Human immunodeficiency virus reverse transcriptase. A kinetic analysis of RNA-dependent and DNA-dependent DNA polymerization

A minimal kinetic mechanism for HIV reverse transcriptase (RT)-catalyzed RNA-dependent and DNA-dependent DNA polymerization was determined by pre-steady-state kinetic methods to be: [formula: see text] where E, TP, dNTP, and PPi are RT, template-primer, 2'-deoxynucleoside 5'-triphosphate,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of biological chemistry Ročník 268; číslo 12; s. 8743
Hlavní autor: Reardon, J E
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 25.04.1993
Témata:
ISSN:0021-9258
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A minimal kinetic mechanism for HIV reverse transcriptase (RT)-catalyzed RNA-dependent and DNA-dependent DNA polymerization was determined by pre-steady-state kinetic methods to be: [formula: see text] where E, TP, dNTP, and PPi are RT, template-primer, 2'-deoxynucleoside 5'-triphosphate, and inorganic pyrophosphate, respectively. Defined sequence template-primers that encode for incorporation of dTTP were prepared by annealing either a 44-mer RNA template or a 44-mer DNA template (of the same sequence) to a 21-mer DNA primer (r44:d21-mer and d44:d21-mer, respectively). The values of the above kinetic constants were determined for dTMP and 3'-azido-3'-deoxythymidine 5'-monophosphate (AZTMP) incorporation into both template primers. The kcat and Km values calculated from these kinetic constants were similar to the values directly determined from steady-state experiments. Further, the net rate constants for processive incorporation of three successive nucleotides into the r44:d21-mer were similar indicating that a rate-determining step did not follow catalysis. A 20-fold difference in the rate constants (kp) for incorporation of dTMP into the r44:d21-mer versus the d44:d21-mer was largely responsible for the difference in the calculated processivity numbers of 340 and 5, respectively. Finally, the rate constant for pyrophosphorolysis of the 3'-AZTMP-terminated r44:d21-mer (kpyro) was similar to the rate constant for dissociation of the chain-terminated template primer from the enzyme (koff) indicating that millimolar concentrations of intracellular inorganic pyrophosphate would be required for pyrophosphorolysis of AZTMP-terminated retroviral genomes.
AbstractList A minimal kinetic mechanism for HIV reverse transcriptase (RT)-catalyzed RNA-dependent and DNA-dependent DNA polymerization was determined by pre-steady-state kinetic methods to be: [formula: see text] where E, TP, dNTP, and PPi are RT, template-primer, 2'-deoxynucleoside 5'-triphosphate, and inorganic pyrophosphate, respectively. Defined sequence template-primers that encode for incorporation of dTTP were prepared by annealing either a 44-mer RNA template or a 44-mer DNA template (of the same sequence) to a 21-mer DNA primer (r44:d21-mer and d44:d21-mer, respectively). The values of the above kinetic constants were determined for dTMP and 3'-azido-3'-deoxythymidine 5'-monophosphate (AZTMP) incorporation into both template primers. The kcat and Km values calculated from these kinetic constants were similar to the values directly determined from steady-state experiments. Further, the net rate constants for processive incorporation of three successive nucleotides into the r44:d21-mer were similar indicating that a rate-determining step did not follow catalysis. A 20-fold difference in the rate constants (kp) for incorporation of dTMP into the r44:d21-mer versus the d44:d21-mer was largely responsible for the difference in the calculated processivity numbers of 340 and 5, respectively. Finally, the rate constant for pyrophosphorolysis of the 3'-AZTMP-terminated r44:d21-mer (kpyro) was similar to the rate constant for dissociation of the chain-terminated template primer from the enzyme (koff) indicating that millimolar concentrations of intracellular inorganic pyrophosphate would be required for pyrophosphorolysis of AZTMP-terminated retroviral genomes.A minimal kinetic mechanism for HIV reverse transcriptase (RT)-catalyzed RNA-dependent and DNA-dependent DNA polymerization was determined by pre-steady-state kinetic methods to be: [formula: see text] where E, TP, dNTP, and PPi are RT, template-primer, 2'-deoxynucleoside 5'-triphosphate, and inorganic pyrophosphate, respectively. Defined sequence template-primers that encode for incorporation of dTTP were prepared by annealing either a 44-mer RNA template or a 44-mer DNA template (of the same sequence) to a 21-mer DNA primer (r44:d21-mer and d44:d21-mer, respectively). The values of the above kinetic constants were determined for dTMP and 3'-azido-3'-deoxythymidine 5'-monophosphate (AZTMP) incorporation into both template primers. The kcat and Km values calculated from these kinetic constants were similar to the values directly determined from steady-state experiments. Further, the net rate constants for processive incorporation of three successive nucleotides into the r44:d21-mer were similar indicating that a rate-determining step did not follow catalysis. A 20-fold difference in the rate constants (kp) for incorporation of dTMP into the r44:d21-mer versus the d44:d21-mer was largely responsible for the difference in the calculated processivity numbers of 340 and 5, respectively. Finally, the rate constant for pyrophosphorolysis of the 3'-AZTMP-terminated r44:d21-mer (kpyro) was similar to the rate constant for dissociation of the chain-terminated template primer from the enzyme (koff) indicating that millimolar concentrations of intracellular inorganic pyrophosphate would be required for pyrophosphorolysis of AZTMP-terminated retroviral genomes.
A minimal kinetic mechanism for HIV reverse transcriptase (RT)-catalyzed RNA-dependent and DNA-dependent DNA polymerization was determined by pre-steady-state kinetic methods to be: [formula: see text] where E, TP, dNTP, and PPi are RT, template-primer, 2'-deoxynucleoside 5'-triphosphate, and inorganic pyrophosphate, respectively. Defined sequence template-primers that encode for incorporation of dTTP were prepared by annealing either a 44-mer RNA template or a 44-mer DNA template (of the same sequence) to a 21-mer DNA primer (r44:d21-mer and d44:d21-mer, respectively). The values of the above kinetic constants were determined for dTMP and 3'-azido-3'-deoxythymidine 5'-monophosphate (AZTMP) incorporation into both template primers. The kcat and Km values calculated from these kinetic constants were similar to the values directly determined from steady-state experiments. Further, the net rate constants for processive incorporation of three successive nucleotides into the r44:d21-mer were similar indicating that a rate-determining step did not follow catalysis. A 20-fold difference in the rate constants (kp) for incorporation of dTMP into the r44:d21-mer versus the d44:d21-mer was largely responsible for the difference in the calculated processivity numbers of 340 and 5, respectively. Finally, the rate constant for pyrophosphorolysis of the 3'-AZTMP-terminated r44:d21-mer (kpyro) was similar to the rate constant for dissociation of the chain-terminated template primer from the enzyme (koff) indicating that millimolar concentrations of intracellular inorganic pyrophosphate would be required for pyrophosphorolysis of AZTMP-terminated retroviral genomes.
Author Reardon, J E
Author_xml – sequence: 1
  givenname: J E
  surname: Reardon
  fullname: Reardon, J E
  organization: Division of Experimental Therapy, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
BackLink https://www.ncbi.nlm.nih.gov/pubmed/7682554$$D View this record in MEDLINE/PubMed
BookMark eNpVUEtLxDAYzGFl3V39CQs5iR665tGm7bGsjxUWBR_nkiZfINqmNWkXKv54Cy6CcxnmwRxmiWaudYDQmpINJVRcvxDCaJSzJLuk2VXCcp5G-Qwt_uxTtAzhnUyIczpH81RkLEniBfreDY102DbN4FoNxioLTo34YP0QsIcD-AC499IF5W3XywAbXOAP66C3Cksn6zHYgFuDnx-LSEMHToPrp0Tjm3_OpHDX1mMD3n7J3rbuDJ0YWQc4P_IKvd3dvm530f7p_mFb7CMV87yPqlRwnZtKSZIIypTIYpWDEalWUmkGFGJNIeHcpEQLPh1SGc5AVFprZaRkK3Txu9v59nOA0JeNDQrqWjpoh1CmSUoJF2Qqro_FoWpAl523jfRjebyL_QCbkHBs
CitedBy_id crossref_primary_10_1016_S0300_9084_97_86734_X
crossref_primary_10_1371_journal_pone_0001389
crossref_primary_10_1096_fasebj_13_12_1511
crossref_primary_10_1074_jbc_M503444200
crossref_primary_10_1007_s00253_007_0919_7
crossref_primary_10_1038_s41467_024_54618_y
crossref_primary_10_1016_S0021_9258_19_51068_7
crossref_primary_10_1073_pnas_95_23_13471
crossref_primary_10_1128_JVI_02471_06
crossref_primary_10_1016_S0021_9258_19_61933_2
crossref_primary_10_1016_0958_1669_94_90051_5
crossref_primary_10_1016_S0301_4622_99_00049_6
crossref_primary_10_1074_jbc_M102976200
crossref_primary_10_1073_pnas_091324398
crossref_primary_10_1074_jbc_270_17_9740
crossref_primary_10_1126_science_7516580
crossref_primary_10_1128_AAC_46_5_1540_1545_2002
crossref_primary_10_1023_B_MBIL_0000043938_36981_7d
crossref_primary_10_1093_nar_gkx720
crossref_primary_10_1177_095632020101200101
crossref_primary_10_1074_jbc_271_26_15386
crossref_primary_10_1111_j_1742_4658_2011_08406_x
crossref_primary_10_1093_nar_gkn678
crossref_primary_10_1016_S0168_8278_03_00318_0
crossref_primary_10_1128_AAC_44_5_1186_1194_2000
crossref_primary_10_1128_AAC_44_12_3465_3472_2000
crossref_primary_10_1016_S0021_9258_19_61464_X
crossref_primary_10_1016_S1074_5521_99_80071_4
crossref_primary_10_1006_abio_2000_4567
crossref_primary_10_1016_j_ymeth_2010_05_001
crossref_primary_10_1016_j_biochi_2012_06_025
crossref_primary_10_1074_jbc_M102974200
crossref_primary_10_1074_jbc_273_38_24425
crossref_primary_10_1177_095632020001100301
crossref_primary_10_1016_j_febslet_2012_12_007
crossref_primary_10_1016_S0021_9258_18_46899_8
crossref_primary_10_1128_AAC_01216_09
crossref_primary_10_1021_bi9810353
crossref_primary_10_1074_jbc_273_23_14596
crossref_primary_10_1074_jbc_M108352200
crossref_primary_10_1016_S1097_2765_00_80185_9
crossref_primary_10_1021_bi990945x
crossref_primary_10_1074_jbc_275_8_5329
crossref_primary_10_1074_jbc_M002671200
crossref_primary_10_1111_j_1432_1033_1996_0098r_x
crossref_primary_10_1016_S0022_2836_02_00911_7
crossref_primary_10_1093_nar_gkx1168
crossref_primary_10_1074_jbc_274_5_2706
crossref_primary_10_1074_jbc_M110836200
crossref_primary_10_1074_jbc_273_33_21309
crossref_primary_10_1128_JVI_77_16_8621_8632_2003
crossref_primary_10_1016_S0021_9258_19_74509_8
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/S0021-9258(18)52937-9
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
ExternalDocumentID 7682554
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0R~
186
18M
2WC
3O-
53G
5BI
5GY
5RE
5VS
6TJ
79B
85S
AAEDW
AAFWJ
AALRI
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADVLN
AENEX
AEXQZ
AFFNX
AFOSN
AFPKN
AI.
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BTFSW
C1A
CGR
CJ0
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
H13
HH5
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
NPM
OHT
OK1
P-O
P0W
P2P
PKN
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
Z5M
ZGI
~02
~KM
.7T
7X8
AAYWO
ABUFD
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
ID FETCH-LOGICAL-c439t-b763d9fbca05612c684c9ef67dcacd2e1e4d1e533f70d63016bf32e6bdddcfaa2
IEDL.DBID 7X8
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.1016/s0021-9258(18)52937-9&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9258
IngestDate Wed Oct 15 14:34:16 EDT 2025
Wed Feb 19 02:28:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-b763d9fbca05612c684c9ef67dcacd2e1e4d1e533f70d63016bf32e6bdddcfaa2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/s0021-9258(18)52937-9
PMID 7682554
PQID 75710360
PQPubID 23479
ParticipantIDs proquest_miscellaneous_75710360
pubmed_primary_7682554
PublicationCentury 1900
PublicationDate 1993-04-25
PublicationDateYYYYMMDD 1993-04-25
PublicationDate_xml – month: 04
  year: 1993
  text: 1993-04-25
  day: 25
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 1993
SSID ssj0000491
Score 1.7406907
Snippet A minimal kinetic mechanism for HIV reverse transcriptase (RT)-catalyzed RNA-dependent and DNA-dependent DNA polymerization was determined by pre-steady-state...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8743
SubjectTerms Base Sequence
Diphosphates - metabolism
DNA, Viral - biosynthesis
DNA, Viral - chemistry
HIV Reverse Transcriptase
HIV-1 - enzymology
Kinetics
Molecular Sequence Data
Nucleotides - metabolism
Polymers
RNA, Viral - metabolism
RNA-Directed DNA Polymerase - metabolism
Title Human immunodeficiency virus reverse transcriptase. A kinetic analysis of RNA-dependent and DNA-dependent DNA polymerization
URI https://www.ncbi.nlm.nih.gov/pubmed/7682554
https://www.proquest.com/docview/75710360
Volume 268
WOSCitedRecordID wos10.1016/s0021-9258(18)52937-9&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7qA_Tio7VYn3sQ0cNqXt3sgiBFLV4sRRR6K5t9QFGT2taC4I93Ng-KFz14CWRDSJhsZr7ZnW8-gBMeSqU8llCpfEGjUBmahJ6mjuQohAp5oHQuNhH3enwwEP0aXFVcGFdWWfnE3FHrTLk18su4jbEwZN71-J06zSi3t1oKaCzBSohAxhV0xYNFr3DEvoVenitCCNp8wd9x_OBy8Mzn520MeTH9BWPmsaa7-b-33IKNEmOSTjEptqFm0jo0Oinm12-f5JTkVZ_5cnod1m4qxbcGfOUr-mTkKCOZNq63hCNmkvlo8jElrtfTZGrIzEW33NdgALwgHfKCQBWfRGTZ34Rkljz2OrTS153hFU1uf4zgGRlnr59uv6gggu7Ac_fu6eaeluoMVCGImdEEPZMWNlHSJSGBYjxSwlgWayWVDoxvIu0bRJM29jRDP8ISGwaGJVprZaUMmrCcZqnZBYIohfvS8phjNmiMSrhgImIyEcxa7ukWHFfWHqJJ3JaGTE32MR1W9m5Bs_hgw3HRpGOIaRRmS9Hen7fuw3pRxBjRoH0AKxZ_e3MIq2o-G00nR_mcwmOv__AN2VnYow
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+immunodeficiency+virus+reverse+transcriptase.+A+kinetic+analysis+of+RNA-dependent+and+DNA-dependent+DNA+polymerization&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Reardon%2C+J+E&rft.date=1993-04-25&rft.issn=0021-9258&rft.volume=268&rft.issue=12&rft.spage=8743&rft_id=info:doi/10.1016%2FS0021-9258%2818%2952937-9&rft_id=info%3Apmid%2F7682554&rft_id=info%3Apmid%2F7682554&rft.externalDocID=7682554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon