Urban Road Lane Number Mining from Low-Frequency Floating Car Data Based on Deep Learning

Lane-level road information is especially crucial now that high-precision navigation maps are in more demand. Road information may be obtained rapidly and affordably by mining floating vehicle data (FCD). A method is proposed to extract the number of lanes on urban roads by combining deep learning a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISPRS international journal of geo-information Ročník 12; číslo 11; s. 467
Hlavní autoři: Li, Xiaolong, Zhang, Yun, Xiang, Longgang, Wu, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2023
Témata:
ISSN:2220-9964, 2220-9964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lane-level road information is especially crucial now that high-precision navigation maps are in more demand. Road information may be obtained rapidly and affordably by mining floating vehicle data (FCD). A method is proposed to extract the number of lanes on urban roads by combining deep learning and low-frequency FCD. Initially, the FCD is cleaned using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering technique. Then, the FCD is split into three categories based on the typical urban road types: one-way one-lane, one-way two-lane, and one-way three-lane, and the deep learning sample data is created using segmentation, rotation, and gridding. Lastly, the number of urban road lanes is obtained by training and predicting the sample data using the LeNet-5 model. The number of urban road lanes was effectively identified from the low-frequency FCD with a detection accuracy of 92.7% through the cleaning and classification of Wuhan FCD. Urban roads can be efficiently covered by the FCD on a regular basis, and lane information can be efficiently collected using deep learning techniques. This method can be used to generate and update lane number information for high-precision navigation maps.
AbstractList Lane-level road information is especially crucial now that high-precision navigation maps are in more demand. Road information may be obtained rapidly and affordably by mining floating vehicle data (FCD). A method is proposed to extract the number of lanes on urban roads by combining deep learning and low-frequency FCD. Initially, the FCD is cleaned using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering technique. Then, the FCD is split into three categories based on the typical urban road types: one-way one-lane, one-way two-lane, and one-way three-lane, and the deep learning sample data is created using segmentation, rotation, and gridding. Lastly, the number of urban road lanes is obtained by training and predicting the sample data using the LeNet-5 model. The number of urban road lanes was effectively identified from the low-frequency FCD with a detection accuracy of 92.7% through the cleaning and classification of Wuhan FCD. Urban roads can be efficiently covered by the FCD on a regular basis, and lane information can be efficiently collected using deep learning techniques. This method can be used to generate and update lane number information for high-precision navigation maps.
Audience Academic
Author Xiang, Longgang
Wu, Tao
Li, Xiaolong
Zhang, Yun
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Li
  fullname: Li, Xiaolong
– sequence: 2
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
– sequence: 3
  givenname: Longgang
  orcidid: 0000-0001-9022-6991
  surname: Xiang
  fullname: Xiang, Longgang
– sequence: 4
  givenname: Tao
  surname: Wu
  fullname: Wu, Tao
BookMark eNptUV1rFDEUDVLB2vbNHxDwxQen5msyyWPdulqYWij2wadwJx9LlplkzcxS-u_NuiKlmDzkcnPOuZx73qKTlJNH6B0ll5xr8iluN5EySomQ3St0yhgjjdZSnDyr36CLed6SejTlSpBT9POhDJDwfQaHe0gef99Pgy_4NqaYNjiUPOE-Pzbr4n_tfbJPeD1mWA5_Kyj4GhbAn2H2DueEr73f4d5DOXDP0esA4-wv_r5n6GH95cfqW9Pffb1ZXfWNFVwvDTCphRvABUlDkEpxkF5TxQapB00pWAp0IL61lHEhiXTCQhharZwOWnF-hm6Oui7D1uxKnKA8mQzR_GnksjFQlmhHb7oh2LZjlAnRic61yjvNBtFqrkAQravWh6PWruRqd17MFGfrx7FuJu9nw4kgdW-athX6_gV0m_clVaeGKc2JJIqJiro8ojZQ58cU8lLA1uv8FG0NMMTav-o6wRmtnEr4eCTYkue5-PDPESXmkLN5nnOFsxdwG5caT051Thz_T_oNirypuA
CitedBy_id crossref_primary_10_1109_JSTARS_2025_3548688
crossref_primary_10_3390_ijgi13030104
Cites_doi 10.3390/ijgi7080317
10.1109/TITS.2020.3040728
10.1109/5.726791
10.1007/978-3-319-11740-9_34
10.3390/ijgi4042660
10.1145/2424321.2424333
10.1016/j.trc.2018.02.007
10.1145/1869790.1869805
10.1007/s00138-011-0404-2
10.1016/j.trc.2021.103234
10.1109/TITS.2016.2521482
10.1109/TITS.2022.3222504
10.1080/13658816.2015.1092151
10.1080/13658816.2017.1402913
10.3390/su11164511
10.1109/ITSC.2013.6728262
10.1016/j.artint.2014.02.004
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/ijgi12110467
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_7bfc5721244747d58ed92b45938a4099
A774321060
10_3390_ijgi12110467
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c439t-a2694dbadf61ff6883a6e9182b69b911ac1a1b0e5c1234606d4cafb598d9f9833
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001118352100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2220-9964
IngestDate Fri Oct 03 12:50:33 EDT 2025
Sun Nov 09 10:24:53 EST 2025
Fri Jul 25 09:34:43 EDT 2025
Tue Nov 04 18:32:22 EST 2025
Sat Nov 29 07:11:27 EST 2025
Tue Nov 18 19:49:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-a2694dbadf61ff6883a6e9182b69b911ac1a1b0e5c1234606d4cafb598d9f9833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9022-6991
OpenAccessLink https://doaj.org/article/7bfc5721244747d58ed92b45938a4099
PQID 2893060824
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_7bfc5721244747d58ed92b45938a4099
proquest_miscellaneous_3040384915
proquest_journals_2893060824
gale_infotracacademiconefile_A774321060
crossref_primary_10_3390_ijgi12110467
crossref_citationtrail_10_3390_ijgi12110467
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tang (ref_12) 2017; 42
Zhao (ref_2) 2018; 1
ref_14
Arman (ref_15) 2021; 129
Lecun (ref_27) 1998; 86
ref_30
Li (ref_6) 2020; 6
Zhang (ref_26) 2020; 38
ref_19
Kuntzsch (ref_20) 2016; 30
Tang (ref_11) 2016; 17
Zhou (ref_18) 2023; 24
Tang (ref_10) 2016; 29
Qu (ref_25) 2019; 11
Tang (ref_9) 2015; 4
Yang (ref_3) 2016; 53
ref_24
Fan (ref_17) 2022; 33
ref_23
ref_22
ref_21
Baldi (ref_31) 2014; 210
ref_29
ref_28
Shu (ref_16) 2022; 23
Lerner (ref_1) 2014; 25
ref_8
Yang (ref_4) 2018; 89
ref_5
ref_7
Yang (ref_13) 2018; 32
References_xml – volume: 1
  start-page: 97
  year: 2018
  ident: ref_2
  article-title: An Improved Map Matching Algorithm for Floating Car
  publication-title: Bull. Surv. Mapp.
– ident: ref_28
– ident: ref_14
  doi: 10.3390/ijgi7080317
– volume: 23
  start-page: 4049
  year: 2022
  ident: ref_16
  article-title: Efficient Lane-Level Map Building via Vehicle-Based Crowdsourcing
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3040728
– ident: ref_30
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_27
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_29
  doi: 10.1007/978-3-319-11740-9_34
– ident: ref_24
– volume: 4
  start-page: 2660
  year: 2015
  ident: ref_9
  article-title: Lane-Level Road Information Mining from Vehicle GPS Trajectories Based on Naïve Bayesian Classification
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4042660
– ident: ref_19
  doi: 10.1145/2424321.2424333
– volume: 89
  start-page: 168
  year: 2018
  ident: ref_4
  article-title: Generating lane-based intersection maps from crowdsourcing big trace data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.02.007
– volume: 29
  start-page: 116
  year: 2016
  ident: ref_10
  article-title: Traffic Line Numbers Detection Based on the Naïve Bayesian Classification
  publication-title: China J. Highw. Transp.
– volume: 11
  start-page: 89
  year: 2019
  ident: ref_25
  article-title: Application of DBSCAN Clustering and Improved Bilateral Filtering Algorithm in Point Cloud Denoising
  publication-title: Bull. Surv. Mapp.
– volume: 6
  start-page: 22
  year: 2020
  ident: ref_6
  article-title: Summary of road information extraction methods
  publication-title: Bull. Surv. Mapp.
– ident: ref_8
  doi: 10.1145/1869790.1869805
– ident: ref_23
– volume: 25
  start-page: 727
  year: 2014
  ident: ref_1
  article-title: Recent progress in road and lane detection: A survey
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-011-0404-2
– volume: 33
  start-page: 6040122
  year: 2022
  ident: ref_17
  article-title: Lane-Level Road Map Construction considering Vehicle Lane-Changing Behavior
  publication-title: J. Adv. Transp.
– ident: ref_21
– volume: 129
  start-page: 103234
  year: 2021
  ident: ref_15
  article-title: Lane-level routable digital map reconstruction for motorway networks using low-precision GPS data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2021.103234
– volume: 17
  start-page: 2552
  year: 2016
  ident: ref_11
  article-title: CLRIC: Collecting Lane-Based Road Information Via Crowdsourcing
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2521482
– volume: 42
  start-page: 341
  year: 2017
  ident: ref_12
  article-title: Traffic Lane Number Extraction Based on the Constrained Gaussian Mixture Model
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– volume: 24
  start-page: 7780
  year: 2023
  ident: ref_18
  article-title: Lane Information Extraction for High Definition Maps Using Crowdsourced Data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3222504
– volume: 30
  start-page: 1012
  year: 2016
  ident: ref_20
  article-title: Generative models for road network reconstruction
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2015.1092151
– volume: 38
  start-page: 293
  year: 2020
  ident: ref_26
  article-title: Floating Car Data Preprocessing Based on DBSCAN Algorithm
  publication-title: Jiangxi Sci.
– volume: 32
  start-page: 601
  year: 2018
  ident: ref_13
  article-title: Automatic change detection in lane-level road networks using GPS trajectories
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2017.1402913
– ident: ref_22
– ident: ref_5
  doi: 10.3390/su11164511
– ident: ref_7
  doi: 10.1109/ITSC.2013.6728262
– volume: 210
  start-page: 78
  year: 2014
  ident: ref_31
  article-title: The dropout learning algorithm
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2014.02.004
– volume: 53
  start-page: 2681
  year: 2016
  ident: ref_3
  article-title: A Method for Road Network Updating Based on Vehicle Trajectory Big Data
  publication-title: J. Comput. Res. Dev.
SSID ssj0000913840
Score 2.292671
Snippet Lane-level road information is especially crucial now that high-precision navigation maps are in more demand. Road information may be obtained rapidly and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 467
SubjectTerms Accuracy
Algorithms
Classification
Cleaning
Clustering
Computational linguistics
DBSCAN clustering algorithm
Deep learning
extracts
FCD
Floating
Fuzzy logic
Language processing
LeNet-5 model
mining
Natural language interfaces
Navigation
number of lanes
prediction
roads
Roads & highways
sampling
Urban areas
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQaI9FChFhBZkJBAHFDVPr31CfbDiUFYIKCona2I7y1ZVsiS7Rf33jB3vlku5cE0sy8mM52HPfB_Aa65znhfCxlyiiclDZTGSG411hqmwWKNN0JNNjCYTcX4uP4cDtz6UVa5sojfUptXujPyAEgOKbslhFe_nv2LHGuVuVwOFxl2451ASUl-693V9xuIwLymBGerdc8ruD2YX05kDNUsGYvkbT-QB-28zy97XjB_-7yofwXaIMtnhoBaP4Y5tduBBIDz_eb0DW99n_XIY0T-BH2ddhQ370qJhp9hYNvE8IeyTZ49grgWFnba_43E3FF5fs_Fli65gmh1jx05wgeyI3KFhbcNOrJ2zANs63YWz8Ydvxx_jwLkQawpNFiQoLgtToal5WtdciBy5lZSEVFxWZBhRp5hWiS01ubyCsh9TaKyrUgojayny_ClsNG1jnwGTwoOVlVZyW2BmREU_vqa5RxkWST2K4N3q_ysdAMkdL8alosTESUv9La0I3qxHzwcgjlvGHTlRrsc4-Gz_oO2mKuxGNapqXVLuS7ENpVOmFNbIrCpKmQtampQRvHWKoNwmpyVpDL0K9GEOLksdUtDsmp94EsH-ShFU2P29utGCCF6tX9O-dZcxJMV22aucrCcpp0zL5_-eYg82HcX90P-4DxuLbmlfwH19tZj13Uuv8H8ATdgHUg
  priority: 102
  providerName: ProQuest
Title Urban Road Lane Number Mining from Low-Frequency Floating Car Data Based on Deep Learning
URI https://www.proquest.com/docview/2893060824
https://www.proquest.com/docview/3040384915
https://doaj.org/article/7bfc5721244747d58ed92b45938a4099
Volume 12
WOSCitedRecordID wos001118352100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PCBAR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hggQcEBQQacvKSCAOKOrmy7GP3XZXILWrqFDUcrEmtlMWVUmV7IJ64bczdtJlLxUXLjkkVuSMx555ysx7AG-5TniSChtyiSakCBWHSGE01DFGwmKFdoxebCKfz8X5uSw2pL5cTVhPD9wbbj8vK50RTKEwRJmvyYQ1Mi7TTCYCCZv41r1xLjfAlD-DZZQQdOkr3RPC9fuLH5cLR2c27iXl_8YgT9V_14Hso8zsKTwZ0kN20E_rGdyz9TY8HJTKv99sw-Ovi27Vj-iew8VZW2LNThs07Bhry-Ze4IOdeNkH5npH2HHzK5y1fcX0DZtdNegqndkhtuwIl8gmFMcMa2p2ZO01G_hWL1_A2Wz65fBjOIglhJpyiiVZmMvUlGgqHlUVFyJBbiWhh5LLkk401BFG5dhmmmJVSrDFpBqrMpPCyEqKJHkJW3VT21fApPAsY5mV3KYYG1GS3Sp6dx6Tyas8gA-35lN6YBJ3ghZXihCFM7baNHYA79ajr3sGjTvGTdxKrMc43mt_g7xBDd6g_uUNAbx366jc7qQpaRyaDOjDHM-VOqBs13Ut8XEAe7dLrYZt2ylCnwShKCtKA3izfkwbzv1FoVVsVp1K6Ngj35JRtvM_ZrwLj5yCfd_euAdby3ZlX8MD_XO56NoR3J9M58XpyHv3yBWmfnbX31O6Ftk3el58Oiku_gAobv5n
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB1VKVLhwEcBkVLASFQc0Kr7HfuAUNsQNWoSRahF7cmdtb0hVbUbdhOq_Cl-I-PdTcql3HrgumtZ3vXzvBnbMw_gQ6yCOAi5cWKB2iGG8h0kGnWUjx43mKJxsRKb6IxG_PxcjDfg9yoXxl6rXNnEylDrXNk98n0KDMi7JcIKv8x-OlY1yp6uriQ0alicmOUNhWzl536X5nfP93tfT4-OnUZVwFFEvnMaSixCnaBOYy9NY84DjI0gNzuJRUJLH5WHXuKaSJFRD8m_16HCNIkE1yIV3G6AksnfDC3YW7A57g_HF-tdHVtlk0Km-oZ9EAh3f3o1mdoyam4tZX_LfZVEwF1EULFb78n_9l-ewuPGj2YHNfCfwYbJtmGrkXT_sdyGR9-n5aJuUT6Hi7MiwYx9y1GzAWaGjSolFDas9DGYTbJhg_zG6RX11fIl613naK-EsyMsWBfnyA6J8DXLM9Y1ZsaawrSTF3B2L9_5ElpZnplXwASvyrFFRsQmRF_zhCY6pb47PoZu2mnDp9V8S9WUXLfKH9eSQi-LDvk3Otqwt249q0uN3NHu0EJn3cYWCK8e5MVENvZGdpJURRTdk_dGAaOOuNHCT8JIBJyGJkQbPlrgSWvGaEgKm2wM-jBbEEweUFhg07titw27K-DJxr6V8hZ1bXi_fk2WyR430Szmi1IGxA-0GIQX7fy7i3ewdXw6HMhBf3TyGh765EbW2Z670JoXC_MGHqhf82lZvG2WG4PL-0byH0v6ZiI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBUE58FFAGAosEhUHZMXf3j0g1DZEVA1RhChquSzj3XUaVNnBTqjy1_h1zNpOyqXceuBqr6y19-2bmfXMPIDXiQqTMOLGTQRqlyxU4CKZUVcF6HODORoPG7GJdDTiJydivAG_V7UwNq1yxYkNUetS2TPyHgUG5N2SwYp6eZcWMe4P3s9-ulZByv5pXclptBA5MssLCt_qd4d9WuvdIBh8-HLw0e0UBlxFhnhO00pEpDPUeeLnecJ5iIkR5HJniciIBlD56GeeiRURfES-vo4U5lksuBa54PYwlOj_Rkoxpk0nHMff1uc7tt8mBU9trn0YCq83_TGZ2oZqXitqf2kFG7GAq0xCY-cG9_7nL3Qf7nbeNdtrt8MD2DDFNtzuhN7Plttw5-u0XrQj6odwelxlWLDPJWo2xMKwUaOPwj41qhnMlt6wYXnhDqo24XzJBucl2kRxdoAV6-Mc2T65AZqVBesbM2Ndu9rJIzi-lvd8DJtFWZgnwARvmrTFRiQmwkDzjBY9p2enAUZenjrwdrX2UnWN2K0eyLmkgMwiRf6NFAd216NnbQOSK8btWxitx9i24c2FsprIjoVkmuUqppiffDoKI3XMjRZBFsUi5DQ1IRx4Y0EoLbnRlBR2NRr0YrZNmNyjYMEWfSWeAzsrEMqO9Wp5iUAHXq1vE1_Zn1C0iuWiliFZDdoYwo-f_vsRL-EWwVcOD0dHz2ArIN-yLQHdgc15tTDP4ab6NZ_W1Ytm3zH4ft0w_gN3zm2F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+Road+Lane+Number+Mining+from+Low-Frequency+Floating+Car+Data+Based+on+Deep+Learning&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Li%2C+Xiaolong&rft.au=Zhang%2C+Yun&rft.au=Xiang%2C+Longgang&rft.au=Wu%2C+Tao&rft.date=2023-11-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=12&rft.issue=11&rft.spage=467&rft_id=info:doi/10.3390%2Fijgi12110467&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijgi12110467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon