Comparison of RFE-DL and stacking ensemble learning algorithms for classifying mangrove species on UAV multispectral images

•Classification of mangrove species using the UAV multispectral image and DSM.•RFE-based variable selection improves classification performance of DL algorithms.•SEL algorithm outperforms DL algorithms in mapping mangrove species.•SEL algorithm achieves the highest overall accuracy of 92.2%.•XGBoost...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of applied earth observation and geoinformation Ročník 112; s. 102890
Hlavní autoři: Fu, Bolin, He, Xu, Yao, Hang, Liang, Yiyin, Deng, Tengfang, He, Hongchang, Fan, Donglin, Lan, Guiwen, He, Wen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2022
Elsevier
Témata:
ISSN:1569-8432, 1872-826X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Classification of mangrove species using the UAV multispectral image and DSM.•RFE-based variable selection improves classification performance of DL algorithms.•SEL algorithm outperforms DL algorithms in mapping mangrove species.•SEL algorithm achieves the highest overall accuracy of 92.2%.•XGBoost model has the highest importance in SEL model. Mangroves are highly productive wetland ecosystems, located at the interlocking area of tropical and subtropical coastal zones. Accurately mapping the distribution, quality and quantity of species are crucial for mangrove management, protection, and restoration. This study proposed a mangrove species mapping approach by combining recursive feature elimination (RFE) with deep learning (DL) algorithms, and further assess the effectiveness of feature selection for DL (DeeplabV3+ and PSPNet) algorithm to improve classification accuracy under the high dimensional UAV image datasets. We constructed an ensemble learning models (SEL) by stacking five base models (Random Forest, XGBoost, LightGBM, CatBoost, and AdaBoost), and evaluate the classification ability of mangrove species between SEL and RFE-DL algorithms. Comparison of the classifications of mangrove species was to evaluate the accuracy differences between SEL and base models. Results indicated that: (1) RFE algorithm could improve the classification accuracy of DL algorithms. RFE-DL models using the optimal features achieved 94.8% of overall accuracy (OA), which was 0.2%-8.5% higher than only using the original multispectral bands; (2) SEL algorithm produced better classification performance than RFE-DL with a higher 1.6%-12.7% of overall accuracy. Mcnemar's test showed the classifications of mangrove species were significant differences between the three algorithms; (3) the SEL algorithm had a strong and stable ability for classifying mangrove species. The OA of six classification scenarios was from 75.5% to 92.2%, and the highest OA using SEL algorithm was 0.8%-4.2% higher than base models; (4) XGBoost algorithm had the highest importance, while AdaBoost had the lowest importance in the SEL-based classifications.
AbstractList Mangroves are highly productive wetland ecosystems, located at the interlocking area of tropical and subtropical coastal zones. Accurately mapping the distribution, quality and quantity of species are crucial for mangrove management, protection, and restoration. This study proposed a mangrove species mapping approach by combining recursive feature elimination (RFE) with deep learning (DL) algorithms, and further assess the effectiveness of feature selection for DL (DeeplabV3+ and PSPNet) algorithm to improve classification accuracy under the high dimensional UAV image datasets. We constructed an ensemble learning models (SEL) by stacking five base models (Random Forest, XGBoost, LightGBM, CatBoost, and AdaBoost), and evaluate the classification ability of mangrove species between SEL and RFE-DL algorithms. Comparison of the classifications of mangrove species was to evaluate the accuracy differences between SEL and base models. Results indicated that: (1) RFE algorithm could improve the classification accuracy of DL algorithms. RFE-DL models using the optimal features achieved 94.8% of overall accuracy (OA), which was 0.2%-8.5% higher than only using the original multispectral bands; (2) SEL algorithm produced better classification performance than RFE-DL with a higher 1.6%-12.7% of overall accuracy. Mcnemar's test showed the classifications of mangrove species were significant differences between the three algorithms; (3) the SEL algorithm had a strong and stable ability for classifying mangrove species. The OA of six classification scenarios was from 75.5% to 92.2%, and the highest OA using SEL algorithm was 0.8%-4.2% higher than base models; (4) XGBoost algorithm had the highest importance, while AdaBoost had the lowest importance in the SEL-based classifications.
•Classification of mangrove species using the UAV multispectral image and DSM.•RFE-based variable selection improves classification performance of DL algorithms.•SEL algorithm outperforms DL algorithms in mapping mangrove species.•SEL algorithm achieves the highest overall accuracy of 92.2%.•XGBoost model has the highest importance in SEL model. Mangroves are highly productive wetland ecosystems, located at the interlocking area of tropical and subtropical coastal zones. Accurately mapping the distribution, quality and quantity of species are crucial for mangrove management, protection, and restoration. This study proposed a mangrove species mapping approach by combining recursive feature elimination (RFE) with deep learning (DL) algorithms, and further assess the effectiveness of feature selection for DL (DeeplabV3+ and PSPNet) algorithm to improve classification accuracy under the high dimensional UAV image datasets. We constructed an ensemble learning models (SEL) by stacking five base models (Random Forest, XGBoost, LightGBM, CatBoost, and AdaBoost), and evaluate the classification ability of mangrove species between SEL and RFE-DL algorithms. Comparison of the classifications of mangrove species was to evaluate the accuracy differences between SEL and base models. Results indicated that: (1) RFE algorithm could improve the classification accuracy of DL algorithms. RFE-DL models using the optimal features achieved 94.8% of overall accuracy (OA), which was 0.2%-8.5% higher than only using the original multispectral bands; (2) SEL algorithm produced better classification performance than RFE-DL with a higher 1.6%-12.7% of overall accuracy. Mcnemar's test showed the classifications of mangrove species were significant differences between the three algorithms; (3) the SEL algorithm had a strong and stable ability for classifying mangrove species. The OA of six classification scenarios was from 75.5% to 92.2%, and the highest OA using SEL algorithm was 0.8%-4.2% higher than base models; (4) XGBoost algorithm had the highest importance, while AdaBoost had the lowest importance in the SEL-based classifications.
Mangroves are highly productive wetland ecosystems, located at the interlocking area of tropical and subtropical coastal zones. Accurately mapping the distribution, quality and quantity of species are crucial for mangrove management, protection, and restoration. This study proposed a mangrove species mapping approach by combining recursive feature elimination (RFE) with deep learning (DL) algorithms, and further assess the effectiveness of feature selection for DL (DeeplabV3+ and PSPNet) algorithm to improve classification accuracy under the high dimensional UAV image datasets. We constructed an ensemble learning models (SEL) by stacking five base models (Random Forest, XGBoost, LightGBM, CatBoost, and AdaBoost), and evaluate the classification ability of mangrove species between SEL and RFE-DL algorithms. Comparison of the classifications of mangrove species was to evaluate the accuracy differences between SEL and base models. Results indicated that: (1) RFE algorithm could improve the classification accuracy of DL algorithms. RFE-DL models using the optimal features achieved 94.8% of overall accuracy (OA), which was 0.2%-8.5% higher than only using the original multispectral bands; (2) SEL algorithm produced better classification performance than RFE-DL with a higher 1.6%-12.7% of overall accuracy. Mcnemar's test showed the classifications of mangrove species were significant differences between the three algorithms; (3) the SEL algorithm had a strong and stable ability for classifying mangrove species. The OA of six classification scenarios was from 75.5% to 92.2%, and the highest OA using SEL algorithm was 0.8%-4.2% higher than base models; (4) XGBoost algorithm had the highest importance, while AdaBoost had the lowest importance in the SEL-based classifications.
ArticleNumber 102890
Author Fu, Bolin
Fan, Donglin
Lan, Guiwen
Deng, Tengfang
Yao, Hang
He, Hongchang
Liang, Yiyin
He, Wen
He, Xu
Author_xml – sequence: 1
  givenname: Bolin
  surname: Fu
  fullname: Fu, Bolin
  email: fubolin@glut.edu.cn
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 2
  givenname: Xu
  surname: He
  fullname: He, Xu
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 3
  givenname: Hang
  surname: Yao
  fullname: Yao, Hang
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 4
  givenname: Yiyin
  surname: Liang
  fullname: Liang, Yiyin
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 5
  givenname: Tengfang
  surname: Deng
  fullname: Deng, Tengfang
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 6
  givenname: Hongchang
  surname: He
  fullname: He, Hongchang
  email: HHe_glut@126.com
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 7
  givenname: Donglin
  surname: Fan
  fullname: Fan, Donglin
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 8
  givenname: Guiwen
  surname: Lan
  fullname: Lan, Guiwen
  organization: College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
– sequence: 9
  givenname: Wen
  surname: He
  fullname: He, Wen
  organization: Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
BookMark eNp9UctuFDEQHKEgkQQ-gJuPXGbxa17iFC0JRFoJCRHEzWp72oMXj73Ys5Eifh5PNlw45OR2dVfZXXVRnYUYsKreMrphlLXv95s9TBtOOS933g_0RXXO-o7XPW9_nJW6aYe6l4K_qi5y3lPKuq7tz6s_2zgfILkcA4mWfL25rj_uCISR5AXMLxcmgiHjrD0Sj5DCioCfYnLLzzkTGxMxHnJ29mFtzRCmFO-R5AMah5kU3bur72Q--sWt2JLAEzfDhPl19dKCz_jm6bys7m6uv20_17svn263V7vaSDEstTadRWFBDgDjKEamW0SOjdbYCWrHRiDTo-bWiNKmrZEcrEapLZXGCisuq9uT7hhhrw6pvJ4eVASnHoGYJgVpccajGgUzgsPAtKCyw3GAUci2bRoqe6YbVrTenbQOKf4-Yl7U7LJB7yFgPGbFO9ZzOTC5jnanUZNizgmtMm6BxcVQPHBeMarW6NRelejUGp06RVeY7D_mv08_x_lw4mBx8t5hUrn4HwyOLhXXy6ruGfZfnnu2Qw
CitedBy_id crossref_primary_10_1016_j_ecolind_2023_110870
crossref_primary_10_1080_10106049_2025_2547928
crossref_primary_10_1080_10095020_2024_2387457
crossref_primary_10_1111_geb_13852
crossref_primary_10_3389_ffgc_2025_1599510
crossref_primary_10_1016_j_jag_2025_104577
crossref_primary_10_1109_JSTARS_2025_3534238
crossref_primary_10_1007_s11769_025_1534_1
crossref_primary_10_1080_15481603_2023_2286746
crossref_primary_10_3389_fpls_2023_1181887
crossref_primary_10_1080_17538947_2024_2420824
crossref_primary_10_1080_27658511_2024_2307229
crossref_primary_10_3389_fpls_2022_1047479
crossref_primary_10_1071_WF23124
crossref_primary_10_1080_17538947_2025_2497488
crossref_primary_10_1109_JSTARS_2025_3595373
crossref_primary_10_1080_15481603_2025_2480422
crossref_primary_10_1111_jph_70160
crossref_primary_10_1080_17538947_2025_2520472
crossref_primary_10_1080_15472450_2025_2543838
crossref_primary_10_3389_fmars_2022_1113387
crossref_primary_10_1080_17538947_2025_2528619
crossref_primary_10_1080_01431161_2025_2532836
crossref_primary_10_1080_10095020_2025_2540570
crossref_primary_10_1038_s41598_024_84977_x
crossref_primary_10_1080_01431161_2025_2546156
crossref_primary_10_1080_17538947_2025_2515269
crossref_primary_10_3389_frsen_2025_1606549
crossref_primary_10_1080_17538947_2024_2346277
crossref_primary_10_1109_JSTARS_2025_3563951
crossref_primary_10_3389_fmars_2023_1243116
crossref_primary_10_3389_fpls_2023_1272049
crossref_primary_10_1109_ACCESS_2025_3569344
crossref_primary_10_1117_1_JRS_18_014509
Cites_doi 10.1016/j.rse.2005.11.007
10.1016/j.rse.2019.111223
10.1016/j.isprsjprs.2007.08.007
10.1038/nclimate2734
10.1109/TGRS.2019.2919472
10.1111/gcb.15275
10.1016/j.isprsjprs.2015.08.002
10.2747/1548-1603.49.5.623
10.3390/rs11182114
10.1016/j.isprsjprs.2020.12.010
10.1016/j.ecolind.2021.108173
10.3390/rs12162602
10.1016/j.rse.2021.112403
10.1016/j.rse.2018.11.032
10.1109/JSTARS.2020.2994335
10.1016/j.rse.2011.12.004
10.1080/01431161.2012.718463
10.3390/rs9030247
10.3390/rs10050778
10.1016/j.rse.2017.09.029
10.3390/rs11171986
10.1016/S0893-6080(05)80023-1
10.3390/rs11212479
10.1613/jair.594
10.1016/j.isprsjprs.2021.07.011
10.1146/annurev-environ-101718-033302
10.3390/rs13081529
10.3390/rs10010089
10.1016/j.foreco.2021.119739
10.1080/13658810903174803
10.1016/j.agrformet.2019.107744
10.3390/rs11121461
10.3390/rs70506380
10.1016/j.isprsjprs.2019.11.019
10.3390/rs13234910
10.3390/rs11070808
10.1016/j.rse.2019.111467
10.1016/j.ecolind.2019.105979
10.1109/TKDE.2004.29
10.1016/j.rse.2017.11.009
10.3390/rs12081270
10.1111/gcb.12341
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2022.102890
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_d31c32a91b3047ed9ad3466550481b51
10_1016_j_jag_2022_102890
S1569843222000929
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
AITUG
ANKPU
APXCP
CITATION
EFJIC
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c439t-bc7fe3fa49aadd3d1b6ee2e5bbe730fd53e1bdb2fc3dd306c42afbe4bf04cf3f3
IEDL.DBID DOA
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844331400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1569-8432
IngestDate Fri Oct 03 12:50:52 EDT 2025
Mon Sep 29 06:10:51 EDT 2025
Tue Nov 18 22:28:52 EST 2025
Sat Nov 29 07:03:35 EST 2025
Fri Feb 23 02:36:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mangrove species
UAV multispectral images
DeeplabV3+ and PSPNet algorithm
Image segmentation and feature selection
Stacking ensemble learning algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-bc7fe3fa49aadd3d1b6ee2e5bbe730fd53e1bdb2fc3dd306c42afbe4bf04cf3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/d31c32a91b3047ed9ad3466550481b51
PQID 2718249141
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_d31c32a91b3047ed9ad3466550481b51
proquest_miscellaneous_2718249141
crossref_citationtrail_10_1016_j_jag_2022_102890
crossref_primary_10_1016_j_jag_2022_102890
elsevier_sciencedirect_doi_10_1016_j_jag_2022_102890
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zorzi, Maset, Fusiello, Crosilla (b0290) 2019; 57
Jiang, Zhang, Yan, Qi, Fu, Fan, Chen (b0120) 2021; 13
Liu, Wu (b0155) 2018; 68
Torabzadeh, Leiterer, Hueni, Schaepman, Morsdorf (b0225) 2019; 279
Al-Najjar, Kalantar, Pradhan, Saeidi, Halin, Ueda, Mansor (b0015) 2019; 11
Cao, Liu, Zhuo, Liu, Zhu, Peng (b0045) 2021; 102
Yang, Weisberg, Bristow (b0255) 2012; 119
Lottering, Govender, Peerbhay, Lottering (b0175) 2020; 159
Friess, Rogers, Lovelock, Krauss, Hamilton, Lee, Lucas, Primavera, Rajkaran, Shi (b0075) 2019; 44
Bhatnagar, Gill, Ghosh (b0025) 2020; 12
Wang, Jia, Yin, Tian (b0235) 2019; 231
Fu, Xie, He, Zuo, Sun, Liu, Huang, Fan, Gao (b0085) 2021; 131
Zhao, Jiang, Li, Chen, Lu (b0270) 2021; 105
Husson, Reese, Ecke (b0110) 2017; 9
Li, Wang, Cui, Hodgson (b0140) 2021; 179
Filippi, Jensen (b0070) 2006; 100
Drǎguţ, Tiede, Levick (b0060) 2010; 24
Mallinis, Koutsias, Tsakiri-Strati, Karteris (b0180) 2008; 63
Wang, Fei, Zhang, Chen, Wang, Tsou, Liu, Lu (b0240) 2018; 10
Lou, Fu, He, Li, Tang, Lin, Fan, Gao (b0170) 2020; 12
Zhao, Shi, Qi, Wang, Jia (b0265) 2017
Zhang, Zhang, Li, Liu, Cai, Lin (b0275) 2020; 13
Diniz, Cortinhas, Nerino, Rodrigues, Sadeck, Adami, Souza-Filho (b0055) 2019; 11
Li, Wong, Fung (b0150) 2019; 11
Taddeo, Dronova, Depsky (b0215) 2019; 234
Dronova (b0065) 2015; 7
Long, Li, Lin, Zhang (b0165) 2021; 102
Aasen, Burkart, Bolten, Bareth (b0005) 2015; 108
Wolpert (b0250) 1992; 5
Polikar (b0200) 2012
Healey, Cohen, Yang, Kenneth Brewer, Brooks, Gorelick, Hernandez, Huang, Joseph Hughes, Kennedy, Loveland, Moisen, Schroeder, Stehman, Vogelmann, Woodcock, Yang, Zhu (b0105) 2018; 204
Li, Jia, Zhang, Ren, Wen (b0135) 2019; 11
Murdiyarso, Purbopuspito, Kauffman, Warren, Sasmito, Donato, Manuri, Krisnawati, Taberima, Kurnianto (b0190) 2015; 5
Zhong, Hu, Zhou (b0280) 2019; 221
Fu, Liu, He, Lan, He, Liu, Huang, Fan, Zhao, Jia (b0080) 2021; 104
Agaton, Collera (b0010) 2022; 503
Liu, Fu, Fan, Zuo, Xie, He, Liu, Huang, Gao, Zhao (b0160) 2021; 103
Ting, Witten (b0220) 1999; 10
Zhou, Yang, Li, Cai, Yang, Xia (b0285) 2021; 13
Cai, Li, Zhang, Lin (b0035) 2020; 92
Cao, Leng, Liu, Liu, He, Zhu (b0040) 2018; 10
Villoslada, Bergamo, Ward, Burnside, Joyce, Bunce, Sepp (b0230) 2020; 111
Kim, Yeom (b0130) 2014; 1–23
Goldberg, Lagomasino, Thomas, Fatoyinbo (b0100) 2020; 26
Moffett, Gorelick (b0185) 2012; 34
Pastor-Guzman, Dash, Atkinson (b0195) 2018; 205
Ghimire, Rogan, Galiano, Panday, Neeti (b0090) 2012; 49
Stoian, Poulain, Inglada, Poughon, Derksen (b0210) 2019; 11
Zhang, Zhang, Li, Liu, Cai, Lin (b0260) 2020; 13
Jia, Wang, Zhang, Mao, Wang (b0115) 2018; 73
Kattenborn, Leitloff, Schiefer, Hinz (b0125) 2021; 173
Chen, Zhu, Papandreou, Schroff, Adam (b0050) 2018
Saintilan, Wilson, Rogers, Rajkaran, Krauss (b0205) 2013; 20
Ghosh, Joshi (b0095) 2014; 26
Li, Wong, Fung (b0145) 2021; 258
Webb, Zheng (b0245) 2004; 16
Al-Najjar (10.1016/j.jag.2022.102890_b0015) 2019; 11
Wang (10.1016/j.jag.2022.102890_b0240) 2018; 10
Ting (10.1016/j.jag.2022.102890_b0220) 1999; 10
Lottering (10.1016/j.jag.2022.102890_b0175) 2020; 159
Cao (10.1016/j.jag.2022.102890_b0040) 2018; 10
Fu (10.1016/j.jag.2022.102890_b0085) 2021; 131
Webb (10.1016/j.jag.2022.102890_b0245) 2004; 16
Mallinis (10.1016/j.jag.2022.102890_b0180) 2008; 63
Murdiyarso (10.1016/j.jag.2022.102890_b0190) 2015; 5
Villoslada (10.1016/j.jag.2022.102890_b0230) 2020; 111
Wang (10.1016/j.jag.2022.102890_b0235) 2019; 231
Diniz (10.1016/j.jag.2022.102890_b0055) 2019; 11
Stoian (10.1016/j.jag.2022.102890_b0210) 2019; 11
Ghimire (10.1016/j.jag.2022.102890_b0090) 2012; 49
Saintilan (10.1016/j.jag.2022.102890_b0205) 2013; 20
Husson (10.1016/j.jag.2022.102890_b0110) 2017; 9
Zhang (10.1016/j.jag.2022.102890_b0260) 2020; 13
Wolpert (10.1016/j.jag.2022.102890_b0250) 1992; 5
Zhang (10.1016/j.jag.2022.102890_b0275) 2020; 13
Ghosh (10.1016/j.jag.2022.102890_b0095) 2014; 26
Liu (10.1016/j.jag.2022.102890_b0160) 2021; 103
Polikar (10.1016/j.jag.2022.102890_b0200) 2012
Moffett (10.1016/j.jag.2022.102890_b0185) 2012; 34
Dronova (10.1016/j.jag.2022.102890_b0065) 2015; 7
Zhong (10.1016/j.jag.2022.102890_b0280) 2019; 221
Jiang (10.1016/j.jag.2022.102890_b0120) 2021; 13
Zhao (10.1016/j.jag.2022.102890_b0265) 2017
Liu (10.1016/j.jag.2022.102890_b0155) 2018; 68
Goldberg (10.1016/j.jag.2022.102890_b0100) 2020; 26
Taddeo (10.1016/j.jag.2022.102890_b0215) 2019; 234
Zhou (10.1016/j.jag.2022.102890_b0285) 2021; 13
Drǎguţ (10.1016/j.jag.2022.102890_b0060) 2010; 24
Pastor-Guzman (10.1016/j.jag.2022.102890_b0195) 2018; 205
Filippi (10.1016/j.jag.2022.102890_b0070) 2006; 100
Long (10.1016/j.jag.2022.102890_b0165) 2021; 102
Li (10.1016/j.jag.2022.102890_b0145) 2021; 258
Friess (10.1016/j.jag.2022.102890_b0075) 2019; 44
Cai (10.1016/j.jag.2022.102890_b0035) 2020; 92
Yang (10.1016/j.jag.2022.102890_b0255) 2012; 119
Fu (10.1016/j.jag.2022.102890_b0080) 2021; 104
Lou (10.1016/j.jag.2022.102890_b0170) 2020; 12
Cao (10.1016/j.jag.2022.102890_b0045) 2021; 102
Li (10.1016/j.jag.2022.102890_b0150) 2019; 11
Bhatnagar (10.1016/j.jag.2022.102890_b0025) 2020; 12
Chen (10.1016/j.jag.2022.102890_b0050) 2018
Li (10.1016/j.jag.2022.102890_b0140) 2021; 179
Aasen (10.1016/j.jag.2022.102890_b0005) 2015; 108
Kattenborn (10.1016/j.jag.2022.102890_b0125) 2021; 173
Kim (10.1016/j.jag.2022.102890_b0130) 2014; 1–23
Healey (10.1016/j.jag.2022.102890_b0105) 2018; 204
Li (10.1016/j.jag.2022.102890_b0135) 2019; 11
Zorzi (10.1016/j.jag.2022.102890_b0290) 2019; 57
Torabzadeh (10.1016/j.jag.2022.102890_b0225) 2019; 279
Zhao (10.1016/j.jag.2022.102890_b0270) 2021; 105
Jia (10.1016/j.jag.2022.102890_b0115) 2018; 73
Agaton (10.1016/j.jag.2022.102890_b0010) 2022; 503
References_xml – year: 2017
  ident: b0265
  article-title: Pyramid Scene Parsing Network
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
– volume: 13
  start-page: 4910
  year: 2021
  ident: b0285
  article-title: Object-based wetland vegetation classification using multi-feature selection of unoccupied aerial vehicle RGB imagery
  publication-title: Remote Sens.
– volume: 10
  start-page: 89
  year: 2018
  ident: b0040
  article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models
  publication-title: Remote Sens.
– volume: 68
  start-page: 298
  year: 2018
  end-page: 307
  ident: b0155
  article-title: Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 10
  start-page: 271
  year: 1999
  end-page: 289
  ident: b0220
  article-title: Issues in Stacked Generalization
  publication-title: J. Artif. Intell. Res.
– volume: 10
  start-page: 778
  year: 2018
  ident: b0240
  article-title: Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using Completed Local Binary Patterns (CLBP)
  publication-title: Remote Sensing
– volume: 57
  start-page: 8255
  year: 2019
  end-page: 8261
  ident: b0290
  article-title: Full-waveform airborne LiDAR data classification using convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 279
  year: 2019
  ident: b0225
  article-title: Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning
  publication-title: Agric. For. Meteorol.
– volume: 5
  start-page: 1089
  year: 2015
  end-page: 1092
  ident: b0190
  article-title: The potential of Indonesian mangrove forests for global climate change mitigation
  publication-title: Nat. Clim. Change
– volume: 108
  start-page: 245
  year: 2015
  end-page: 259
  ident: b0005
  article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 16
  start-page: 980
  year: 2004
  end-page: 991
  ident: b0245
  article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 11
  start-page: 2479
  year: 2019
  ident: b0135
  article-title: Incorporating the plant phenological trajectory into mangrove species mapping with dense time series sentinel-2 imagery and the google earth engine platform
  publication-title: Remote Sens.
– volume: 102
  year: 2021
  ident: b0165
  article-title: Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 205
  start-page: 71
  year: 2018
  end-page: 84
  ident: b0195
  article-title: Remote sensing of mangrove forest phenology and its environmental drivers
  publication-title: Remote Sens. Environ.
– volume: 204
  start-page: 717
  year: 2018
  end-page: 728
  ident: b0105
  article-title: Mapping forest change using stacked generalization: an ensemble approach
  publication-title: Remote Sens. Environ.
– volume: 231
  year: 2019
  ident: b0235
  article-title: A review of remote sensing for mangrove forests: 1956–2018
  publication-title: Remote Sens. Environ.
– start-page: 833
  year: 2018
  end-page: 851
  ident: b0050
  article-title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
  publication-title: Computer Vision – ECCV 2018
– volume: 102
  year: 2021
  ident: b0045
  article-title: Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 258
  year: 2021
  ident: b0145
  article-title: Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data
  publication-title: Remote Sens. Environ.
– volume: 234
  year: 2019
  ident: b0215
  article-title: Spectral vegetation indices of wetland greenness: responses to vegetation structure, composition, and spatial distribution
  publication-title: Remote Sens. Environ.
– volume: 221
  start-page: 430
  year: 2019
  end-page: 443
  ident: b0280
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 298
  year: 2014
  end-page: 311
  ident: b0095
  article-title: A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 100
  start-page: 512
  year: 2006
  end-page: 530
  ident: b0070
  article-title: Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
  publication-title: Remote Sens. Environ.
– volume: 103
  year: 2021
  ident: b0160
  article-title: Study on transfer learning ability for classifying marsh vegetation with multi-sensor images using DeepLabV3+ and HRNet deep learning algorithms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 1986
  year: 2019
  ident: b0210
  article-title: Land cover maps production with high resolution satellite image time series and convolutional neural networks: adaptations and limits for operational systems
  publication-title: Remote Sens.
– volume: 503
  year: 2022
  ident: b0010
  article-title: Now or later? Optimal timing of mangrove rehabilitation under climate change uncertainty
  publication-title: For. Ecol. Manage.
– volume: 13
  start-page: 2264
  year: 2020
  end-page: 2275
  ident: b0260
  article-title: Classification of Paddy Rice using a stacked generalization approach and the spectral mixture method based on MODIS time series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 12
  start-page: 1270
  year: 2020
  ident: b0170
  article-title: An Optimized object-based random forest algorithm for marsh vegetation mapping using high-spatial-resolution GF-1 and ZY-3 data
  publication-title: Remote Sens.
– volume: 1–23
  year: 2014
  ident: b0130
  article-title: Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data
  publication-title: Int. J. Remote Sens.
– volume: 11
  start-page: 2114
  year: 2019
  ident: b0150
  article-title: Classification of mangrove species using combined WordView-3 and LiDAR data in Mai Po nature reserve, Hong Kong
  publication-title: Remote Sens.
– volume: 92
  year: 2020
  ident: b0035
  article-title: Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 808
  year: 2019
  ident: b0055
  article-title: Brazilian mangrove status: three decades of satellite data analysis
  publication-title: Remote Sens.
– volume: 7
  start-page: 6380
  year: 2015
  end-page: 6413
  ident: b0065
  article-title: Object-based image analysis in wetland research: a review
  publication-title: Remote Sens.
– volume: 20
  start-page: 147
  year: 2013
  end-page: 157
  ident: b0205
  article-title: Mangrove expansion and salt marsh decline at mangrove poleward limits
  publication-title: Glob. Change Biol.
– volume: 9
  start-page: 247
  year: 2017
  ident: b0110
  article-title: Combining spectral data and a DSM from UAS-images for improved classification of non-submerged aquatic vegetation
  publication-title: Remote Sens.
– start-page: 1
  year: 2012
  end-page: 34
  ident: b0200
  article-title: Ensemble Learning
  publication-title: Ensemble Machine Learning
– volume: 49
  start-page: 623
  year: 2012
  end-page: 643
  ident: b0090
  article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in cape Cod, Massachusetts, USA
  publication-title: GISci. Remote Sens.
– volume: 131
  year: 2021
  ident: b0085
  article-title: Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm
  publication-title: Ecol. Ind.
– volume: 179
  start-page: 121
  year: 2021
  end-page: 132
  ident: b0140
  article-title: Mapping salt marsh along coastal South Carolina using U-Net
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 44
  start-page: 89
  year: 2019
  end-page: 115
  ident: b0075
  article-title: The state of the World’s Mangrove forests: past, present, and future
  publication-title: Annu. Rev. Environ. Resour.
– volume: 104
  year: 2021
  ident: b0080
  article-title: Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 105
  year: 2021
  ident: b0270
  article-title: Integration of ZiYuan-3 multispectral and stereo imagery for mapping urban vegetation using the hierarchy-based classifier
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 26
  start-page: 5844
  year: 2020
  end-page: 5855
  ident: b0100
  article-title: Global declines in human-driven mangrove loss
  publication-title: Glob. Change Biol.
– volume: 13
  start-page: 2264
  year: 2020
  end-page: 2275
  ident: b0275
  article-title: Classification of Paddy Rice using a stacked generalization approach and the spectral mixture method based on MODIS time series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 12
  start-page: 2602
  year: 2020
  ident: b0025
  article-title: Drone image segmentation using machine and deep learning for mapping raised bog vegetation communities
  publication-title: Remote Sens.
– volume: 63
  start-page: 237
  year: 2008
  end-page: 250
  ident: b0180
  article-title: Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 111
  year: 2020
  ident: b0230
  article-title: Fine scale plant community assessment in coastal meadows using UAV based multispectral data
  publication-title: Ecol. Ind.
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: b0250
  article-title: Stacked generalization
  publication-title: Neural Netw.
– volume: 159
  start-page: 271
  year: 2020
  end-page: 280
  ident: b0175
  article-title: Comparing partial least squares (PLS) discriminant analysis and sparse PLS discriminant analysis in detecting and mapping Solanum mauritianum in commercial forest plantations using image texture
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 73
  start-page: 535
  year: 2018
  end-page: 545
  ident: b0115
  article-title: Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  start-page: 1529
  year: 2021
  ident: b0120
  article-title: High-resolution mangrove forests classification with machine learning using worldview and UAV hyperspectral data
  publication-title: Remote Sens.
– volume: 24
  start-page: 859
  year: 2010
  end-page: 871
  ident: b0060
  article-title: ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
  publication-title: Int. J. Geographical Information Sci.
– volume: 119
  start-page: 62
  year: 2012
  end-page: 71
  ident: b0255
  article-title: Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: comparison of vegetation indices and spectral mixture analysis
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1461
  year: 2019
  ident: b0015
  article-title: Land cover classification from fused DSM and UAV images using convolutional neural networks
  publication-title: Remote Sens.
– volume: 173
  start-page: 24
  year: 2021
  end-page: 49
  ident: b0125
  article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 34
  start-page: 1332
  year: 2012
  end-page: 1354
  ident: b0185
  article-title: Distinguishing wetland vegetation and channel features with object-based image segmentation
  publication-title: Int. J. Remote Sens.
– year: 2017
  ident: 10.1016/j.jag.2022.102890_b0265
  article-title: Pyramid Scene Parsing Network
– volume: 105
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0270
  article-title: Integration of ZiYuan-3 multispectral and stereo imagery for mapping urban vegetation using the hierarchy-based classifier
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 100
  start-page: 512
  year: 2006
  ident: 10.1016/j.jag.2022.102890_b0070
  article-title: Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.11.007
– volume: 231
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0235
  article-title: A review of remote sensing for mangrove forests: 1956–2018
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111223
– volume: 63
  start-page: 237
  year: 2008
  ident: 10.1016/j.jag.2022.102890_b0180
  article-title: Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2007.08.007
– volume: 5
  start-page: 1089
  year: 2015
  ident: 10.1016/j.jag.2022.102890_b0190
  article-title: The potential of Indonesian mangrove forests for global climate change mitigation
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2734
– volume: 57
  start-page: 8255
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0290
  article-title: Full-waveform airborne LiDAR data classification using convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2919472
– volume: 26
  start-page: 5844
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0100
  article-title: Global declines in human-driven mangrove loss
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15275
– volume: 26
  start-page: 298
  year: 2014
  ident: 10.1016/j.jag.2022.102890_b0095
  article-title: A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 108
  start-page: 245
  year: 2015
  ident: 10.1016/j.jag.2022.102890_b0005
  article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.08.002
– volume: 73
  start-page: 535
  year: 2018
  ident: 10.1016/j.jag.2022.102890_b0115
  article-title: Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 49
  start-page: 623
  year: 2012
  ident: 10.1016/j.jag.2022.102890_b0090
  article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in cape Cod, Massachusetts, USA
  publication-title: GISci. Remote Sens.
  doi: 10.2747/1548-1603.49.5.623
– volume: 11
  start-page: 2114
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0150
  article-title: Classification of mangrove species using combined WordView-3 and LiDAR data in Mai Po nature reserve, Hong Kong
  publication-title: Remote Sens.
  doi: 10.3390/rs11182114
– volume: 173
  start-page: 24
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0125
  article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.12.010
– volume: 131
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0085
  article-title: Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2021.108173
– volume: 12
  start-page: 2602
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0025
  article-title: Drone image segmentation using machine and deep learning for mapping raised bog vegetation communities
  publication-title: Remote Sens.
  doi: 10.3390/rs12162602
– volume: 1–23
  year: 2014
  ident: 10.1016/j.jag.2022.102890_b0130
  article-title: Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data
  publication-title: Int. J. Remote Sens.
– volume: 258
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0145
  article-title: Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112403
– volume: 92
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0035
  article-title: Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 221
  start-page: 430
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0280
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.032
– volume: 13
  start-page: 2264
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0260
  article-title: Classification of Paddy Rice using a stacked generalization approach and the spectral mixture method based on MODIS time series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2994335
– volume: 119
  start-page: 62
  year: 2012
  ident: 10.1016/j.jag.2022.102890_b0255
  article-title: Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: comparison of vegetation indices and spectral mixture analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.004
– volume: 34
  start-page: 1332
  year: 2012
  ident: 10.1016/j.jag.2022.102890_b0185
  article-title: Distinguishing wetland vegetation and channel features with object-based image segmentation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.718463
– volume: 9
  start-page: 247
  year: 2017
  ident: 10.1016/j.jag.2022.102890_b0110
  article-title: Combining spectral data and a DSM from UAS-images for improved classification of non-submerged aquatic vegetation
  publication-title: Remote Sens.
  doi: 10.3390/rs9030247
– volume: 10
  start-page: 778
  year: 2018
  ident: 10.1016/j.jag.2022.102890_b0240
  article-title: Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using Completed Local Binary Patterns (CLBP)
  publication-title: Remote Sensing
  doi: 10.3390/rs10050778
– volume: 204
  start-page: 717
  year: 2018
  ident: 10.1016/j.jag.2022.102890_b0105
  article-title: Mapping forest change using stacked generalization: an ensemble approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.029
– volume: 11
  start-page: 1986
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0210
  article-title: Land cover maps production with high resolution satellite image time series and convolutional neural networks: adaptations and limits for operational systems
  publication-title: Remote Sens.
  doi: 10.3390/rs11171986
– volume: 102
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0165
  article-title: Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 5
  start-page: 241
  year: 1992
  ident: 10.1016/j.jag.2022.102890_b0250
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 68
  start-page: 298
  year: 2018
  ident: 10.1016/j.jag.2022.102890_b0155
  article-title: Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 2479
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0135
  article-title: Incorporating the plant phenological trajectory into mangrove species mapping with dense time series sentinel-2 imagery and the google earth engine platform
  publication-title: Remote Sens.
  doi: 10.3390/rs11212479
– volume: 10
  start-page: 271
  year: 1999
  ident: 10.1016/j.jag.2022.102890_b0220
  article-title: Issues in Stacked Generalization
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.594
– volume: 179
  start-page: 121
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0140
  article-title: Mapping salt marsh along coastal South Carolina using U-Net
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.07.011
– volume: 44
  start-page: 89
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0075
  article-title: The state of the World’s Mangrove forests: past, present, and future
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-101718-033302
– volume: 13
  start-page: 1529
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0120
  article-title: High-resolution mangrove forests classification with machine learning using worldview and UAV hyperspectral data
  publication-title: Remote Sens.
  doi: 10.3390/rs13081529
– volume: 10
  start-page: 89
  year: 2018
  ident: 10.1016/j.jag.2022.102890_b0040
  article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models
  publication-title: Remote Sens.
  doi: 10.3390/rs10010089
– volume: 13
  start-page: 2264
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0275
  article-title: Classification of Paddy Rice using a stacked generalization approach and the spectral mixture method based on MODIS time series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2994335
– volume: 503
  year: 2022
  ident: 10.1016/j.jag.2022.102890_b0010
  article-title: Now or later? Optimal timing of mangrove rehabilitation under climate change uncertainty
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2021.119739
– volume: 24
  start-page: 859
  year: 2010
  ident: 10.1016/j.jag.2022.102890_b0060
  article-title: ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
  publication-title: Int. J. Geographical Information Sci.
  doi: 10.1080/13658810903174803
– volume: 279
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0225
  article-title: Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107744
– volume: 11
  start-page: 1461
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0015
  article-title: Land cover classification from fused DSM and UAV images using convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11121461
– volume: 7
  start-page: 6380
  year: 2015
  ident: 10.1016/j.jag.2022.102890_b0065
  article-title: Object-based image analysis in wetland research: a review
  publication-title: Remote Sens.
  doi: 10.3390/rs70506380
– volume: 159
  start-page: 271
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0175
  article-title: Comparing partial least squares (PLS) discriminant analysis and sparse PLS discriminant analysis in detecting and mapping Solanum mauritianum in commercial forest plantations using image texture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.019
– volume: 13
  start-page: 4910
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0285
  article-title: Object-based wetland vegetation classification using multi-feature selection of unoccupied aerial vehicle RGB imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs13234910
– volume: 104
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0080
  article-title: Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 833
  year: 2018
  ident: 10.1016/j.jag.2022.102890_b0050
  article-title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
– volume: 11
  start-page: 808
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0055
  article-title: Brazilian mangrove status: three decades of satellite data analysis
  publication-title: Remote Sens.
  doi: 10.3390/rs11070808
– volume: 234
  year: 2019
  ident: 10.1016/j.jag.2022.102890_b0215
  article-title: Spectral vegetation indices of wetland greenness: responses to vegetation structure, composition, and spatial distribution
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111467
– volume: 111
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0230
  article-title: Fine scale plant community assessment in coastal meadows using UAV based multispectral data
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2019.105979
– volume: 102
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0045
  article-title: Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 103
  year: 2021
  ident: 10.1016/j.jag.2022.102890_b0160
  article-title: Study on transfer learning ability for classifying marsh vegetation with multi-sensor images using DeepLabV3+ and HRNet deep learning algorithms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 16
  start-page: 980
  year: 2004
  ident: 10.1016/j.jag.2022.102890_b0245
  article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.29
– volume: 205
  start-page: 71
  year: 2018
  ident: 10.1016/j.jag.2022.102890_b0195
  article-title: Remote sensing of mangrove forest phenology and its environmental drivers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.009
– volume: 12
  start-page: 1270
  year: 2020
  ident: 10.1016/j.jag.2022.102890_b0170
  article-title: An Optimized object-based random forest algorithm for marsh vegetation mapping using high-spatial-resolution GF-1 and ZY-3 data
  publication-title: Remote Sens.
  doi: 10.3390/rs12081270
– volume: 20
  start-page: 147
  year: 2013
  ident: 10.1016/j.jag.2022.102890_b0205
  article-title: Mangrove expansion and salt marsh decline at mangrove poleward limits
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12341
– start-page: 1
  year: 2012
  ident: 10.1016/j.jag.2022.102890_b0200
  article-title: Ensemble Learning
SSID ssj0017768
Score 2.6003053
Snippet •Classification of mangrove species using the UAV multispectral image and DSM.•RFE-based variable selection improves classification performance of DL...
Mangroves are highly productive wetland ecosystems, located at the interlocking area of tropical and subtropical coastal zones. Accurately mapping the...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102890
SubjectTerms algorithms
data collection
DeeplabV3+ and PSPNet algorithm
Image segmentation and feature selection
Mangrove species
spatial data
species
Stacking ensemble learning algorithm
UAV multispectral images
wetlands
Title Comparison of RFE-DL and stacking ensemble learning algorithms for classifying mangrove species on UAV multispectral images
URI https://dx.doi.org/10.1016/j.jag.2022.102890
https://www.proquest.com/docview/2718249141
https://doaj.org/article/d31c32a91b3047ed9ad3466550481b51
Volume 112
WOSCitedRecordID wos000844331400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxAEOFSxFbHnIlXqqFJHYzuvIY1c9VKuqKhU3y4_xsmg3qbILF_48YydZthzg0mvi2FFmPP4mM_MNIV91zHNlTRIZndvI80xGhSrRVYFEaEg1MBWHZhP5ZFLc3pY_N1p9-Zywlh64_XDnlieGM3xc-wAR2FJZLrIMgbVAxBWKp1mcl70z1cUP8rwtgkuzMioEZ308M2R23aspOoaMedqCwhvjjRMpEPf_czC9MtHh3BnvkY8dYKQX7Yvukw9QDcjuBo3ggByOXqrVcGi3XZcH5Olq3WWQ1o7-Go-i6x9UVZYiJjT-JzlFLxYWeg60ax8xpWo-rZvZ6m6xpAhoqfHwehaqoehCVdOmfgTq6zPRxaY4783FHxqyEkPNZoPrzxZoo5afyM149Pvqe9R1W4gMgpJVpE3ugDslSoU2j9tEZwAMxaUBrYCzKYdEW82c4Xg7zoxgymkQ2sXCOO74Idmq6gqOCBWpj65CmqOgUeiqYFAgUEB9SR1OD0MS919cmo6K3HfEmMs-5-xeopCkF5JshTQk39aP_G15ON4afOnFuB7oKbTDBVQs2SmWfE-xhkT0SiA7NNKiDJxq9tbaX3qFkbhTffhFVVA_LCVDGIDObiKSz__j_Y7Jjl-2TUY8IVur5gFOybZ5RIE3Z2E7PAMJWg97
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+RFE-DL+and+stacking+ensemble+learning+algorithms+for+classifying+mangrove+species+on+UAV+multispectral+images&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Fu%2C+Bolin&rft.au=He%2C+Xu&rft.au=Yao%2C+Hang&rft.au=Liang%2C+Yiyin&rft.date=2022-08-01&rft.issn=1569-8432&rft.volume=112+p.102890-&rft_id=info:doi/10.1016%2Fj.jag.2022.102890&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon