: Inf Sci – volume: 65 start-page: 122 year: 2016 ident: 9685_CR39 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.10.023 – volume: 253 start-page: 135 year: 2017 ident: 9685_CR43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.077 – volume: 93 start-page: 27 year: 2017 ident: 9685_CR41 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2017.03.013 – volume: 2 start-page: 108 issue: 3 year: 2016 ident: 9685_CR16 publication-title: Digital Commun Netw doi: 10.1016/j.dcan.2016.06.002 – volume: 125 start-page: 133 year: 2017 ident: 9685_CR56 publication-title: J Syst Softw doi: 10.1016/j.jss.2016.11.037 – ident: 9685_CR93 doi: 10.1016/j.knosys.2017.11.005 – volume: 127 start-page: 205 year: 2017 ident: 9685_CR38 publication-title: J Syst Softw doi: 10.1016/j.jss.2016.06.010 – volume: 89 start-page: 584 year: 2015 ident: 9685_CR49 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.09.005 – volume: 198 start-page: 4 year: 2016 ident: 9685_CR97 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.129 – ident: 9685_CR3 doi: 10.1016/j.future.2017.09.028 – volume: 275 start-page: 314 year: 2014 ident: 9685_CR19 publication-title: Inf Sci doi: 10.1016/j.ins.2014.01.015 – volume: 63 start-page: 100 year: 2016 ident: 9685_CR8 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.11.015 – ident: 9685_CR86 doi: 10.1016/j.jpdc.2017.10.020 – volume: 52 start-page: 801 issue: 7 year: 2015 ident: 9685_CR36 publication-title: Inf Manag doi: 10.1016/j.im.2015.04.006 – volume: 87 start-page: 141 year: 2017 ident: 9685_CR53 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.079 – ident: 9685_CR77 doi: 10.1016/j.jocs.2017.05.023 – volume: 9 start-page: 28 year: 2017 ident: 9685_CR33 publication-title: Big Data Res doi: 10.1016/j.bdr.2017.07.003 – ident: 9685_CR4 doi: 10.1109/FSKD.2016.7603392 – volume: 117 start-page: 70 year: 2017 ident: 9685_CR71 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.08.021 – volume: 102 start-page: 192 year: 2015 ident: 9685_CR51 publication-title: J Syst Softw doi: 10.1016/j.jss.2014.05.068 – volume: 10 start-page: 53 year: 2017 ident: 9685_CR6 publication-title: Big Data Res doi: 10.1016/j.bdr.2017.10.004 – volume: 43 start-page: 149 year: 2015 ident: 9685_CR96 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2014.06.009 – volume: 52 start-page: 22 year: 2015 ident: 9685_CR11 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.03.023 – ident: 9685_CR34 – volume: 2 start-page: 97 issue: 3 year: 2016 ident: 9685_CR50 publication-title: Digit Commun Netw doi: 10.1016/j.dcan.2016.05.002 – ident: 9685_CR75 doi: 10.1016/j.future.2017.08.006 – volume: 72 start-page: 62 year: 2017 ident: 9685_CR29 publication-title: Inf Syst doi: 10.1016/j.is.2017.09.002 – volume: 73 start-page: 32 year: 2017 ident: 9685_CR78 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.03.028 – volume: 379 start-page: 82 year: 2017 ident: 9685_CR22 publication-title: Inf Sci doi: 10.1016/j.ins.2016.07.075 – volume: 63 start-page: 131 year: 2016 ident: 9685_CR55 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.03.020 – volume: 79 start-page: 1 year: 2018 ident: 9685_CR15 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.08.011 – volume: 45 start-page: 167 issue: 2 year: 2016 ident: 9685_CR61 publication-title: Artif Intell Rev doi: 10.1007/s10462-015-9443-9 – volume: 110 start-page: 31 year: 2017 ident: 9685_CR23 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2017.02.002 – volume: 75 start-page: 187 year: 2017 ident: 9685_CR83 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.03.026 – volume: 132 start-page: 215 year: 2017 ident: 9685_CR95 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.06.027 – volume: 285 start-page: 112 year: 2014 ident: 9685_CR24 publication-title: Inf Sci doi: 10.1016/j.ins.2014.03.043 – volume: 46 start-page: 886 year: 2016 ident: 9685_CR85 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.01.045 – volume: 149 start-page: 224 year: 2015 ident: 9685_CR90 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.076 – volume: 78 start-page: 392 year: 2018 ident: 9685_CR44 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.05.005 – ident: 9685_CR12 doi: 10.1016/j.future.2017.08.023 – volume: 5 start-page: 9 year: 2016 ident: 9685_CR73 publication-title: Big Data Res doi: 10.1016/j.bdr.2016.02.002 – volume: 11 start-page: 69 year: 2015 ident: 9685_CR28 publication-title: J Comput Sci doi: 10.1016/j.jocs.2015.09.008 – volume: 373 start-page: 351 year: 2016 ident: 9685_CR21 publication-title: Inf Sci doi: 10.1016/j.ins.2016.09.012 – volume: 9 start-page: 18 year: 2017 ident: 9685_CR70 publication-title: Big Data Res doi: 10.1016/j.bdr.2017.07.001 – volume: 117 start-page: 3 year: 2017 ident: 9685_CR52 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.06.012 – volume: 67 start-page: 481 year: 2017 ident: 9685_CR67 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.02.010 – volume: 101 start-page: 63 year: 2016 ident: 9685_CR74 publication-title: Comput Netw doi: 10.1016/j.comnet.2015.12.023 – ident: 9685_CR60 doi: 10.1016/j.compeleceng.2017.03.009 – volume: 4 start-page: 13 year: 2016 ident: 9685_CR13 publication-title: Big Data Res doi: 10.1016/j.bdr.2015.10.001 – volume: 150 start-page: 331 year: 2015 ident: 9685_CR84 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.078 – volume: 319 start-page: 92 year: 2015 ident: 9685_CR82 publication-title: Inf Sci doi: 10.1016/j.ins.2015.03.027 – volume: 63 start-page: 148 year: 2016 ident: 9685_CR32 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.12.015 – volume: 67 start-page: 113 year: 2017 ident: 9685_CR63 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2016.11.010 – volume: 108 start-page: 74 year: 2017 ident: 9685_CR45 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2016.06.004 – volume: 117 start-page: 16 year: 2017 ident: 9685_CR7 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.06.013 – ident: 9685_CR37 doi: 10.1016/j.future.2017.07.003 – volume: 77 start-page: 65 year: 2017 ident: 9685_CR9 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.07.029 – ident: 9685_CR54 doi: 10.1016/j.future.2017.10.045 – ident: 9685_CR80 doi: 10.1016/j.compeleceng.2017.10.008 – volume: 332 start-page: 33 year: 2016 ident: 9685_CR14 publication-title: Inf Sci doi: 10.1016/j.ins.2015.10.041 – volume: 8 start-page: 12 year: 2017 ident: 9685_CR76 publication-title: Big Data Res doi: 10.1016/j.bdr.2017.01.002 – ident: 9685_CR62 – volume: 79 start-page: 144 year: 2018 ident: 9685_CR47 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.09.017 – volume: 388 start-page: 62 year: 2017 ident: 9685_CR89 publication-title: Inf Sci doi: 10.1016/j.ins.2017.01.016 – volume: 76 start-page: 519 year: 2017 ident: 9685_CR35 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.03.004 – volume: 73 start-page: 18 year: 2015 ident: 9685_CR72 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.09.001 – volume: 2 start-page: 65 issue: 2 year: 2015 ident: 9685_CR20 publication-title: Big Data Research doi: 10.1016/j.bdr.2015.01.002 – volume: 74 start-page: 2687 issue: 8 year: 2014 ident: 9685_CR69 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2014.04.001 – volume: 8 start-page: 50 year: 2017 ident: 9685_CR31 publication-title: Big Data Res doi: 10.1016/j.bdr.2017.01.005 – volume: 278 start-page: 488 year: 2014 ident: 9685_CR79 publication-title: Inf Sci doi: 10.1016/j.ins.2014.03.066 – volume: 402 start-page: 1 year: 2017 ident: 9685_CR92 publication-title: Inf Sci doi: 10.1016/j.ins.2017.03.020 – ident: 9685_CR66 doi: 10.1016/j.bdr.2017.05.002 – volume: 79 start-page: 618 year: 2018 ident: 9685_CR81 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.04.010 – volume: 95 start-page: 29 year: 2016 ident: 9685_CR64 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2016.04.001 – volume: 78 start-page: 516 year: 2018 ident: 9685_CR46 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.07.026 – volume: 408 start-page: 198 year: 2017 ident: 9685_CR68 publication-title: Inf Sci doi: 10.1016/j.ins.2017.05.001 – volume: 174 start-page: 352 year: 2016 ident: 9685_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.105 – volume: 181 start-page: 139 year: 2016 ident: 9685_CR94 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.140 – volume: 261 start-page: 184 year: 2017 ident: 9685_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.080 – volume: 66 start-page: 236 year: 2016 ident: 9685_CR59 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2016.03.004 – volume: 79 start-page: 36 year: 2015 ident: 9685_CR1 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.11.007 – volume: 41 start-page: 182 year: 2018 ident: 9685_CR17 publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.09.005 – volume: 68 start-page: 38 year: 2017 ident: 9685_CR48 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.07.018 – volume: 209 start-page: 39 year: 2016 ident: 9685_CR87 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.121 – ident: 9685_CR18 doi: 10.1016/j.future.2017.04.006 – volume: 101 start-page: 27 year: 2017 ident: 9685_CR57 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2016.11.002 – volume: 66 start-page: 236 year: 2016 ident: 9685_CR58 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2016.03.004 – volume: 174 start-page: 439 year: 2016 ident: 9685_CR2 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.109 – ident: 9685_CR5 – volume: 17 start-page: 609 year: 2016 ident: 9685_CR26 publication-title: J Comput Sci doi: 10.1016/j.jocs.2016.07.002 – ident: 9685_CR27 doi: 10.1109/FUZZ-IEEE.2017.8015544 – volume: 415 start-page: 319 year: 2017 ident: 9685_CR30 publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.039 – ident: 9685_CR10 doi: 10.1016/j.asoc.2017.05.004 – volume: 367 start-page: 747 year: 2016 ident: 9685_CR91 publication-title: Inf Sci doi: 10.1016/j.ins.2016.07.007 – volume: 102 start-page: 22 year: 2017 ident: 9685_CR65 publication-title: Decis Support Syst doi: 10.1016/j.dss.2017.06.010 – volume: 56 start-page: 831 year: 2016 ident: 9685_CR88 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2016.05.018 – ident: 9685_CR42 |
| SSID | ssj0005243 |
| Score | 2.573578 |
| Snippet | Big data has become a significant research area due to the birth of enormous data generated from various sources like social media, internet of things and... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 989 |
| SubjectTerms | Advertisements Advertising Analytics Application Artificial Intelligence Big Data Business Classification Computer Science Data analysis Data management Data processing Data systems Decision analysis Digital media Domains Economic sectors False advertising Forecasting Fraud Health care industry Health services Information systems Information technology Internet Internet of Things Interpersonal communication Literature reviews Marketing Mass media Mathematical analysis Multimedia Natural resource management Natural resources Networking Public sector Recommender systems Resource management Social media Social networks Social research Taxonomy Tourism |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxUxEJ8oGOOFT4mPD9MDiQdp3O223ZaLIQRiYkI8cMBT0-2HISHvAe9B8L93Zl_Xp6JcvG67u5PMtP1N5zczAPvKJi-sp3raxnLZJsVNV3ludG5FREiifeybTbRnZ-biwn4pF27TQqsc9sR-o46TQHfkHwg6K6vRYft4fcOpaxRFV0sLjeewXAtRk51_bvkvFI85a05oy9G1qEvSTEmdk5pICUQY0kZx-9vB9Of2_ChO2h8_p6v_K_garBTgyY7mlrIOz9J4A14OvPcNWB36O7Cy3DfhK9oQ6zOO2CQzRIoM7Yz5cWQz_9AnQ9Dz7vIbI54pDvir71T1-ZCRSIwyVxii9sWMPDDBXsP56cn58SdeWjHwgIhlxmNTJdn5oEPjo8pdjCrKbKsqxiCqnIxMjYo5Ix7R3kffRN_mxnRB1cmqttmCpfFknN4AsyKkmDs0CJmkt8qiPyZ1RMerziELOYJ6UIMLpUw5dcu4cosCy6Q6h6pzveqcHcH7n-9cz4t0PDn7HWnX0QrGLwdfEhFQPqqF5Y7wuCYgZKoR7A4qdWVpT91Cn38dbqh6j6Fw6AgOBptZDP9brO2nf7YDrwS5-j1hfBeWZrd3aQ9ehPvZ5fT2bW_3PwAapAbc priority: 102 providerName: ProQuest |
| Title | The state of the art and taxonomy of big data analytics: view from new big data framework |
| URI | https://link.springer.com/article/10.1007/s10462-019-09685-9 https://www.proquest.com/docview/2174596888 https://www.proquest.com/docview/3195886437 |
| Volume | 53 |
| WOSCitedRecordID | wos000513275100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_qx4Mv1daKp_bIg-BDG9iPZDfxTUURxOthxY--hGw-RJBTvKvof-_M3m5PqxXsS2A32RBmMjszzG9mANalDjbTluppK81FGSRXVWK5KmKZeTRJCuvrZhNlr6fOznS_SQobtmj3NiRZ_6mfJLuJgmAEBPEplOR6CmZQ3SkSx6OfJ0-AHWOsXFZojg5F2qTKvL7HM3X090_5RXS0Vjp78_933AX42BiZbGt8Kz7BhzD4DPNtAwfWyPMinOMlYXVKEbuODE1BhheJ2YFnI3tfZzvQ--ryghGQFCfs1QOVdd5kFFBglJrC0CyfrIgt1OsLHO_tHu_s86bXAndokoy4z5MgKusKl1svY-W99CLqJPHeZUkMSoRc-hjR4Cis9Tb3toy5qpxMg5ZlvgTTg-tBWAamMxd8rJDjIgirpUaHSxQePas0upiJDqQtxY1r6pBTO4wrM6mgTKQzSDpTk87oDnz7883NuArHm6s3iJGGRBR3drbJNMDzUbErs4X6mCwdlXRgreW1aWR3aMhJk7iTUq9O51SeR1G8swPfW9ZPpv99rJX3LV-FuYx8-xohvgbTo9vf4SvMurvR5fC2C1Pl6XkXZrZ3e_0jfDooOY6HyQ6N6Q8c-_JXtxaMR1OT_-8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALhQJioYAPIA5gkXVsx0ZCqCpUrVpWHPZQTpbjB6pU7Zbu8uiP4j8yk41Znr31wDVOnIe_ecXfzAA8UjZ5YT3V0zaWyyYpbtrKc6NzIyK6JNrHrtlEMxqZgwP7bgW-lVwYolUWndgp6jgN9I_8ObnOymoM2F4df-TUNYp2V0sLjQUs9tLpFwzZZi93X-P6PhZi-814a4f3XQV4QOM757Gukmx90KH2UeU2RhVltlUVYxBVTkamWsWc0bRq76Ovo29ybdqghsmqpsZpL8BFKVEaiClYbf3EKFmQ9IS2HCOZYZ-j02fqSU0cCOInaaO4_cUO_m4N_tiW7azd9tp_9p2uw7XerWabCzm4AStpsg6XC6t_HdZK9wrWK7Ob8B4lhHX5VGyaGfrBDKWI-Ulkc_-1S_Wg4-3hB0YsWhzwR6dU0_oFoy_AKC-HYUyyPCMXntstGJ_Hq96G1cl0ku4AsyKkmFuEu0zSW2Ux2pQ6Ylg5zCELOYBhWXUX-iLs1AvkyC3LRxNSHCLFdUhxdgBPf1xzvChBcubZTwhMjvQTzhx8n2aBz0eVvtwmOiPk5plqABsFQa5XXDO3hM9fh2uqTWRos3cAzwpEl8P_fqy7Z9_sIVzZGb_dd_u7o717cFXQT42OGr8Bq_OTT-k-XAqf54ezkwedyDFw5wzd7xitZ_8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouLRQQCwV8AHEAq9nEdmwkhCrKiqpotYceChfL8QNVqnbb7pa2P63_jpmsw_LsrQeuseO8vnnF38wAPJcmutI4qqetDRd1lFw3heNapboM6JIoF9pmE_VwqPf3zWgJLrtcGKJVdjqxVdRh4ukf-Sa5ztIoCthSpkWMtgfvjo45dZCindauncYcIrvx4gzDt-nbnW381i_KcvBh7_1HnjsMcI-GeMZDVUTROK985YJMTQgyiGSKIgRfFilqESsZUkIzq5wLrgquTpVuvOxHI-sKl70BN2sMMSnuG8kvP7FL5oS9UhmOUU0_5-vkrD2hiA9BXCWlJTe_2MTfLcMfW7St5Rus_cfv7A6sZnebbc3l4y4sxfE6rHRs_3VY67pasKzk7sFnlBzW5lmxSWLoHzOULubGgc3ceZsCQsebg6-M2LU44A4vqNb1G0Zvg1G-DsNYZTEjdfy3-7B3HY_6AJbHk3F8CMyUPobUoBiIKJyRBqNQoQKGm_3kUyl60O8QYH0uzk49Qg7toqw0ocYiamyLGmt68OrHOUfz0iRXzn5JwLKkt3Bl73L6Bd4fVQCzW-ikkPunix5sdGiyWaFN7QJKfx2uqGaRpk3gHrzu4LoY_vdtPbr6Ys9gBRFrP-0Mdx_D7ZL-dbSM-Q1Ynp2cxidwy3-bHUxPnrbSx8BeM3K_AwnEcRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+state+of+the+art+and+taxonomy+of+big+data+analytics%3A+view+from+new+big+data+framework&rft.jtitle=The+Artificial+intelligence+review&rft.au=Mohamed%2C+Azlinah&rft.au=Najafabadi%2C+Maryam+Khanian&rft.au=Wah%2C+Yap+Bee&rft.au=Zaman%2C+Ezzatul+Akmal+Kamaru&rft.date=2020-02-01&rft.pub=Springer+Netherlands&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=53&rft.issue=2&rft.spage=989&rft.epage=1037&rft_id=info:doi/10.1007%2Fs10462-019-09685-9&rft.externalDocID=10_1007_s10462_019_09685_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |