Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism
This graphic shows the structure of our network. In the preprocessing section, we used the Beer-Lambert law to convert the optical signals into hemodynamic HbR and HbO. We used an end-to-end structure without much preprocessing of the raw fNIRS signal. We input the signal with the number of channels...
Gespeichert in:
| Veröffentlicht in: | Neuroscience Jg. 542; S. 59 - 68 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
26.03.2024
|
| Schlagworte: | |
| ISSN: | 0306-4522, 1873-7544, 1873-7544 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This graphic shows the structure of our network. In the preprocessing section, we used the Beer-Lambert law to convert the optical signals into hemodynamic HbR and HbO. We used an end-to-end structure without much preprocessing of the raw fNIRS signal. We input the signal with the number of channels C = 24 and the number of samples T = 351. the original MI and MA signals are first passed through a convolution block. The convolution block consists of a 2D time convolution, a depth convolution, and a separable convolution, each followed by a Batch Normalization layer, an ELU activation function, an average pooling layer, and a dropout layer. Afterwards, spatio-temporal feature extraction is performed by spatial attention and temporal convolutional networks, capable of reducing overfitting. Finally, the fNIRS signal is classified as MI or MA. The results show that the method using only 3.23 K training parameters has an accuracy of 85.63% (HbO) and 86.21% (HbR) in the MI task and 96.84% (HbO) and 94.83% (HbR) in the MA task.
[Display omitted]
•fNIRS decoding performance improvement.•Using Convolutional Neural Networks for fNIRS Classification.•Spatial attention mechanisms can capture remote contextual information.•Temporal convolutional network outperforms most RNN in time-series tasks.
Brain Computer Interface (BCI) is a highly promising human–computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial–temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development. |
|---|---|
| AbstractList | This graphic shows the structure of our network. In the preprocessing section, we used the Beer-Lambert law to convert the optical signals into hemodynamic HbR and HbO. We used an end-to-end structure without much preprocessing of the raw fNIRS signal. We input the signal with the number of channels C = 24 and the number of samples T = 351. the original MI and MA signals are first passed through a convolution block. The convolution block consists of a 2D time convolution, a depth convolution, and a separable convolution, each followed by a Batch Normalization layer, an ELU activation function, an average pooling layer, and a dropout layer. Afterwards, spatio-temporal feature extraction is performed by spatial attention and temporal convolutional networks, capable of reducing overfitting. Finally, the fNIRS signal is classified as MI or MA. The results show that the method using only 3.23 K training parameters has an accuracy of 85.63% (HbO) and 86.21% (HbR) in the MI task and 96.84% (HbO) and 94.83% (HbR) in the MA task.
[Display omitted]
•fNIRS decoding performance improvement.•Using Convolutional Neural Networks for fNIRS Classification.•Spatial attention mechanisms can capture remote contextual information.•Temporal convolutional network outperforms most RNN in time-series tasks.
Brain Computer Interface (BCI) is a highly promising human–computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial–temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development. Brain Computer Interface (BCI) is a highly promising human-computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial-temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development. Brain Computer Interface (BCI) is a highly promising human-computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial-temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development.Brain Computer Interface (BCI) is a highly promising human-computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial-temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development. |
| Author | Lu, Yifan Wang, Wenlong Qin, Yuxin Shi, Xingbin Li, Baojiang Peng, Cheng |
| Author_xml | – sequence: 1 givenname: Yuxin orcidid: 0009-0004-2158-8779 surname: Qin fullname: Qin, Yuxin – sequence: 2 givenname: Baojiang orcidid: 0000-0002-7952-6691 surname: Li fullname: Li, Baojiang – sequence: 3 givenname: Wenlong surname: Wang fullname: Wang, Wenlong – sequence: 4 givenname: Xingbin surname: Shi fullname: Shi, Xingbin – sequence: 5 givenname: Cheng surname: Peng fullname: Peng, Cheng – sequence: 6 givenname: Yifan surname: Lu fullname: Lu, Yifan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38369007$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhS1URKeFV0AWKzYJ_onzw4p2aKFSKRJD15bj3Ew9TeypnbT0FXhqnJkpqroab64ln_PZOsdH6MA6Cwh9oCSlhOafVqmF0bugDVgNKSMsSwlLCaWv0IyWBU8KkWUHaEY4yZNMMHaIjkJYkbhExt-gQ17yvCKkmKG_806FYFqj1WCcxSfd0nkz3PS4dR63Vxe_FkmtAjT41Ctj8cIsreoCvg7GLvHc2XvXjZNTdfgqvmozhgfnb_FDxODFeuIO0K_ddHYOahg94LM_g1d6c-MP0DfKmtC_Ra_biIZ3u3mMrs_Pfs-_J5c_v13MTy4TnfFqSFStykaIUpdFS1gNba7LrOaZolUFtMpB64ZXTHFBWZYJLSoudF6X05ZSkvNj9HHLXXt3N0IYZG-Chq5TFtwYJKtYKcqcFyJK3--kY91DI9fe9Mo_yqf8ouDzVqBjH8FD-19CiZzKkiv5vCw5lSUJk7GsaP7ywqzNsKkhhmO6_RBftwiIgd0b8HKnaowHPcjGmf0wpy8wujM2_onuFh73hfwDiT3TRQ |
| CitedBy_id | crossref_primary_10_1016_j_apacoust_2024_110307 crossref_primary_10_1109_TTS_2025_3556355 crossref_primary_10_3390_s24103040 crossref_primary_10_1111_coin_70044 crossref_primary_10_3390_electronics14051025 crossref_primary_10_3390_e27010014 crossref_primary_10_1016_j_bspc_2025_107503 crossref_primary_10_1371_journal_pone_0325850 |
| Cites_doi | 10.1109/TNSRE.2016.2628057 10.1007/s10015-020-00592-9 10.1155/2016/5480760 10.1109/TIP.2019.2921876 10.1109/TBME.2021.3132861 10.1016/j.neuroimage.2013.03.045 10.1016/j.neuroimage.2013.05.004 10.1117/1.NPh.9.4.041411 10.3389/fnhum.2016.00237 10.3390/app10051681 10.1109/TNSRE.2019.2956488 10.48084/etasr.5703 10.1016/j.compbiomed.2019.103355 10.1109/JSEN.2022.3205956 10.1002/jdn.10166 10.1109/ACCESS.2022.3218374 10.1111/nyas.13948 10.1088/1741-2552/aace8c 10.1016/B978-0-323-48067-3.00006-8 10.1016/j.cmpb.2020.105535 10.1007/s00221-013-3764-1 10.1093/brain/awr039 10.1117/1.JBO.21.9.091303 10.34133/cbsystems.0045 10.1007/s00500-020-04954-0 10.1016/j.neuroimage.2013.06.062 |
| ContentType | Journal Article |
| Copyright | 2024 IBRO Copyright © 2024 IBRO. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 IBRO – notice: Copyright © 2024 IBRO. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.neuroscience.2024.02.011 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1873-7544 |
| EndPage | 68 |
| ExternalDocumentID | 38369007 10_1016_j_neuroscience_2024_02_011 S0306452224000617 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- ~HD AACTN AADPK AAIAV ABMYL ABYKQ AFCTW AFKWA AJOXV AMFUW RIG SEW .55 .GJ 29N 53G 5VS 9DU AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AGHFR AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SNS WUQ X7M YYP ZGI ZXP AGCQF AGRNS BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c439t-aba8d558c87f02bef6c84b34a199e196eccd392a3512445c5935c6b845c511063 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236898600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-4522 1873-7544 |
| IngestDate | Wed Oct 01 07:41:45 EDT 2025 Mon Jul 21 06:04:11 EDT 2025 Sat Nov 29 07:20:52 EST 2025 Tue Nov 18 22:11:16 EST 2025 Sat Mar 23 16:29:10 EDT 2024 Tue Oct 14 19:26:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | spatial attention fNIRS EEG temporal convolutional network DL LDA motor imagery BCI SVM deep learning fMRI MA brain computer interface MI TCN ML |
| Language | English |
| License | Copyright © 2024 IBRO. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c439t-aba8d558c87f02bef6c84b34a199e196eccd392a3512445c5935c6b845c511063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0004-2158-8779 0000-0002-7952-6691 |
| PMID | 38369007 |
| PQID | 2928586375 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2928586375 pubmed_primary_38369007 crossref_primary_10_1016_j_neuroscience_2024_02_011 crossref_citationtrail_10_1016_j_neuroscience_2024_02_011 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2024_02_011 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2024_02_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-26 |
| PublicationDateYYYYMMDD | 2024-03-26 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuroscience |
| PublicationTitleAlternate | Neuroscience |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Aydin (b0005) 2020; 195 Janani, Sasikala, Chhabra, Shajil, Venkatasubramanian (b0075) 2020; 62 Milu, Rahman, Rashid, Kobayashi (b0100) 2023; 13 Xin, Chen, Li (b0175) 2020; 10 Obrig (b0125) 2014; 85 Wang, Girshick, Gupta, He (b0170) 2018 Si, He, Yu, Ming (b0160) 2023; 4 Naseer, Noori, Qureshi, Hong (b0115) 2016; 10 He, Zhong, PanHe (b0050) 2022 Naseer, Hong, Hong (b0110) 2014; 232 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0090) 2018; 15 Hong, Ghafoor, Khan (b0060) 2020; 25 Liu, Qin, Cao, Deng (b0095) 2022; 10 Naseer, Qureshi, Noori, Hong (b0120) 2016 Sanghyun, Jongchan, Joon-Young, In (b0145) 2018 Wang, Wu, Tao, Lee, Cao, Yan, Wang (b0165) 2023 Guo, Wang, Yang, Kang (b0040) 2021 Zheng, Fu, Luo, Mei (b0195) 2020; 29 Pinti, Tachtsidis, Hamilton, Hirsch, Aichelburg, Gilbert, Burgess (b0130) 2020; 1464 Zabcikova, Koudelkova, Jasek, Navarro (b0190) 2022; 82 Hewage, Behera, Trovati, Pereira, Ghahremani, Palmieri, Liu (b0055) 2020; 24 Dashtestani, Zaragoza, Kermanian, Condy, Anderson, Chowdhry, Karamzadeh, Miguel (b0025) 2019 Ghafoor, Zafar, Yaqub, Hong (b0035) 2019 Chen, Lin, Dong Liang, Zhang, Iwamoto, Han, Chen (b0010) 2019 Mughal, Khalil, Khan (b0105) 2021 Shin, Lühmann, Blankertz, Kim, Jeong, Hwang, Müller (b0155) 2016; 25 Xu, Chang, Xie, Ma (b0180) 2021 Cooney, Folli, Coyle (b0015) 2021; 69 Eastmond, Subedi, De, Intes (b0030) 2022; 9 Jin, Li, Daly, Miao, Liu, Wang, Cichocki (b0080) 2019; 28 Yoo, Woo, Amad (b0185) 2018 Jin, Wang, Xu, Liu, Wang, Cichocki (b0085) 2021 Hwang, Choi, Kim, Chang, Kim, Kim, Jo, Im (b0070) 2016; 21 Piper, Krueger, Koch, Mehnert, Habermehl, Steinbrink, Obrig, Schmitz (b0135) 2014; 85 Cramer, Sur, Dobkin, O'Brien, Sanger, Trojanowski, Rumsey, Hicks (b0020) 2011; 134 Hu, Shen, Sun (b0065) 2018 He, Feng, Jiang, Xie (b0045) 2022; 22 Scholkmann, KleiserS, Zimmermann, Pavia, Wolf, Wolf (b0150) 2014; 85 Rosas-Romero, Guevara, Peng, Nguyen, Lesage, Pouliot (b0140) 2019; 111 Rosas-Romero (10.1016/j.neuroscience.2024.02.011_b0140) 2019; 111 Aydin (10.1016/j.neuroscience.2024.02.011_b0005) 2020; 195 He (10.1016/j.neuroscience.2024.02.011_b0050) 2022 Cramer (10.1016/j.neuroscience.2024.02.011_b0020) 2011; 134 Hwang (10.1016/j.neuroscience.2024.02.011_b0070) 2016; 21 Wang (10.1016/j.neuroscience.2024.02.011_b0165) 2023 Sanghyun (10.1016/j.neuroscience.2024.02.011_b0145) 2018 Guo (10.1016/j.neuroscience.2024.02.011_b0040) 2021 Pinti (10.1016/j.neuroscience.2024.02.011_b0130) 2020; 1464 Janani (10.1016/j.neuroscience.2024.02.011_b0075) 2020; 62 Mughal (10.1016/j.neuroscience.2024.02.011_b0105) 2021 Yoo (10.1016/j.neuroscience.2024.02.011_b0185) 2018 Liu (10.1016/j.neuroscience.2024.02.011_b0095) 2022; 10 Obrig (10.1016/j.neuroscience.2024.02.011_b0125) 2014; 85 Si (10.1016/j.neuroscience.2024.02.011_b0160) 2023; 4 Hu (10.1016/j.neuroscience.2024.02.011_b0065) 2018 Eastmond (10.1016/j.neuroscience.2024.02.011_b0030) 2022; 9 Milu (10.1016/j.neuroscience.2024.02.011_b0100) 2023; 13 Zabcikova (10.1016/j.neuroscience.2024.02.011_b0190) 2022; 82 Hong (10.1016/j.neuroscience.2024.02.011_b0060) 2020; 25 Scholkmann (10.1016/j.neuroscience.2024.02.011_b0150) 2014; 85 Zheng (10.1016/j.neuroscience.2024.02.011_b0195) 2020; 29 Xin (10.1016/j.neuroscience.2024.02.011_b0175) 2020; 10 Cooney (10.1016/j.neuroscience.2024.02.011_b0015) 2021; 69 Piper (10.1016/j.neuroscience.2024.02.011_b0135) 2014; 85 Naseer (10.1016/j.neuroscience.2024.02.011_b0120) 2016 He (10.1016/j.neuroscience.2024.02.011_b0045) 2022; 22 Lawhern (10.1016/j.neuroscience.2024.02.011_b0090) 2018; 15 Naseer (10.1016/j.neuroscience.2024.02.011_b0115) 2016; 10 Wang (10.1016/j.neuroscience.2024.02.011_b0170) 2018 Jin (10.1016/j.neuroscience.2024.02.011_b0080) 2019; 28 Naseer (10.1016/j.neuroscience.2024.02.011_b0110) 2014; 232 Jin (10.1016/j.neuroscience.2024.02.011_b0085) 2021 Hewage (10.1016/j.neuroscience.2024.02.011_b0055) 2020; 24 Shin (10.1016/j.neuroscience.2024.02.011_b0155) 2016; 25 Ghafoor (10.1016/j.neuroscience.2024.02.011_b0035) 2019 Chen (10.1016/j.neuroscience.2024.02.011_b0010) 2019 Dashtestani (10.1016/j.neuroscience.2024.02.011_b0025) 2019 Xu (10.1016/j.neuroscience.2024.02.011_b0180) 2021 |
| References_xml | – volume: 111 year: 2019 ident: b0140 article-title: Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals publication-title: Comput Biol Med – volume: 21 year: 2016 ident: b0070 article-title: Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy publication-title: J Biomed Opt – volume: 22 start-page: 20695 year: 2022 end-page: 20706 ident: b0045 article-title: Multimodal multitask neural network for motor imagery classification with EEG and fNIRS signals publication-title: IEEE Sens J – volume: 10 start-page: 237 year: 2016 ident: b0115 article-title: Determining optimal feature-combination for LDA classification of functional near-infrared spectroscopy signals in brain-computer interface application publication-title: Front Hum Neurosci – volume: 85 start-page: 6 year: 2014 end-page: 27 ident: b0150 article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology publication-title: Neuroimage – year: 2016 ident: b0120 article-title: Analysis of different classification techniques for two-class functional near-infrared spectroscopy-based brain-computer interface publication-title: Computat Intell Neurosci – start-page: 3 year: 2018 end-page: 19 ident: b0145 article-title: Cbam: Convolutional block attention module publication-title: Proceedings of the European conference on computer vision (ECCV) – volume: 69 start-page: 1983 year: 2021 end-page: 1994 ident: b0015 article-title: A bimodal deep learning architecture for EEG-fNIRS decoding of overt and imagined speech publication-title: IEEE Trans Biomed Eng – volume: 25 start-page: 204 year: 2020 end-page: 218 ident: b0060 article-title: Brain-machine interfaces using functional near-infrared spectroscopy: a review publication-title: Artif Life Robot – volume: 85 start-page: 64 year: 2014 end-page: 71 ident: b0135 article-title: A wearable multi-channel fNIRS system for brain imaging in freely moving subjects publication-title: Neuroimage – year: 2021 ident: b0040 article-title: IEEG-TCN: A Concise and Robust Temporal Convolutional Network for Intracranial Electroencephalogram Signal Identification publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – volume: 1464 start-page: 5 year: 2020 end-page: 29 ident: b0130 article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience publication-title: Ann N Y Acad Sci – volume: 82 start-page: 107 year: 2022 end-page: 123 ident: b0190 article-title: Recent advances and current trends in brain-computer interface research and their applications publication-title: Int J Dev Neurosci – year: 2021 ident: b0180 article-title: Grad-CAM guided channel-spatial attention module for fine-grained visual classification publication-title: 2021 IEEE 31st international workshop on machine learning for signal Processing (MLSP) – volume: 62 year: 2020 ident: b0075 article-title: Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications publication-title: Biomed Signal Process Control – year: 2023 ident: b0165 article-title: The diagnosis of major depressive disorder through wearable fNIRS by using wavelet transform and parallel-CNN feature fusion publication-title: IEEE Trans Instrum Meas – year: 2018 ident: b0185 article-title: Classification of three categories from prefrontal cortex using LSTM networks: fNIRS study publication-title: 2018 18th International Conference on Control, Automation and Systems (ICCAS) – volume: 195 year: 2020 ident: b0005 article-title: Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces publication-title: Comput Methods Programs Biomed – start-page: 123 year: 2019 end-page: 136 ident: b0025 article-title: The quest for functional biomarkers in the prefrontal cortex using functional near-infrared spectroscopy (fNIRS) publication-title: Neurophoton Biomed Spectrosc – year: 2021 ident: b0085 article-title: Robust similarity measurement based on a novel time filter for SSVEPs detection publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2022 ident: b0050 article-title: Joint temporal convolutional networks and adversarial discriminative domain adaptation for EEG-based cross-subject emotion recognition publication-title: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 13 start-page: 10425 year: 2023 end-page: 10431 ident: b0100 article-title: Improvement of classification accuracy of four-class voluntary-imagery fNIRS signals using convolutional neural networks publication-title: Eng Technol Appl Sci Res – year: 2021 ident: b0105 article-title: fNIRS based multi-class mental workload classification using recurrence plots and CNN-LSTM publication-title: 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS) – start-page: 7794 year: 2018 end-page: 7803 ident: b0170 article-title: Non-local neural networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) – volume: 29 start-page: 476 year: 2020 end-page: 488 ident: b0195 article-title: Learning rich part hierarchies with progressive attention networks for fine-grained image recognition publication-title: IEEE Trans Image Process – volume: 10 start-page: 115945 year: 2022 end-page: 115957 ident: b0095 article-title: Short-term load forecasting based on improved TCN and DenseNet publication-title: IEEE Access – year: 2019 ident: b0035 article-title: Enhancement in classification accuracy of motor imagery signals with visual aid: An fNIRS-BCI Study publication-title: 2019 19th International Conference on Control, Automation and Systems (ICCAS) – volume: 25 start-page: 1735 year: 2016 end-page: 1745 ident: b0155 article-title: Open access dataset for EEG+NIRS single-trial classification publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 28 start-page: 3 year: 2019 end-page: 12 ident: b0080 article-title: The study of generic model set for reducing calibration time in P300-based brain–computer interface publication-title: IEEE Trans Neural Syst Rehabil Eng – year: 2018 ident: b0065 article-title: Squeeze-and-excitation networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 9 year: 2022 ident: b0030 article-title: Deep learning in fNIRS: a review publication-title: Neurophotonics – volume: 232 start-page: 555 year: 2014 end-page: 564 ident: b0110 article-title: Online binary decision decoding using functional near-infrared spectroscopy for the development of brain–computer interface publication-title: Exp Brain Res – volume: 134 start-page: 1591 year: 2011 end-page: 1609 ident: b0020 article-title: Harnessing neuroplasticity for clinical applications publication-title: Brain – volume: 15 year: 2018 ident: b0090 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J Neural Eng – year: 2019 ident: b0010 article-title: A dual-attention dilated residual network for liver lesion classification and localization on CT images publication-title: 2019 IEEE International Conference on Image Processing (ICIP) – volume: 85 start-page: 535 year: 2014 end-page: 546 ident: b0125 article-title: NIRS in clinical neurology-a ‘promising’ tool? publication-title: Neuroimage – volume: 4 start-page: 0045 year: 2023 ident: b0160 article-title: Cross-subject emotion recognition brain-computer interface based on fNIRS and DBJNet publication-title: Cyborg Bionic Syst – volume: 24 start-page: 16453 year: 2020 end-page: 16482 ident: b0055 article-title: Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station publication-title: Soft Comput – volume: 10 start-page: 1681 year: 2020 ident: b0175 article-title: Fine-grained butterfly classification in ecological images using squeeze-and-excitation and spatial attention modules publication-title: Appl Sci – volume: 25 start-page: 1735 issue: 10 year: 2016 ident: 10.1016/j.neuroscience.2024.02.011_b0155 article-title: Open access dataset for EEG+NIRS single-trial classification publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2628057 – year: 2021 ident: 10.1016/j.neuroscience.2024.02.011_b0180 article-title: Grad-CAM guided channel-spatial attention module for fine-grained visual classification – year: 2019 ident: 10.1016/j.neuroscience.2024.02.011_b0010 article-title: A dual-attention dilated residual network for liver lesion classification and localization on CT images – volume: 25 start-page: 204 year: 2020 ident: 10.1016/j.neuroscience.2024.02.011_b0060 article-title: Brain-machine interfaces using functional near-infrared spectroscopy: a review publication-title: Artif Life Robot doi: 10.1007/s10015-020-00592-9 – year: 2016 ident: 10.1016/j.neuroscience.2024.02.011_b0120 article-title: Analysis of different classification techniques for two-class functional near-infrared spectroscopy-based brain-computer interface publication-title: Computat Intell Neurosci doi: 10.1155/2016/5480760 – volume: 29 start-page: 476 year: 2020 ident: 10.1016/j.neuroscience.2024.02.011_b0195 article-title: Learning rich part hierarchies with progressive attention networks for fine-grained image recognition publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2921876 – volume: 69 start-page: 1983 issue: 6 year: 2021 ident: 10.1016/j.neuroscience.2024.02.011_b0015 article-title: A bimodal deep learning architecture for EEG-fNIRS decoding of overt and imagined speech publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2021.3132861 – volume: 85 start-page: 535 year: 2014 ident: 10.1016/j.neuroscience.2024.02.011_b0125 article-title: NIRS in clinical neurology-a ‘promising’ tool? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.045 – volume: 85 start-page: 6 year: 2014 ident: 10.1016/j.neuroscience.2024.02.011_b0150 article-title: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.004 – volume: 9 issue: 4 year: 2022 ident: 10.1016/j.neuroscience.2024.02.011_b0030 article-title: Deep learning in fNIRS: a review publication-title: Neurophotonics doi: 10.1117/1.NPh.9.4.041411 – volume: 10 start-page: 237 year: 2016 ident: 10.1016/j.neuroscience.2024.02.011_b0115 article-title: Determining optimal feature-combination for LDA classification of functional near-infrared spectroscopy signals in brain-computer interface application publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2016.00237 – volume: 10 start-page: 1681 issue: 5 year: 2020 ident: 10.1016/j.neuroscience.2024.02.011_b0175 article-title: Fine-grained butterfly classification in ecological images using squeeze-and-excitation and spatial attention modules publication-title: Appl Sci doi: 10.3390/app10051681 – volume: 28 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.neuroscience.2024.02.011_b0080 article-title: The study of generic model set for reducing calibration time in P300-based brain–computer interface publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2019.2956488 – volume: 13 start-page: 10425 issue: 2 year: 2023 ident: 10.1016/j.neuroscience.2024.02.011_b0100 article-title: Improvement of classification accuracy of four-class voluntary-imagery fNIRS signals using convolutional neural networks publication-title: Eng Technol Appl Sci Res doi: 10.48084/etasr.5703 – start-page: 3 year: 2018 ident: 10.1016/j.neuroscience.2024.02.011_b0145 article-title: Cbam: Convolutional block attention module – volume: 62 year: 2020 ident: 10.1016/j.neuroscience.2024.02.011_b0075 article-title: Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications publication-title: Biomed Signal Process Control – volume: 111 year: 2019 ident: 10.1016/j.neuroscience.2024.02.011_b0140 article-title: Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103355 – volume: 22 start-page: 20695 issue: 21 year: 2022 ident: 10.1016/j.neuroscience.2024.02.011_b0045 article-title: Multimodal multitask neural network for motor imagery classification with EEG and fNIRS signals publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3205956 – volume: 82 start-page: 107 issue: 2 year: 2022 ident: 10.1016/j.neuroscience.2024.02.011_b0190 article-title: Recent advances and current trends in brain-computer interface research and their applications publication-title: Int J Dev Neurosci doi: 10.1002/jdn.10166 – volume: 10 start-page: 115945 year: 2022 ident: 10.1016/j.neuroscience.2024.02.011_b0095 article-title: Short-term load forecasting based on improved TCN and DenseNet publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3218374 – volume: 1464 start-page: 5 issue: 1 year: 2020 ident: 10.1016/j.neuroscience.2024.02.011_b0130 article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience publication-title: Ann N Y Acad Sci doi: 10.1111/nyas.13948 – year: 2018 ident: 10.1016/j.neuroscience.2024.02.011_b0185 article-title: Classification of three categories from prefrontal cortex using LSTM networks: fNIRS study – year: 2021 ident: 10.1016/j.neuroscience.2024.02.011_b0085 article-title: Robust similarity measurement based on a novel time filter for SSVEPs detection – year: 2023 ident: 10.1016/j.neuroscience.2024.02.011_b0165 article-title: The diagnosis of major depressive disorder through wearable fNIRS by using wavelet transform and parallel-CNN feature fusion publication-title: IEEE Trans Instrum Meas – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.neuroscience.2024.02.011_b0090 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J Neural Eng doi: 10.1088/1741-2552/aace8c – start-page: 123 year: 2019 ident: 10.1016/j.neuroscience.2024.02.011_b0025 article-title: The quest for functional biomarkers in the prefrontal cortex using functional near-infrared spectroscopy (fNIRS) publication-title: Neurophoton Biomed Spectrosc doi: 10.1016/B978-0-323-48067-3.00006-8 – start-page: 7794 year: 2018 ident: 10.1016/j.neuroscience.2024.02.011_b0170 article-title: Non-local neural networks – volume: 195 year: 2020 ident: 10.1016/j.neuroscience.2024.02.011_b0005 article-title: Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105535 – year: 2022 ident: 10.1016/j.neuroscience.2024.02.011_b0050 article-title: Joint temporal convolutional networks and adversarial discriminative domain adaptation for EEG-based cross-subject emotion recognition – volume: 232 start-page: 555 year: 2014 ident: 10.1016/j.neuroscience.2024.02.011_b0110 article-title: Online binary decision decoding using functional near-infrared spectroscopy for the development of brain–computer interface publication-title: Exp Brain Res doi: 10.1007/s00221-013-3764-1 – volume: 134 start-page: 1591 issue: 6 year: 2011 ident: 10.1016/j.neuroscience.2024.02.011_b0020 article-title: Harnessing neuroplasticity for clinical applications publication-title: Brain doi: 10.1093/brain/awr039 – year: 2021 ident: 10.1016/j.neuroscience.2024.02.011_b0105 article-title: fNIRS based multi-class mental workload classification using recurrence plots and CNN-LSTM – year: 2021 ident: 10.1016/j.neuroscience.2024.02.011_b0040 article-title: IEEG-TCN: A Concise and Robust Temporal Convolutional Network for Intracranial Electroencephalogram Signal Identification – volume: 21 issue: 9 year: 2016 ident: 10.1016/j.neuroscience.2024.02.011_b0070 article-title: Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy publication-title: J Biomed Opt doi: 10.1117/1.JBO.21.9.091303 – year: 2019 ident: 10.1016/j.neuroscience.2024.02.011_b0035 article-title: Enhancement in classification accuracy of motor imagery signals with visual aid: An fNIRS-BCI Study – year: 2018 ident: 10.1016/j.neuroscience.2024.02.011_b0065 article-title: Squeeze-and-excitation networks – volume: 4 start-page: 0045 year: 2023 ident: 10.1016/j.neuroscience.2024.02.011_b0160 article-title: Cross-subject emotion recognition brain-computer interface based on fNIRS and DBJNet publication-title: Cyborg Bionic Syst doi: 10.34133/cbsystems.0045 – volume: 24 start-page: 16453 year: 2020 ident: 10.1016/j.neuroscience.2024.02.011_b0055 article-title: Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station publication-title: Soft Comput doi: 10.1007/s00500-020-04954-0 – volume: 85 start-page: 64 year: 2014 ident: 10.1016/j.neuroscience.2024.02.011_b0135 article-title: A wearable multi-channel fNIRS system for brain imaging in freely moving subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.06.062 |
| SSID | ssj0000543 |
| Score | 2.490284 |
| Snippet | This graphic shows the structure of our network. In the preprocessing section, we used the Beer-Lambert law to convert the optical signals into hemodynamic HbR... Brain Computer Interface (BCI) is a highly promising human-computer interaction method that can utilize brain signals to control external devices. BCI based on... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 59 |
| SubjectTerms | brain computer interface deep learning motor imagery spatial attention temporal convolutional network |
| Title | Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452224000617 https://dx.doi.org/10.1016/j.neuroscience.2024.02.011 https://www.ncbi.nlm.nih.gov/pubmed/38369007 https://www.proquest.com/docview/2928586375 |
| Volume | 542 |
| WOSCitedRecordID | wos001236898600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7544 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000543 issn: 0306-4522 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuCFge5bEyEuKyCsrGcWILcahQEYugAroL5RTZeZRU2WTVTavyF_gx_EbGjyQtqKIgcUkjR7bszmfP2J75BqEnMvOzWATSoZLEji-F67AgS5wsFeQYRE64juP-9DYcjdhkwt_3ej-aWJhlEZYlW634xX8VNZSBsFXo7F-Iu20UCuAdhA5PEDs8dxK8TnOpHICMaAfFtJrn9ddz7VCYjU4-jh2luhIQq8hhcudTTaF8Zj0AyqXtHchOMXfoH-0qbs5sx9oF2zJaFUfKhFR3EMNVPbdpx9-lKpq4oSacNfRQLW9mC6UPhr_gy2KVd45BubkFqWaA22l33G-WpM9pWVRd8VhnJD6aQM-lbcIeYHi-8uAyUfJN4JYbOIrYfX1RpoZzyy6rljTcKGiThue3pd-cQsyerfGAKhpUz9ecrHZF3-Db_kUPtt6JjePbLFpvK1JtRa4XuSqUfN8LKQdFsD84GU7edLqfGj_NZkgNza32KNzWs20m0bYtjzZ9Tm-g63bPggcGazdRLy1voYNBKerq_Bt-irUXsb6eOUDfN-GHW_hhgB9egx_W8MMWfljDD2_ADxv4YQs_rOCHN-GHLfxwBz_cwu82Ons1PH352rH5PpwYzOLaEVKwhFIWszBzPZlmQcx8SXxxzHkKmgJWmwTMeUGoMkppTDmhcSCZegUrNiB30F5Zlek9hBPPJYmIhZvAZ0mpTKibhG7KU5-7Qrp9xJu_PIotGb7KyVJEfxZ-H5G27oWhhNmp1vNGslET9AxqOgL47lT7RVvbfjYm7871HzdgikB_qEtBUabV4jLyuMcoC0hI--iuQVk7KsJIwGETcf-fRvwAXeum-0O0V88X6SN0NV7W-eX8EF0JJ-zQzp-fT9UAKQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+Algorithm+for+fNIRS-based+Brain+Signals+Using+Convolutional+Neural+Network+with+Spatiotemporal+Feature+Extraction+Mechanism&rft.jtitle=Neuroscience&rft.au=Qin%2C+Yuxin&rft.au=Li%2C+Baojiang&rft.au=Wang%2C+Wenlong&rft.au=Shi%2C+Xingbin&rft.date=2024-03-26&rft.issn=0306-4522&rft.volume=542&rft.spage=59&rft.epage=68&rft_id=info:doi/10.1016%2Fj.neuroscience.2024.02.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroscience_2024_02_011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |