Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis

Fatty acids are involved in several metabolic processes, including the development of metabolic and cardiovascular diseases. In recent years a disease that has received escalated interest is type 2 diabetes (T2D). Many contributing factors including a high-caloric diet rich in dietary saturated fats...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients Jg. 10; H. 4; S. 393
Hauptverfasser: Acosta-Montaño, Paloma, García-González, Víctor
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 22.03.2018
MDPI
Schlagworte:
ISSN:2072-6643, 2072-6643
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fatty acids are involved in several metabolic processes, including the development of metabolic and cardiovascular diseases. In recent years a disease that has received escalated interest is type 2 diabetes (T2D). Many contributing factors including a high-caloric diet rich in dietary saturated fats have been broadly characterized as triggers of T2D. Insulin resistance resulting from a high saturated fat diet leads to alterations in lipid cellular intake and accumulation which generate lipotoxic conditions, a key phenomenon in the metabolism of β-cells. Alternatively, unsaturated fatty acids have been described to show opposite effects in pancreatic β-cells. The purpose of this work is to perform a critical analysis of the complex role of saturated and unsaturated fatty acids in β-cell metabolism. We discuss the diverse effects main dietary fatty acids have upon pancreatic β-cell metabolism as a key factor to maintain homeostasis by focusing in the cellular and molecular mechanisms involved in the development and progression of T2D. For instance, modifications in protein homeostasis as well as the intracellular management of lipid metabolism which are associated with inflammatory pathways. These conditions initiate critical metabolic rearrangements, that in turn have repercussions on insulin β-cell metabolism. This review allows an integral and broad understanding of different functions of fatty acids inside β-cells, being important metabolites for novel therapeutic targets in T2D treatment.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2072-6643
2072-6643
DOI:10.3390/nu10040393