Temperature scaling unmixing framework based on convolutional autoencoder

•Different degrees of sparsity constraints are imposed adaptively in deep learning networks by temperature scaling techniques.•By considering the distribution of ground objects, it has good generalization in the real scene.•The framework is a new spatial level constraint method and can be transferre...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied earth observation and geoinformation Vol. 129; p. 103864
Main Authors: Xu, Jin, Xu, Mingming, Liu, Shanwei, Sheng, Hui, Yang, Zhiru
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2024
Elsevier
Subjects:
ISSN:1569-8432, 1872-826X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Different degrees of sparsity constraints are imposed adaptively in deep learning networks by temperature scaling techniques.•By considering the distribution of ground objects, it has good generalization in the real scene.•The framework is a new spatial level constraint method and can be transferred to other convolutional autoencoder-based methods. Hyperspectral unmixing is a key technology in the development of remote sensing applications. However, since both endmembers and abundances are unknown, unmixing is a non-convex problem with a large solution space. To solve this, existing methods usually impose the same strength of sparsity constraint. However, this often does not hold in practice. Because the abundances of purer regions are generally sparse, while the abundances distribution of more mixed regions should be smoother. Temperature scaling is a technique of introducing a temperature parameter T into softmax activation function to adjust the sparsity of the output. Inspired by this, we propose a temperature scaling unmixing (TSU) framework based on convolutional autoencoder (CAE). In this framework, sparse constraints of different intensities are applied to diverse regions by considering spatial similarity of ground objects distribution while preserving the ability of CAE to extract spatial features. What is more, equal-frequency binning is adopted to guide the division of regions by similarity matrix to realize the automatic temperature parameter setting. In addition, a CAE network is designed under the TSU framework in this paper, called TSUCAE. The TSUCAE method exhibits superior accuracy compared to state-of-the-art approaches, as demonstrated through extensive comparative experiments. Furthermore, the TSU framework can be transferred to other CAE-based unmixing methods directly while keeping the network structure of these methods unchanged. Sufficient ablation experiments also prove that the transfer of framework can improve the performance of unmixing. The code is publicly available at https://github.com/UPCGIT/TSUCAE.
AbstractList •Different degrees of sparsity constraints are imposed adaptively in deep learning networks by temperature scaling techniques.•By considering the distribution of ground objects, it has good generalization in the real scene.•The framework is a new spatial level constraint method and can be transferred to other convolutional autoencoder-based methods. Hyperspectral unmixing is a key technology in the development of remote sensing applications. However, since both endmembers and abundances are unknown, unmixing is a non-convex problem with a large solution space. To solve this, existing methods usually impose the same strength of sparsity constraint. However, this often does not hold in practice. Because the abundances of purer regions are generally sparse, while the abundances distribution of more mixed regions should be smoother. Temperature scaling is a technique of introducing a temperature parameter T into softmax activation function to adjust the sparsity of the output. Inspired by this, we propose a temperature scaling unmixing (TSU) framework based on convolutional autoencoder (CAE). In this framework, sparse constraints of different intensities are applied to diverse regions by considering spatial similarity of ground objects distribution while preserving the ability of CAE to extract spatial features. What is more, equal-frequency binning is adopted to guide the division of regions by similarity matrix to realize the automatic temperature parameter setting. In addition, a CAE network is designed under the TSU framework in this paper, called TSUCAE. The TSUCAE method exhibits superior accuracy compared to state-of-the-art approaches, as demonstrated through extensive comparative experiments. Furthermore, the TSU framework can be transferred to other CAE-based unmixing methods directly while keeping the network structure of these methods unchanged. Sufficient ablation experiments also prove that the transfer of framework can improve the performance of unmixing. The code is publicly available at https://github.com/UPCGIT/TSUCAE.
Hyperspectral unmixing is a key technology in the development of remote sensing applications. However, since both endmembers and abundances are unknown, unmixing is a non-convex problem with a large solution space. To solve this, existing methods usually impose the same strength of sparsity constraint. However, this often does not hold in practice. Because the abundances of purer regions are generally sparse, while the abundances distribution of more mixed regions should be smoother. Temperature scaling is a technique of introducing a temperature parameter T into softmax activation function to adjust the sparsity of the output. Inspired by this, we propose a temperature scaling unmixing (TSU) framework based on convolutional autoencoder (CAE). In this framework, sparse constraints of different intensities are applied to diverse regions by considering spatial similarity of ground objects distribution while preserving the ability of CAE to extract spatial features. What is more, equal-frequency binning is adopted to guide the division of regions by similarity matrix to realize the automatic temperature parameter setting. In addition, a CAE network is designed under the TSU framework in this paper, called TSUCAE. The TSUCAE method exhibits superior accuracy compared to state-of-the-art approaches, as demonstrated through extensive comparative experiments. Furthermore, the TSU framework can be transferred to other CAE-based unmixing methods directly while keeping the network structure of these methods unchanged. Sufficient ablation experiments also prove that the transfer of framework can improve the performance of unmixing. The code is publicly available at https://github.com/UPCGIT/TSUCAE.
ArticleNumber 103864
Author Sheng, Hui
Yang, Zhiru
Xu, Jin
Xu, Mingming
Liu, Shanwei
Author_xml – sequence: 1
  givenname: Jin
  surname: Xu
  fullname: Xu, Jin
– sequence: 2
  givenname: Mingming
  orcidid: 0000-0002-6758-9863
  surname: Xu
  fullname: Xu, Mingming
  email: xumingming@upc.edu.cn, xumingming900405@126.com
– sequence: 3
  givenname: Shanwei
  surname: Liu
  fullname: Liu, Shanwei
– sequence: 4
  givenname: Hui
  surname: Sheng
  fullname: Sheng, Hui
– sequence: 5
  givenname: Zhiru
  surname: Yang
  fullname: Yang, Zhiru
BookMark eNp9kUFv3CAQhVGVSE3S_IDefOzFG8DYYPVURW2yUqReUqk3NIbxCteGLeC0_fdl6yqHHHKBYTTfQ_PeJTnzwSMh7xndMcq6m2k3wWHHKRfl3ahOvCEXTEleK959Pyt12_W1Eg1_Sy5TmihlUnbqguwfcTlihLxGrJKB2flDtfrF_T4VY4QFf4X4oxogoa2Cr0zwT2Feswse5grWHNCbYDG-I-cjzAmv_99X5NuXz4-39_XD17v97aeH2oimz_Uw9ijtAFaIclKjhk4g78cGUQBTaC1TSow90E5aJbgUFAwVqqW8t8iH5orsN10bYNLH6BaIf3QAp_81QjxoiNmZGTWAbJtmkOMwCiGRgRpa1guOwijTjqJofdi0jjH8XDFlvbhkcJ7BY1iTbjjtOBXFqzLKtlETQ0oRx-evGdWnCPSkSwT6FIHeIiiMfMEYl-FkXY7g5lfJjxuJxcknh1En44rRaF1Ek8uq7hX6L5Nyo_0
CitedBy_id crossref_primary_10_1109_JSTARS_2025_3594155
crossref_primary_10_1109_TGRS_2025_3577325
crossref_primary_10_1007_s00024_025_03727_w
Cites_doi 10.1109/ACCESS.2018.2818280
10.1109/TGRS.2020.2992743
10.1016/j.asoc.2018.05.012
10.1109/MSP.2022.3208987
10.1109/TGRS.2020.2977819
10.1109/TGRS.2019.2916296
10.1109/TPAMI.2005.165
10.1109/TGRS.2020.3015157
10.1109/JSTARS.2012.2192472
10.1109/JSTARS.2022.3175257
10.1109/JSTARS.2012.2194696
10.1109/LGRS.2017.2704625
10.1109/TGRS.2009.2014945
10.1109/TGRS.2011.2144605
10.1609/aaai.v37i12.26760
10.1016/j.ins.2013.03.014
10.1109/TGRS.2012.2213825
10.1109/MGRS.2022.3145854
10.1109/TSMC.1979.4310076
10.1109/LGRS.2019.2900733
10.1117/1.JRS.13.026509
10.1109/TGRS.2005.844293
10.1109/LGRS.2014.2325874
10.1109/JSTARS.2019.2901122
10.1109/JSTARS.2021.3140154
10.1109/TIP.2014.2363423
10.1109/TGRS.2015.2417162
10.1109/TGRS.2011.2162339
10.1117/12.157055
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2024.103864
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_aa7533b7fbf447e1a8b51942e4c8c5f4
10_1016_j_jag_2024_103864
S1569843224002188
GroupedDBID 0SF
29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
AITUG
ANKPU
APXCP
CITATION
EFJIC
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c439t-bf9e7dbad44dba0c8b64e29f3ee4a18edd1884f9a067d842740ac0485029de2b3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001402753200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1569-8432
IngestDate Fri Oct 03 12:44:39 EDT 2025
Thu Oct 02 22:47:03 EDT 2025
Tue Nov 18 22:19:09 EST 2025
Sat Nov 29 03:32:47 EST 2025
Sat Jun 01 15:42:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hyperspectral unmixing
Temperature scaling
Sparsity constraint
Convolutional autoencoder
Equal-frequency binning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-bf9e7dbad44dba0c8b64e29f3ee4a18edd1884f9a067d842740ac0485029de2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6758-9863
OpenAccessLink https://doaj.org/article/aa7533b7fbf447e1a8b51942e4c8c5f4
PQID 3206204177
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_aa7533b7fbf447e1a8b51942e4c8c5f4
proquest_miscellaneous_3206204177
crossref_primary_10_1016_j_jag_2024_103864
crossref_citationtrail_10_1016_j_jag_2024_103864
elsevier_sciencedirect_doi_10_1016_j_jag_2024_103864
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Li, Li, Song, Mei, Du (b0095) 2019; 57
Rickard, L.J., Basedow, R.W., Zalewski, E.F., Silverglate, P.R., Landers, M., 1993. HYDICE: An airborne system for hyperspectral imaging. In: Proc SPIE Int Soc Opt Eng, Orlando, pp. 173–179.
Martin, Plaza (b0110) 2012; 5
Palsson, Sigurdsson, Sveinsson, Ulfarsson (b0125) 2018; 6
Li, Agathos, Zaharie, Bioucas-Dias, Plaza, Li (b0090) 2015; 53
Palsson, Sveinsson, Ulfarsson (b0135) 2022; 15
Chen, Zhang, Zhang (b0015) 2023; 61
Shang, Huang, Shi, Liu, Liu, Steven, Sun, Xie, Qiao (b0160) 2023; 37
Zhu, Wang, Fan, Meng, Xiang, Pan (b0210) 2014; 23
Otsu (b0120) 1979; 9
Feng, Li, Wang, Du, Jia, Plaza (b0040) 2022; 15
Qian, Jia, Zhou, Robles-Kelly (b0140) 2011; 49
Zortea, Plaza (b0215) 2009; 47
Rajabi, Ghassemian (b0145) 2014; 12
Wu, Kao, Okuhara (b0180) 2013; 239
Dou, Gao, Zhang, Wang, Wang (b0035) 2020; 58
Maas, Hannun, Ng (b0105) 2013
Rao, Qu, Gao, Sun, Wu, Zhang (b0150) 2022; 106
Gao, Han, Hong, Zhang, Chanussot (b0045) 2022; 60
Zhang, Zhang, Tao, Huang (b0200) 2011; 50
Bioucas-Dias, Plaza, Dobigeon, Parente, Du, Gader, Chanussot (b0005) 2012; 5
Hong, Gao, Yao, Zhang, Plaza, Chanussot (b0065) 2020; 59
Ghosh, Roy, Koirala, Rasti, Scheunders (b0050) 2022; 60
Clark, Swayze, Wise, Livo, Hoefen, Kokaly, Sutley (b0025) 2003
Ioffe, Szegedy (b0070) 2015
Chen, Li, Ghamisi, Jia, Gu (b0010) 2017; 14
Lu, Wu, Yuan, Yan, Li (b0100) 2013; 51
Ismail, M., Ciesielski, V., 2003. An Empirical Investigation of the Impact of Discretization on Common Data Distributions. In: HIS, pp. 692–701.
Khoshsokhan, Rajabi, Zayyani (b0085) 2019; 12
Yu, Ma, Mei, Fan, Huang, Li (b0190) 2022; 113
Palsson, Ulfarsson, Sveinsson (b0130) 2021; 59
Wang, Zhang, Feng (b0170) 2005; 27
Khoshsokhan, Rajabi, Zayyani (b0080) 2019; 13
He, Zhang, Ao, Huang (b0055) 2018; 70
Chen, Zhao, Wang, Richard, Rahardja (b0020) 2023; 40
Davis, Kavanaugh, Letelier, Bissett, Kohler (b0030) 2007
Tompson, Goroshin, Jain, LeCun, Bregler (b0165) 2015
Zhu, Jing, Bi (b0205) 2010
Xiang, Ali, Jung, Zhou (b0185) 2022; 60
Wang, Zhao, Chen, Rahardja (b0175) 2019; 16
Nascimento, Dias (b0115) 2005; 43
Zhang, Zhang (b0195) 2022; 10
Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the Knowledge in a Neural Network. arXiv.
Clark (10.1016/j.jag.2024.103864_b0025) 2003
Dou (10.1016/j.jag.2024.103864_b0035) 2020; 58
Zortea (10.1016/j.jag.2024.103864_b0215) 2009; 47
Wang (10.1016/j.jag.2024.103864_b0175) 2019; 16
Xiang (10.1016/j.jag.2024.103864_b0185) 2022; 60
Khoshsokhan (10.1016/j.jag.2024.103864_b0085) 2019; 12
Qian (10.1016/j.jag.2024.103864_b0140) 2011; 49
Tompson (10.1016/j.jag.2024.103864_b0165) 2015
Wu (10.1016/j.jag.2024.103864_b0180) 2013; 239
Yu (10.1016/j.jag.2024.103864_b0190) 2022; 113
Bioucas-Dias (10.1016/j.jag.2024.103864_b0005) 2012; 5
Ghosh (10.1016/j.jag.2024.103864_b0050) 2022; 60
Chen (10.1016/j.jag.2024.103864_b0015) 2023; 61
Zhu (10.1016/j.jag.2024.103864_b0205) 2010
Martin (10.1016/j.jag.2024.103864_b0110) 2012; 5
10.1016/j.jag.2024.103864_b0060
Gao (10.1016/j.jag.2024.103864_b0045) 2022; 60
He (10.1016/j.jag.2024.103864_b0055) 2018; 70
Rao (10.1016/j.jag.2024.103864_b0150) 2022; 106
Hong (10.1016/j.jag.2024.103864_b0065) 2020; 59
Otsu (10.1016/j.jag.2024.103864_b0120) 1979; 9
Wang (10.1016/j.jag.2024.103864_b0170) 2005; 27
10.1016/j.jag.2024.103864_b0155
Palsson (10.1016/j.jag.2024.103864_b0125) 2018; 6
Palsson (10.1016/j.jag.2024.103864_b0135) 2022; 15
10.1016/j.jag.2024.103864_b0075
Nascimento (10.1016/j.jag.2024.103864_b0115) 2005; 43
Lu (10.1016/j.jag.2024.103864_b0100) 2013; 51
Ioffe (10.1016/j.jag.2024.103864_b0070) 2015
Li (10.1016/j.jag.2024.103864_b0090) 2015; 53
Davis (10.1016/j.jag.2024.103864_b0030) 2007
Khoshsokhan (10.1016/j.jag.2024.103864_b0080) 2019; 13
Li (10.1016/j.jag.2024.103864_b0095) 2019; 57
Rajabi (10.1016/j.jag.2024.103864_b0145) 2014; 12
Zhang (10.1016/j.jag.2024.103864_b0200) 2011; 50
Zhang (10.1016/j.jag.2024.103864_b0195) 2022; 10
Zhu (10.1016/j.jag.2024.103864_b0210) 2014; 23
Palsson (10.1016/j.jag.2024.103864_b0130) 2021; 59
Feng (10.1016/j.jag.2024.103864_b0040) 2022; 15
Shang (10.1016/j.jag.2024.103864_b0160) 2023; 37
Chen (10.1016/j.jag.2024.103864_b0010) 2017; 14
Maas (10.1016/j.jag.2024.103864_b0105) 2013
Chen (10.1016/j.jag.2024.103864_b0020) 2023; 40
References_xml – volume: 12
  start-page: 38
  year: 2014
  end-page: 42
  ident: b0145
  article-title: Spectral unmixing of hyperspectral imagery using multilayer NMF
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Ismail, M., Ciesielski, V., 2003. An Empirical Investigation of the Impact of Discretization on Common Data Distributions. In: HIS, pp. 692–701.
– volume: 15
  start-page: 1340
  year: 2022
  end-page: 1372
  ident: b0135
  article-title: Blind hyperspectral unmixing using autoencoders: a critical comparison
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 57
  start-page: 7756
  year: 2019
  end-page: 7769
  ident: b0095
  article-title: Local spectral similarity preserving regularized robust sparse hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 4414
  year: 2022
  end-page: 4436
  ident: b0040
  article-title: Hyperspectral unmixing based on nonnegative matrix factorization: a comprehensive review
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 50
  start-page: 879
  year: 2011
  end-page: 893
  ident: b0200
  article-title: On combining multiple features for hyperspectral remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 2815
  year: 2013
  end-page: 2826
  ident: b0100
  article-title: Manifold regularized sparse NMF for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 354
  year: 2012
  end-page: 379
  ident: b0005
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 37
  start-page: 15082
  year: 2023
  end-page: 15090
  ident: b0160
  article-title: Improving training and inference of face recognition models via random temperature scaling
  publication-title: AAAI.
– start-page: 648
  year: 2015
  end-page: 656
  ident: b0165
  article-title: Efficient object localization using convolutional networks
  publication-title: In: Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit
– volume: 60
  start-page: 1
  year: 2022
  end-page: 18
  ident: b0185
  article-title: Hyperspectral anomaly detection with guided autoencoder
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 5412
  year: 2014
  end-page: 5427
  ident: b0210
  article-title: Spectral unmixing via data-guided sparsity
  publication-title: IEEE Trans. Image Process.
– volume: 53
  start-page: 5067
  year: 2015
  end-page: 5082
  ident: b0090
  article-title: Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  ident: b0050
  article-title: Deep hyperspectral unmixing using transformer network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 196
  year: 2007
  end-page: 207
  ident: b0030
  article-title: Spatial and spectral resolution considerations for imaging coastal waters
  publication-title: In: Proc SPIE Int Soc Opt Eng, San Diego
– volume: 58
  start-page: 6550
  year: 2020
  end-page: 6564
  ident: b0035
  article-title: Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 270
  year: 2022
  end-page: 294
  ident: b0195
  article-title: Artificial intelligence for remote sensing data analysis: a review of challenges and opportunities
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 49
  start-page: 4282
  year: 2011
  end-page: 4297
  ident: b0140
  article-title: Hyperspectral unmixing via L1,2 sparsity-constrained nonnegative matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 113
  year: 2022
  ident: b0190
  article-title: Multi-stage convolutional autoencoder network for hyperspectral unmixing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 59
  start-page: 5966
  year: 2020
  end-page: 5978
  ident: b0065
  article-title: Graph convolutional networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 47
  start-page: 2679
  year: 2009
  end-page: 2693
  ident: b0215
  article-title: Spatial preprocessing for endmember extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 448
  year: 2015
  end-page: 456
  ident: b0070
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: In: Int. Conf. Mach. Learn.
– reference: Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the Knowledge in a Neural Network. arXiv.
– volume: 12
  start-page: 1279
  year: 2019
  end-page: 1288
  ident: b0085
  article-title: Sparsity-constrained distributed unmixing of hyperspectral data
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 40
  start-page: 61
  year: 2023
  end-page: 74
  ident: b0020
  article-title: Integration of physics-based and data-driven models for hyperspectral image unmixing: a summary of current methods
  publication-title: IEEE Signal Process Mag.
– volume: 6
  start-page: 25646
  year: 2018
  end-page: 25656
  ident: b0125
  article-title: Hyperspectral unmixing using a neural network autoencoder
  publication-title: IEEE Access
– volume: 16
  start-page: 1467
  year: 2019
  end-page: 1471
  ident: b0175
  article-title: Nonlinear unmixing of hyperspectral data via deep autoencoder networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0045
  article-title: CyCU-net: cycle-consistency unmixing network by learning cascaded autoencoders
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0120
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern: Syst.
– volume: 106
  year: 2022
  ident: b0150
  article-title: Transferable network with Siamese architecture for anomaly detection in hyperspectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 59
  start-page: 535
  year: 2021
  end-page: 549
  ident: b0130
  article-title: Convolutional autoencoder for spectral-spatial hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 1334
  year: 2005
  end-page: 1339
  ident: b0170
  article-title: On the euclidean distance of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3
  year: 2013
  ident: b0105
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: In: Proc. icml
– start-page: 6183
  year: 2010
  end-page: 6188
  ident: b0205
  article-title: Exploration and improvement of Ostu threshold segmentation algorithm
  publication-title: In: Proc. World Congr. Intelligent Control Autom. WCICA
– volume: 14
  start-page: 1253
  year: 2017
  end-page: 1257
  ident: b0010
  article-title: Deep fusion of remote sensing data for accurate classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Rickard, L.J., Basedow, R.W., Zalewski, E.F., Silverglate, P.R., Landers, M., 1993. HYDICE: An airborne system for hyperspectral imaging. In: Proc SPIE Int Soc Opt Eng, Orlando, pp. 173–179.
– volume: 43
  start-page: 898
  year: 2005
  end-page: 910
  ident: b0115
  article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 239
  start-page: 154
  year: 2013
  end-page: 164
  ident: b0180
  article-title: Examination and comparison of conflicting data in granulated datasets: equal width interval vs. equal frequency interval
  publication-title: Inf. Sci.
– start-page: 3395
  year: 2003
  ident: b0025
  article-title: USGS digital spectral library splib06a
– volume: 70
  start-page: 80
  year: 2018
  end-page: 85
  ident: b0055
  article-title: Determining the optimal temperature parameter for Softmax function in reinforcement learning
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 380
  year: 2012
  end-page: 395
  ident: b0110
  article-title: Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 14
  ident: b0015
  article-title: MSDformer: multiscale deformable transformer for hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 026509
  year: 2019
  ident: b0080
  article-title: Clustered multitask nonnegative matrix factorization for spectral unmixing of hyperspectral data
  publication-title: J. Appl. Remote Sens.
– volume: 6
  start-page: 25646
  year: 2018
  ident: 10.1016/j.jag.2024.103864_b0125
  article-title: Hyperspectral unmixing using a neural network autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818280
– volume: 59
  start-page: 535
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2024.103864_b0130
  article-title: Convolutional autoencoder for spectral-spatial hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2992743
– volume: 70
  start-page: 80
  year: 2018
  ident: 10.1016/j.jag.2024.103864_b0055
  article-title: Determining the optimal temperature parameter for Softmax function in reinforcement learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.012
– volume: 40
  start-page: 61
  issue: 2
  year: 2023
  ident: 10.1016/j.jag.2024.103864_b0020
  article-title: Integration of physics-based and data-driven models for hyperspectral image unmixing: a summary of current methods
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2022.3208987
– volume: 58
  start-page: 6550
  issue: 9
  year: 2020
  ident: 10.1016/j.jag.2024.103864_b0035
  article-title: Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2977819
– ident: 10.1016/j.jag.2024.103864_b0075
– volume: 57
  start-page: 7756
  issue: 10
  year: 2019
  ident: 10.1016/j.jag.2024.103864_b0095
  article-title: Local spectral similarity preserving regularized robust sparse hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2916296
– volume: 27
  start-page: 1334
  issue: 8
  year: 2005
  ident: 10.1016/j.jag.2024.103864_b0170
  article-title: On the euclidean distance of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.165
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0050
  article-title: Deep hyperspectral unmixing using transformer network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0045
  article-title: CyCU-net: cycle-consistency unmixing network by learning cascaded autoencoders
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3395
  year: 2003
  ident: 10.1016/j.jag.2024.103864_b0025
– volume: 59
  start-page: 5966
  issue: 7
  year: 2020
  ident: 10.1016/j.jag.2024.103864_b0065
  article-title: Graph convolutional networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3015157
– volume: 5
  start-page: 380
  issue: 2
  year: 2012
  ident: 10.1016/j.jag.2024.103864_b0110
  article-title: Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2192472
– start-page: 448
  year: 2015
  ident: 10.1016/j.jag.2024.103864_b0070
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: In: Int. Conf. Mach. Learn.
– volume: 15
  start-page: 4414
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0040
  article-title: Hyperspectral unmixing based on nonnegative matrix factorization: a comprehensive review
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3175257
– volume: 5
  start-page: 354
  issue: 2
  year: 2012
  ident: 10.1016/j.jag.2024.103864_b0005
  article-title: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2194696
– start-page: 6183
  year: 2010
  ident: 10.1016/j.jag.2024.103864_b0205
  article-title: Exploration and improvement of Ostu threshold segmentation algorithm
  publication-title: In: Proc. World Congr. Intelligent Control Autom. WCICA
– volume: 14
  start-page: 1253
  issue: 8
  year: 2017
  ident: 10.1016/j.jag.2024.103864_b0010
  article-title: Deep fusion of remote sensing data for accurate classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2704625
– start-page: 196
  year: 2007
  ident: 10.1016/j.jag.2024.103864_b0030
  article-title: Spatial and spectral resolution considerations for imaging coastal waters
  publication-title: In: Proc SPIE Int Soc Opt Eng, San Diego
– start-page: 648
  year: 2015
  ident: 10.1016/j.jag.2024.103864_b0165
  article-title: Efficient object localization using convolutional networks
– volume: 47
  start-page: 2679
  issue: 8
  year: 2009
  ident: 10.1016/j.jag.2024.103864_b0215
  article-title: Spatial preprocessing for endmember extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2014945
– ident: 10.1016/j.jag.2024.103864_b0060
– volume: 49
  start-page: 4282
  issue: 11
  year: 2011
  ident: 10.1016/j.jag.2024.103864_b0140
  article-title: Hyperspectral unmixing via L1,2 sparsity-constrained nonnegative matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2144605
– volume: 106
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0150
  article-title: Transferable network with Siamese architecture for anomaly detection in hyperspectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 37
  start-page: 15082
  issue: 12
  year: 2023
  ident: 10.1016/j.jag.2024.103864_b0160
  article-title: Improving training and inference of face recognition models via random temperature scaling
  publication-title: AAAI.
  doi: 10.1609/aaai.v37i12.26760
– volume: 113
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0190
  article-title: Multi-stage convolutional autoencoder network for hyperspectral unmixing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 3
  year: 2013
  ident: 10.1016/j.jag.2024.103864_b0105
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: In: Proc. icml
– volume: 239
  start-page: 154
  year: 2013
  ident: 10.1016/j.jag.2024.103864_b0180
  article-title: Examination and comparison of conflicting data in granulated datasets: equal width interval vs. equal frequency interval
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.03.014
– volume: 51
  start-page: 2815
  year: 2013
  ident: 10.1016/j.jag.2024.103864_b0100
  article-title: Manifold regularized sparse NMF for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2213825
– volume: 10
  start-page: 270
  issue: 2
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0195
  article-title: Artificial intelligence for remote sensing data analysis: a review of challenges and opportunities
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2022.3145854
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.jag.2024.103864_b0120
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern: Syst.
  doi: 10.1109/TSMC.1979.4310076
– volume: 16
  start-page: 1467
  issue: 9
  year: 2019
  ident: 10.1016/j.jag.2024.103864_b0175
  article-title: Nonlinear unmixing of hyperspectral data via deep autoencoder networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2900733
– volume: 13
  start-page: 026509
  year: 2019
  ident: 10.1016/j.jag.2024.103864_b0080
  article-title: Clustered multitask nonnegative matrix factorization for spectral unmixing of hyperspectral data
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.026509
– volume: 43
  start-page: 898
  issue: 4
  year: 2005
  ident: 10.1016/j.jag.2024.103864_b0115
  article-title: Vertex component analysis: a fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.844293
– volume: 12
  start-page: 38
  issue: 1
  year: 2014
  ident: 10.1016/j.jag.2024.103864_b0145
  article-title: Spectral unmixing of hyperspectral imagery using multilayer NMF
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2325874
– volume: 12
  start-page: 1279
  year: 2019
  ident: 10.1016/j.jag.2024.103864_b0085
  article-title: Sparsity-constrained distributed unmixing of hyperspectral data
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2901122
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0185
  article-title: Hyperspectral anomaly detection with guided autoencoder
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 1340
  year: 2022
  ident: 10.1016/j.jag.2024.103864_b0135
  article-title: Blind hyperspectral unmixing using autoencoders: a critical comparison
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3140154
– volume: 23
  start-page: 5412
  issue: 12
  year: 2014
  ident: 10.1016/j.jag.2024.103864_b0210
  article-title: Spectral unmixing via data-guided sparsity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2363423
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2024.103864_b0015
  article-title: MSDformer: multiscale deformable transformer for hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 5067
  issue: 9
  year: 2015
  ident: 10.1016/j.jag.2024.103864_b0090
  article-title: Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2417162
– volume: 50
  start-page: 879
  issue: 3
  year: 2011
  ident: 10.1016/j.jag.2024.103864_b0200
  article-title: On combining multiple features for hyperspectral remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2162339
– ident: 10.1016/j.jag.2024.103864_b0155
  doi: 10.1117/12.157055
SSID ssj0017768
Score 2.3941562
Snippet •Different degrees of sparsity constraints are imposed adaptively in deep learning networks by temperature scaling techniques.•By considering the distribution...
Hyperspectral unmixing is a key technology in the development of remote sensing applications. However, since both endmembers and abundances are unknown,...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103864
SubjectTerms Convolutional autoencoder
design
Equal-frequency binning
extracts
Hyperspectral unmixing
methodology
remote sensing
solutions
Sparsity constraint
spatial data
temperature
Temperature scaling
Title Temperature scaling unmixing framework based on convolutional autoencoder
URI https://dx.doi.org/10.1016/j.jag.2024.103864
https://www.proquest.com/docview/3206204177
https://doaj.org/article/aa7533b7fbf447e1a8b51942e4c8c5f4
Volume 129
WOSCitedRecordID wos001402753200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgvhbXFxU8CcU-ZrfJUWUXBREPq3gLeUxkRbuyD_HnO2na9XFYL15KKdM0zEwy3zSTL4ydKOs5Nk0aO9Q6Bi0wVolVMbjUegIwA9XPnIeb4vaWPz6Ku29HffmasEAPHBR3phQB6lwXTjuAAlPFNYEOyBAMNx1XMYEmhWiSqXr9oCjCJrhOV8Qc8qxZz6wqu57VEyWGGVTk4F34EZEq4v4fgenXFF3Fnf4GW68BY3QeOrrJlrDcYmvfaAS3WKv3tVuNROvhOtlm1wMkVBxYk6MJWYPEo1n5OvzwN66py4p8KLPRqIx8DXrti9SQmk1HnufS4niH3fd7g8uruD47ITYEMaaxdgILq5UFoGtiuO4CZsLliKBSjtamnIMTiqKV5UC5aaIMjeZOkgmLmc5bbLkclbjLItvlTlHepV1BAgZFx2Ke00TJXaa0M22WNPqTpiYW9-dbvMimguxZksqlV7kMKm-z0_krb4FVY5HwhTfKXNATYlcPyE1k7SbyLzdpM2hMKmtsETADNTVc9O3jxvySxp1fTFEljmYTmWeJp_InT9v7j_7ts1X_2VBKecCWp-MZHrIV8z4dTsZHlXN_AgZv_5A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+scaling+unmixing+framework+based+on+convolutional+autoencoder&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Xu%2C+Jin&rft.au=Xu%2C+Mingming&rft.au=Liu%2C+Shanwei&rft.au=Sheng%2C+Hui&rft.date=2024-05-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=129&rft_id=info:doi/10.1016%2Fj.jag.2024.103864&rft.externalDocID=S1569843224002188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon