Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria

In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology Jg. 10; S. 2455
Hauptverfasser: Rivera-Araya, Javier, Pollender, Andre, Huynh, Dieu, Schlömann, Michael, Chávez, Renato, Levicán, Gloria
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 29.10.2019
Schlagworte:
ISSN:1664-302X, 1664-302X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.
AbstractList In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.
In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.
Author Chávez, Renato
Pollender, Andre
Schlömann, Michael
Huynh, Dieu
Levicán, Gloria
Rivera-Araya, Javier
AuthorAffiliation 2 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany
1 Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago , Santiago , Chile
AuthorAffiliation_xml – name: 2 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany
– name: 1 Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago , Santiago , Chile
Author_xml – sequence: 1
  givenname: Javier
  surname: Rivera-Araya
  fullname: Rivera-Araya, Javier
– sequence: 2
  givenname: Andre
  surname: Pollender
  fullname: Pollender, Andre
– sequence: 3
  givenname: Dieu
  surname: Huynh
  fullname: Huynh, Dieu
– sequence: 4
  givenname: Michael
  surname: Schlömann
  fullname: Schlömann, Michael
– sequence: 5
  givenname: Renato
  surname: Chávez
  fullname: Chávez, Renato
– sequence: 6
  givenname: Gloria
  surname: Levicán
  fullname: Levicán, Gloria
BookMark eNp1Uk1v1DAQjVARLaV3jj5yYBd_xI5zQSqrQleqtIcWiZvlHdu7rpI42E7V_QX8bdxshSgSPvhr5r2x57231ckQBltV7wleMibbT673sF1STNolpjXnr6ozIkS9YJj-OPlrf1pdpHSPy6gxLfOb6pSRhokWk7Pq1yb1IXtA636rOz2A_YhWhxzGTqceXYI33nnQ2YcB6cGgzaM35fRg0W2ONiW0HswEc_h2GscQM8p7i679bo_uwqMHnw8oOLTadyF6Y5EfZtYw7n1Xyn7RkG30-l312uku2Yvn9bz6_vXqbnW9uNl8W68ubxZQszYvNKG2FsBaKiVIyZ1uuKgBJG1bIFJS64QjnEpMmeTlwwRkQzkWroR4w9h5tT7ymqDv1Rh9r-NBBe3VfBHiTulY-tFZZaRpJOBmS0Vpb922xBDGneEOMHa1K1yfj1zjtO2tATvkqLsXpC8jg9-rXXhQQlIpeF0IPjwTxPBzsimr3iewXdHBhikpygjnVBQlSyo-pkIMKUXr_pQhWD3ZQc12UE92ULMdCkT8AylizEqWx_ju_8DftLq8iA
CitedBy_id crossref_primary_10_1016_j_jmb_2025_169403
crossref_primary_10_3389_fmicb_2020_02102
crossref_primary_10_3390_ijms25136905
crossref_primary_10_1016_j_jhazmat_2022_129627
crossref_primary_10_1186_s40659_022_00388_0
crossref_primary_10_1016_j_hydromet_2020_105334
crossref_primary_10_1002_chem_202501313
crossref_primary_10_3390_microorganisms10010022
crossref_primary_10_1016_j_scitotenv_2024_176190
crossref_primary_10_1016_j_marenvres_2025_107471
crossref_primary_10_1007_s00253_022_12168_7
crossref_primary_10_3389_fmicb_2024_1369244
crossref_primary_10_1128_AEM_01518_21
crossref_primary_10_4014_jmb_2206_06045
crossref_primary_10_3389_fmicb_2022_848410
crossref_primary_10_1371_journal_pone_0267316
crossref_primary_10_1016_j_resmic_2020_08_004
crossref_primary_10_1016_j_plaphy_2025_109744
crossref_primary_10_1007_s40831_025_01179_z
crossref_primary_10_3390_agronomy12040766
crossref_primary_10_1007_s11483_024_09841_x
crossref_primary_10_3390_ma18184407
crossref_primary_10_3390_w17131939
crossref_primary_10_3390_microorganisms10071385
crossref_primary_10_1016_j_hydromet_2020_105503
crossref_primary_10_1016_j_resmic_2023_104150
crossref_primary_10_1093_femsre_fuae015
crossref_primary_10_1128_aac_00587_24
crossref_primary_10_1016_j_jfp_2024_100350
crossref_primary_10_1186_s12934_023_02232_w
crossref_primary_10_1016_j_resmic_2021_103833
crossref_primary_10_1093_jambio_lxac057
crossref_primary_10_3389_fmicb_2024_1360268
Cites_doi 10.1007/s00253-016-7549-x
10.3389/fmicb.2016.00748
10.1128/mBio.00484-12
10.1371/journal.pone.0168818
10.1099/00221287-133-5-1171
10.1016/S0021-9258(18)96895-X
10.1085/jgp.201411296
10.1016/j.hydromet.2016.08.001
10.4028/www.scientific.net/ssp.262.385
10.3389/fmicb.2017.00428
10.1007/s11434-013-0039-y
10.1111/j.1462-2920.2012.02770.x
10.1159/000338105
10.1007/s007920100242
10.4028/www.scientific.net/ssp.262.364
10.1128/jb.00136-06
10.1186/s13568-014-0084-1
10.1007/s002030050649
10.1128/genomeA.01153-14
10.1128/MR.53.1.121-147.1989
10.1128/AEM.01652-08
10.1128/AEM.65.11.5163-5168.1999
10.1006/abio.1976.9999
10.21775/9781910190333.03
10.4028/www.scientific.net/amr.1130.23
10.1073/pnas.93.10.5116
10.1111/jam.13903
10.1021/bi00031a021
10.3389/fmicb.2019.00592
10.1016/j.biortech.2008.03.003
10.1038/nrmicro2237
10.1038/ismej.2009.139
10.1186/1471-2164-10-394
10.1007/s00253-012-4528-8
10.1093/femsec/fix001
10.1002/tcr.201000005
10.1016/j.biortech.2012.06.114
10.1007/bf00454862
10.21775/9781910190333.04
10.1111/j.1462-2920.2011.02626.x
10.1016/j.copbio.2014.04.008
10.1128/jb.184.1.313-317.2002
10.1016/j.chroma.2006.12.017
10.1016/j.mineng.2019.04.033
10.1111/j.1462-2920.2006.01162.x
10.1007/s00253-011-3731-3
10.1007/s00792-013-0553-5
10.1186/s40793-016-0142-1
10.1007/bf01571324
10.1002/bit.22709
10.1016/j.jhazmat.2009.07.133
10.1111/j.1462-2920.2009.02132.x
10.1371/journal.pone.0044576
10.1146/annurev-micro-090110-102815
10.1271/bbb.90558
10.1016/j.mineng.2014.09.011
10.1371/journal.pone.0093809
10.3389/fmicb.2016.02132
10.3389/fmicb.2019.00155
10.1002/pmic.201000193
10.3389/fmicb.2011.00017
10.1007/s12275-018-8176-2
10.1186/1746-1448-1-5
10.1126/science. 1109070
10.1007/s00792-014-0687-0
10.1128/AEM.02943-08
10.1111/j.1574-6976.2002.tb00598.x
ContentType Journal Article
Copyright Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán.
Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán. 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán
Copyright_xml – notice: Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán.
– notice: Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán. 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmicb.2019.02455
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_d8d78c07b262454991d135fd5fc00f4f
PMC6828654
10_3389_fmicb_2019_02455
GrantInformation_xml – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  grantid: 1170799
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-a12e46c39288c885fa7564cc8299c1882ef6f1528023850401c872506f82e5733
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496487900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-302X
IngestDate Fri Oct 03 12:49:36 EDT 2025
Tue Sep 30 16:54:06 EDT 2025
Thu Sep 04 18:06:39 EDT 2025
Sat Nov 29 03:08:52 EST 2025
Tue Nov 18 21:26:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-a12e46c39288c885fa7564cc8299c1882ef6f1528023850401c872506f82e5733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Axel Schippers, Federal Institute for Geosciences and Natural Resources, Germany
This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology
Reviewed by: Erhard Bremer, University of Marburg, Germany; Elizabeth Lindsay Watkin, Curtin University, Australia
OpenAccessLink https://doaj.org/article/d8d78c07b262454991d135fd5fc00f4f
PMID 31736901
PQID 2315526166
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d8d78c07b262454991d135fd5fc00f4f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6828654
proquest_miscellaneous_2315526166
crossref_primary_10_3389_fmicb_2019_02455
crossref_citationtrail_10_3389_fmicb_2019_02455
PublicationCentury 2000
PublicationDate 2019-10-29
PublicationDateYYYYMMDD 2019-10-29
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-29
  day: 29
PublicationDecade 2010
PublicationTitle Frontiers in microbiology
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Ito (B26) 2009; 73
Csonka (B9) 1989; 53
Zapata (B67) 2017; 93
Zammit (B66) 2016
Galleguillos (B17) 2018; 56
Dopson (B11) 2017; 7
Khaleque (B30) 2019; 10
Bellenberg (B2) 2019; 10
Mosier (B42) 2013; 4
Norambuena (B43) 2012; 7
Belnap (B3) 2010; 4
Bobadilla-Fazzini (B4) 2014; 4
Bradford (B6) 1976; 7
Tao (B56) 2016; 100
Van-Thuoc (B57) 2013; 97
Simmons (B53) 2002; 6
Goltsman (B20) 2009; 75
Roberts (B50) 2005; 1
Quatrini (B46) 2009; 10
Wilks (B60) 2009; 75
Rivera-Araya (B49) 2017; 262
Yonetani (B64) 1966; 241
Guo (B21) 2014; 59
García-Estepa (B18) 2006; 188
Mangold (B35) 2013; 17
Sajjad (B51) 2018; 125
Bonnefoy (B5) 2011; 14
Huynh (B24) 2017; 262
Kindzierski (B32) 2017; 12
Suzuki (B55) 1999; 65
Gahan (B15) 2010; 106
Yarzábal (B63) 2002; 184
Cárdenas (B7) 2014; 2
Huynh (B23) 2019; 138
Kempf (B29) 1998; 170
Ziegelhoffer (B69) 2009; 7
Johnson (B27) 2014; 30
Kieft (B31) 1988; 17
Contreras (B8) 2015; 1130
Mols (B40) 2010; 12
Zhao (B68) 2007; 47
Widderich (B59) 2014; 9
Huber (B22) 1989
Levicán (B34) 2012; 22
Wood (B61) 2011; 65
Medeiros (B39) 2007; 1141
Moritz (B41) 2015; 19
Krämer (B33) 2010; 10
Empadinhas (B12) 2008; 11
Sleator (B54) 2001; 26
Ferrer (B14); 7
Issotta (B25) 2016; 11
Marhual (B37) 2008; 99
Zammit (B65) 2012; 93
Potrykus (B45) 2011; 11
Johnson (B28) 2017; 8
Ferrer (B13)
Alexander (B1) 1987; 133
Parro (B44) 2007; 9
Mangold (B36) 2011; 2
Wang (B58) 2012; 121
Giebner (B19) 2017; 168
Ram (B47) 2005; 308
Matthis (B38) 1995; 34
Saum (B52) 2012; 15
Wood (B62) 2015; 145
Gahan (B16) 2009; 172
Rea (B48) 2015; 75
Davidson (B10) 1996; 93
References_xml – volume: 100
  start-page: 6779
  year: 2016
  ident: B56
  article-title: Ectoine and 5-hydroxyectoine accumulation in the halophile Virgibacillus halodenitrificans PDB-F2 in response to salt stress.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7549-x
– volume: 7
  ident: B14
  article-title: Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00748
– volume: 4
  year: 2013
  ident: B42
  article-title: Metabolites associated with adaptation of microorganisms to an acidophilic, metal-rich environment identified by stable-isotope-enabled metabolomics.
  publication-title: mBio
  doi: 10.1128/mBio.00484-12
– volume: 12
  year: 2017
  ident: B32
  article-title: Osmoregulation in the halophilic bacterium Halomonas elongata: a case study for integrative systems biology.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0168818
– volume: 133
  start-page: 1171
  year: 1987
  ident: B1
  article-title: The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans.
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-133-5-1171
– volume: 241
  start-page: 700
  year: 1966
  ident: B64
  article-title: Studies on cytochrome c peroxidase. 3. Kinetics of the peroxidatic oxidation of ferrocytochrome c catalyzed by cytochrome c peroxidase.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96895-X
– volume: 145
  start-page: 381
  year: 2015
  ident: B62
  article-title: Bacterial responses to osmotic challenges.
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201411296
– volume: 168
  start-page: 64
  year: 2017
  ident: B19
  article-title: Measurements of dissolved oxygen in bioleaching reactors by optode application.
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.08.001
– volume: 262
  start-page: 385
  year: 2017
  ident: B49
  article-title: Comparative study of NaCl-tolerance mechanisms in acidophilic iron-oxidizing bacteria and archaea.
  publication-title: Solid State Phenomena
  doi: 10.4028/www.scientific.net/ssp.262.385
– volume: 8
  year: 2017
  ident: B28
  article-title: Editorial: recent advances in acidophile microbiology: fundamentals and applications.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00428
– volume: 59
  start-page: 301
  year: 2014
  ident: B21
  article-title: Proteomic and molecular investigations revealed that Acidithiobacillus caldus adopts multiple strategies for adaptation to NaCl stress.
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-013-0039-y
– volume: 15
  start-page: 1619
  year: 2012
  ident: B52
  article-title: Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2012.02770.x
– volume: 22
  start-page: 94
  year: 2012
  ident: B34
  article-title: Comparative genomic analysis reveals novel facts about Leptospirillum spp. cytochromes.
  publication-title: J. Mol. Microbiol. Biotechnol.
  doi: 10.1159/000338105
– volume: 6
  start-page: 201
  year: 2002
  ident: B53
  article-title: Acidophiles of saline water at thermal vents of Vulcano, Italy.
  publication-title: Extremophiles
  doi: 10.1007/s007920100242
– volume: 262
  start-page: 364
  year: 2017
  ident: B24
  article-title: Microorganisms oxidize iron(II) ions in the presence of high concentrations sof sodium chloride – potentially useful for bioleaching.
  publication-title: Solid State Phenomena
  doi: 10.4028/www.scientific.net/ssp.262.364
– volume: 188
  start-page: 3774
  year: 2006
  ident: B18
  article-title: The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.00136-06
– volume: 4
  year: 2014
  ident: B4
  article-title: Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion.
  publication-title: AMB Express
  doi: 10.1186/s13568-014-0084-1
– volume: 170
  start-page: 319
  year: 1998
  ident: B29
  article-title: Uptake and synthesis of compatible solutes.
  publication-title: Arch. Microbiol.
  doi: 10.1007/s002030050649
– volume: 2
  year: 2014
  ident: B7
  article-title: Draft genome sequence of the iron-oxidizing acidophile Leptospirillum ferriphilum type strain DSM 14647.
  publication-title: Genome Announc.
  doi: 10.1128/genomeA.01153-14
– volume: 53
  start-page: 121
  year: 1989
  ident: B9
  article-title: Physiological and genetic responses of bacteria to osmotic stress.
  publication-title: Microbiol. Rev.
  doi: 10.1128/MR.53.1.121-147.1989
– volume: 75
  start-page: 981
  year: 2009
  ident: B60
  article-title: Acid and base stress and transcriptomic responses in Bacillus subtilis.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01652-08
– volume: 65
  start-page: 5163
  year: 1999
  ident: B55
  article-title: Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.11.5163-5168.1999
– volume: 7
  start-page: 248
  year: 1976
  ident: B6
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1976.9999
– start-page: 49
  year: 2016
  ident: B66
  article-title: Adaption to extreme acidity and osmotic stress
  publication-title: Acidophiles: Life in Extremely Acidic Environments
  doi: 10.21775/9781910190333.03
– volume: 1130
  start-page: 23
  year: 2015
  ident: B8
  article-title: Dyp-type peroxidase (DypA) from the bioleaching acidophilic bacterium Leptospirillum ferriphilum DSM 14647.
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/amr.1130.23
– volume: 93
  start-page: 5116
  year: 1996
  ident: B10
  article-title: Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.10.5116
– volume: 125
  start-page: 457
  year: 2018
  ident: B51
  article-title: Ectoine: a compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM19 strain to prevent ultraviolet-induced protein damage.
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13903
– volume: 47
  start-page: 937
  year: 2007
  ident: B68
  article-title: Study progress on compatible solutes in moderately halophilic bacteria.
  publication-title: Wei Sheng Wu Xue Bao
– volume: 34
  start-page: 9985
  year: 1995
  ident: B38
  article-title: Cytochrome c peroxidase-catalyzed oxidation of yeast iso-1 derrocytochrome c by hydrogen peroxide. Ionic strength dependence of the steady-state parameters?.
  publication-title: Biochemistry
  doi: 10.1021/bi00031a021
– volume: 10
  year: 2019
  ident: B2
  article-title: Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00592
– volume: 11
  start-page: 151
  year: 2008
  ident: B12
  article-title: Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes.
  publication-title: Int. Microbiol.
– volume: 99
  start-page: 8331
  year: 2008
  ident: B37
  article-title: Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.03.003
– volume: 7
  start-page: 856
  year: 2009
  ident: B69
  article-title: Bacterial responses to photo-oxidative stress.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2237
– volume: 4
  start-page: 520
  year: 2010
  ident: B3
  article-title: Cultivation and quantitative proteomic analyses of acidophilic microbial communities.
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.139
– volume: 10
  year: 2009
  ident: B46
  article-title: Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-394
– volume: 97
  start-page: 6271
  year: 2013
  ident: B57
  article-title: Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: a study using Bacillus halodurans xylanase as a model.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4528-8
– volume: 93
  year: 2017
  ident: B67
  article-title: Cytochrome c peroxidase (CcP) is a molecular determinant of the oxidative stress response in the extreme acidophilic Leptospirillum sp. CF-1.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fix001
– volume: 10
  start-page: 217
  year: 2010
  ident: B33
  article-title: Bacterial stimulus perception and signal transduction: response to osmotic stress.
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201000005
– volume: 121
  start-page: 348
  year: 2012
  ident: B58
  article-title: Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.114
– start-page: 479
  year: 1989
  ident: B22
  article-title: Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch. Microbiol.
  doi: 10.1007/bf00454862
– start-page: 63
  ident: B13
  article-title: Oxidative stress and metal tolerance in extreme acidophiles
  publication-title: Acidophiles: Life in Extremely Acidic Environments
  doi: 10.21775/9781910190333.04
– volume: 14
  start-page: 1597
  year: 2011
  ident: B5
  article-title: Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environmentse.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02626.x
– volume: 30
  start-page: 24
  year: 2014
  ident: B27
  article-title: Biomining — biotechnologies for extracting and recovering metals from ores and waste materials.
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.04.008
– volume: 184
  start-page: 313
  year: 2002
  ident: B63
  article-title: The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.184.1.313-317.2002
– volume: 1141
  start-page: 271
  year: 2007
  ident: B39
  article-title: Analysis of sugars in environmental samples by gas chromatography–mass spectrometry.
  publication-title: J. Chromatogr. A.
  doi: 10.1016/j.chroma.2006.12.017
– volume: 138
  start-page: 52
  year: 2019
  ident: B23
  article-title: Effect of sodium chloride on Leptospirillum ferriphilum DSM 14647T and Sulfobacillus thermosulfidooxidans DSM 9293T: growth, iron oxidation activity and bioleaching of sulfidic metal ores.
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.04.033
– volume: 9
  start-page: 453
  year: 2007
  ident: B44
  article-title: Analysis of environmental transcriptomes by DNA microarrays.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.01162.x
– volume: 93
  start-page: 319
  year: 2012
  ident: B65
  article-title: Bioleaching in brackish waters - effect of chloride ions on the acidophile population and proteomes of model species.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3731-3
– volume: 17
  start-page: 689
  year: 2013
  ident: B35
  article-title: Response of Acidithiobacillus caldus toward suboptimal pH conditions.
  publication-title: Extremophiles
  doi: 10.1007/s00792-013-0553-5
– volume: 11
  year: 2016
  ident: B25
  article-title: Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile.
  publication-title: Stand. Genomic Sci.
  doi: 10.1186/s40793-016-0142-1
– volume: 17
  start-page: 255
  year: 1988
  ident: B31
  article-title: Osmoregulation in Thiobacillus ferrooxidans: stimulation of iron oxidation by proline and betaine under salt stress.
  publication-title: Curr. Microbiol.
  doi: 10.1007/bf01571324
– volume: 106
  start-page: 422
  year: 2010
  ident: B15
  article-title: Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture.
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22709
– volume: 172
  start-page: 1273
  year: 2009
  ident: B16
  article-title: A study on the toxic effects of chloride on the biooxidation efficiency of pyrite.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.07.133
– volume: 12
  start-page: 873
  year: 2010
  ident: B40
  article-title: Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2009.02132.x
– volume: 7
  year: 2012
  ident: B43
  article-title: Thiol/disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044576
– volume: 65
  start-page: 215
  year: 2011
  ident: B61
  article-title: Bacterial osmoregulation: a paradigm for the study of cellular homeostasis.
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090110-102815
– volume: 73
  start-page: 2698
  year: 2009
  ident: B26
  article-title: The implication of YggT of Escherichia coli in osmotic regulation.
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.90558
– volume: 75
  start-page: 126
  year: 2015
  ident: B48
  article-title: Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce.
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.09.011
– volume: 9
  year: 2014
  ident: B59
  article-title: Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093809
– volume: 7
  year: 2017
  ident: B11
  article-title: Multiple osmotic stress responses in Acidihalobacter prosperus result in tolerance to chloride ions.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.02132
– volume: 10
  year: 2019
  ident: B30
  article-title: Uncovering the mechanisms of halotolerance in the extremely acidophilic members of the Acidihalobacter genus through comparative genome analysis.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00155
– volume: 11
  start-page: 52
  year: 2011
  ident: B45
  article-title: Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus.
  publication-title: Proteomics
  doi: 10.1002/pmic.201000193
– volume: 2
  year: 2011
  ident: B36
  article-title: Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2011.00017
– volume: 56
  start-page: 727
  year: 2018
  ident: B17
  article-title: Identification of trehalose as a compatible solute in different species of acidophilic bacteria.
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-018-8176-2
– volume: 1
  year: 2005
  ident: B50
  article-title: Organic compatible solutes of halotolerant and halophilic microorganisms.
  publication-title: Saline Syst.
  doi: 10.1186/1746-1448-1-5
– volume: 308
  start-page: 1915
  year: 2005
  ident: B47
  article-title: Community proteomics of a natural microbial biofilm.
  publication-title: Science
  doi: 10.1126/science. 1109070
– volume: 19
  start-page: 87
  year: 2015
  ident: B41
  article-title: The hydroxyectoine gene cluster of the non-halophilic acidophile Acidiphilium cryptum.
  publication-title: Extremophiles
  doi: 10.1007/s00792-014-0687-0
– volume: 75
  start-page: 4599
  year: 2009
  ident: B20
  article-title: Community genomic and proteomic analyses of chemoautotrophic iron- oxidizing “Leptospirillum rubarum” (group II) and “Leptospirillum ferrodiazotrophum” (group III) bacteria in acid mine drainage biofilms.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02943-08
– volume: 26
  start-page: 49
  year: 2001
  ident: B54
  article-title: Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence.
  publication-title: FEMS Microbiol.
  doi: 10.1111/j.1574-6976.2002.tb00598.x
SSID ssj0000402000
Score 2.3978105
Snippet In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2455
SubjectTerms acidophiles
bioleaching
chloride
Leptospirillum spp
Microbiology
osmolarity
oxidative stress
Title Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria
URI https://www.proquest.com/docview/2315526166
https://pubmed.ncbi.nlm.nih.gov/PMC6828654
https://doaj.org/article/d8d78c07b262454991d135fd5fc00f4f
Volume 10
WOSCitedRecordID wos000496487900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BBRIXBLQVy6MyEhekhia7duIc21UrkKBF6kN7s-yxrUaiyardovbClb_NjLOtNpdy4ZJD7CTOzMTzTTz-BuBjRSCBPJnNMLo8k8rnWa1jzCYT5aKqJ14mnoKzb9XhoZ7N6h8rpb44J6ynB-4Ft-O1rzTmlRuXY8nBTOGLiYpeRczzKCPPvoR6VoKpNAdzWJTn_bokRWE1qalBx6lc9WdebVQDP5To-gcYc5ghueJyDl7A8yVWFLv9GF_Co9C-gqd99cjbdfhzlGrwoPh64ThBEcO2mN4uujkB4guxi43nNKAkeWFbL45uGp9ovsVx2iAiuGxH2tYguLYn4XBBaFBw5oc46W4aJIAuuiim55yl54No2nTXbs4_YVDs9UTPdgNOD_ZPpl-yZV2FDAl-LDJbjIMskZCR1qi1ipY0JhE1uSYsCHKHWEby68wNpxWJskBdEVQqIzUxf-ImrLVdG16DyEPU0lpHQQdKjt-cI3xio7TOETQLI9i5k7LBJek41774aSj4YL2YpBfDejFJLyP4dH_FvCfceKDvHivuvh9TZacTZEBmaUDmXwY0gg93ajf0afF6iW1Dd31lCPoqRRFmWY6gGtjD4InDlrY5TyTdJe_PV_LN_xjiW3jGL80uc1y_g7XF5XV4D0_w16K5utyCx9VMbyX7p-P33_t_AYx9DKE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osmotic+Imbalance%2C+Cytoplasm+Acidification+and+Oxidative+Stress+Induction+Support+the+High+Toxicity+of+Chloride+in+Acidophilic+Bacteria&rft.jtitle=Frontiers+in+microbiology&rft.au=Rivera-Araya%2C+Javier&rft.au=Pollender%2C+Andre&rft.au=Huynh%2C+Dieu&rft.au=Schl%C3%B6mann%2C+Michael&rft.date=2019-10-29&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmicb.2019.02455&rft_id=info%3Apmid%2F31736901&rft.externalDocID=PMC6828654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon