Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria
In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and gen...
Gespeichert in:
| Veröffentlicht in: | Frontiers in microbiology Jg. 10; S. 2455 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
29.10.2019
|
| Schlagworte: | |
| ISSN: | 1664-302X, 1664-302X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride. |
|---|---|
| AbstractList | In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride. In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride. |
| Author | Chávez, Renato Pollender, Andre Schlömann, Michael Huynh, Dieu Levicán, Gloria Rivera-Araya, Javier |
| AuthorAffiliation | 2 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany 1 Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago , Santiago , Chile |
| AuthorAffiliation_xml | – name: 2 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany – name: 1 Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago , Santiago , Chile |
| Author_xml | – sequence: 1 givenname: Javier surname: Rivera-Araya fullname: Rivera-Araya, Javier – sequence: 2 givenname: Andre surname: Pollender fullname: Pollender, Andre – sequence: 3 givenname: Dieu surname: Huynh fullname: Huynh, Dieu – sequence: 4 givenname: Michael surname: Schlömann fullname: Schlömann, Michael – sequence: 5 givenname: Renato surname: Chávez fullname: Chávez, Renato – sequence: 6 givenname: Gloria surname: Levicán fullname: Levicán, Gloria |
| BookMark | eNp1Uk1v1DAQjVARLaV3jj5yYBd_xI5zQSqrQleqtIcWiZvlHdu7rpI42E7V_QX8bdxshSgSPvhr5r2x57231ckQBltV7wleMibbT673sF1STNolpjXnr6ozIkS9YJj-OPlrf1pdpHSPy6gxLfOb6pSRhokWk7Pq1yb1IXtA636rOz2A_YhWhxzGTqceXYI33nnQ2YcB6cGgzaM35fRg0W2ONiW0HswEc_h2GscQM8p7i679bo_uwqMHnw8oOLTadyF6Y5EfZtYw7n1Xyn7RkG30-l312uku2Yvn9bz6_vXqbnW9uNl8W68ubxZQszYvNKG2FsBaKiVIyZ1uuKgBJG1bIFJS64QjnEpMmeTlwwRkQzkWroR4w9h5tT7ymqDv1Rh9r-NBBe3VfBHiTulY-tFZZaRpJOBmS0Vpb922xBDGneEOMHa1K1yfj1zjtO2tATvkqLsXpC8jg9-rXXhQQlIpeF0IPjwTxPBzsimr3iewXdHBhikpygjnVBQlSyo-pkIMKUXr_pQhWD3ZQc12UE92ULMdCkT8AylizEqWx_ju_8DftLq8iA |
| CitedBy_id | crossref_primary_10_1016_j_jmb_2025_169403 crossref_primary_10_3389_fmicb_2020_02102 crossref_primary_10_3390_ijms25136905 crossref_primary_10_1016_j_jhazmat_2022_129627 crossref_primary_10_1186_s40659_022_00388_0 crossref_primary_10_1016_j_hydromet_2020_105334 crossref_primary_10_1002_chem_202501313 crossref_primary_10_3390_microorganisms10010022 crossref_primary_10_1016_j_scitotenv_2024_176190 crossref_primary_10_1016_j_marenvres_2025_107471 crossref_primary_10_1007_s00253_022_12168_7 crossref_primary_10_3389_fmicb_2024_1369244 crossref_primary_10_1128_AEM_01518_21 crossref_primary_10_4014_jmb_2206_06045 crossref_primary_10_3389_fmicb_2022_848410 crossref_primary_10_1371_journal_pone_0267316 crossref_primary_10_1016_j_resmic_2020_08_004 crossref_primary_10_1016_j_plaphy_2025_109744 crossref_primary_10_1007_s40831_025_01179_z crossref_primary_10_3390_agronomy12040766 crossref_primary_10_1007_s11483_024_09841_x crossref_primary_10_3390_ma18184407 crossref_primary_10_3390_w17131939 crossref_primary_10_3390_microorganisms10071385 crossref_primary_10_1016_j_hydromet_2020_105503 crossref_primary_10_1016_j_resmic_2023_104150 crossref_primary_10_1093_femsre_fuae015 crossref_primary_10_1128_aac_00587_24 crossref_primary_10_1016_j_jfp_2024_100350 crossref_primary_10_1186_s12934_023_02232_w crossref_primary_10_1016_j_resmic_2021_103833 crossref_primary_10_1093_jambio_lxac057 crossref_primary_10_3389_fmicb_2024_1360268 |
| Cites_doi | 10.1007/s00253-016-7549-x 10.3389/fmicb.2016.00748 10.1128/mBio.00484-12 10.1371/journal.pone.0168818 10.1099/00221287-133-5-1171 10.1016/S0021-9258(18)96895-X 10.1085/jgp.201411296 10.1016/j.hydromet.2016.08.001 10.4028/www.scientific.net/ssp.262.385 10.3389/fmicb.2017.00428 10.1007/s11434-013-0039-y 10.1111/j.1462-2920.2012.02770.x 10.1159/000338105 10.1007/s007920100242 10.4028/www.scientific.net/ssp.262.364 10.1128/jb.00136-06 10.1186/s13568-014-0084-1 10.1007/s002030050649 10.1128/genomeA.01153-14 10.1128/MR.53.1.121-147.1989 10.1128/AEM.01652-08 10.1128/AEM.65.11.5163-5168.1999 10.1006/abio.1976.9999 10.21775/9781910190333.03 10.4028/www.scientific.net/amr.1130.23 10.1073/pnas.93.10.5116 10.1111/jam.13903 10.1021/bi00031a021 10.3389/fmicb.2019.00592 10.1016/j.biortech.2008.03.003 10.1038/nrmicro2237 10.1038/ismej.2009.139 10.1186/1471-2164-10-394 10.1007/s00253-012-4528-8 10.1093/femsec/fix001 10.1002/tcr.201000005 10.1016/j.biortech.2012.06.114 10.1007/bf00454862 10.21775/9781910190333.04 10.1111/j.1462-2920.2011.02626.x 10.1016/j.copbio.2014.04.008 10.1128/jb.184.1.313-317.2002 10.1016/j.chroma.2006.12.017 10.1016/j.mineng.2019.04.033 10.1111/j.1462-2920.2006.01162.x 10.1007/s00253-011-3731-3 10.1007/s00792-013-0553-5 10.1186/s40793-016-0142-1 10.1007/bf01571324 10.1002/bit.22709 10.1016/j.jhazmat.2009.07.133 10.1111/j.1462-2920.2009.02132.x 10.1371/journal.pone.0044576 10.1146/annurev-micro-090110-102815 10.1271/bbb.90558 10.1016/j.mineng.2014.09.011 10.1371/journal.pone.0093809 10.3389/fmicb.2016.02132 10.3389/fmicb.2019.00155 10.1002/pmic.201000193 10.3389/fmicb.2011.00017 10.1007/s12275-018-8176-2 10.1186/1746-1448-1-5 10.1126/science. 1109070 10.1007/s00792-014-0687-0 10.1128/AEM.02943-08 10.1111/j.1574-6976.2002.tb00598.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán. Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán. 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán |
| Copyright_xml | – notice: Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán. – notice: Copyright © 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán. 2019 Rivera-Araya, Pollender, Huynh, Schlömann, Chávez and Levicán |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fmicb.2019.02455 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-302X |
| ExternalDocumentID | oai_doaj_org_article_d8d78c07b262454991d135fd5fc00f4f PMC6828654 10_3389_fmicb_2019_02455 |
| GrantInformation_xml | – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico grantid: 1170799 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c439t-a12e46c39288c885fa7564cc8299c1882ef6f1528023850401c872506f82e5733 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496487900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-302X |
| IngestDate | Fri Oct 03 12:49:36 EDT 2025 Tue Sep 30 16:54:06 EDT 2025 Thu Sep 04 18:06:39 EDT 2025 Sat Nov 29 03:08:52 EST 2025 Tue Nov 18 21:26:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-a12e46c39288c885fa7564cc8299c1882ef6f1528023850401c872506f82e5733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Axel Schippers, Federal Institute for Geosciences and Natural Resources, Germany This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology Reviewed by: Erhard Bremer, University of Marburg, Germany; Elizabeth Lindsay Watkin, Curtin University, Australia |
| OpenAccessLink | https://doaj.org/article/d8d78c07b262454991d135fd5fc00f4f |
| PMID | 31736901 |
| PQID | 2315526166 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d8d78c07b262454991d135fd5fc00f4f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6828654 proquest_miscellaneous_2315526166 crossref_primary_10_3389_fmicb_2019_02455 crossref_citationtrail_10_3389_fmicb_2019_02455 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-29 |
| PublicationDateYYYYMMDD | 2019-10-29 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationTitle | Frontiers in microbiology |
| PublicationYear | 2019 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Ito (B26) 2009; 73 Csonka (B9) 1989; 53 Zapata (B67) 2017; 93 Zammit (B66) 2016 Galleguillos (B17) 2018; 56 Dopson (B11) 2017; 7 Khaleque (B30) 2019; 10 Bellenberg (B2) 2019; 10 Mosier (B42) 2013; 4 Norambuena (B43) 2012; 7 Belnap (B3) 2010; 4 Bobadilla-Fazzini (B4) 2014; 4 Bradford (B6) 1976; 7 Tao (B56) 2016; 100 Van-Thuoc (B57) 2013; 97 Simmons (B53) 2002; 6 Goltsman (B20) 2009; 75 Roberts (B50) 2005; 1 Quatrini (B46) 2009; 10 Wilks (B60) 2009; 75 Rivera-Araya (B49) 2017; 262 Yonetani (B64) 1966; 241 Guo (B21) 2014; 59 García-Estepa (B18) 2006; 188 Mangold (B35) 2013; 17 Sajjad (B51) 2018; 125 Bonnefoy (B5) 2011; 14 Huynh (B24) 2017; 262 Kindzierski (B32) 2017; 12 Suzuki (B55) 1999; 65 Gahan (B15) 2010; 106 Yarzábal (B63) 2002; 184 Cárdenas (B7) 2014; 2 Huynh (B23) 2019; 138 Kempf (B29) 1998; 170 Ziegelhoffer (B69) 2009; 7 Johnson (B27) 2014; 30 Kieft (B31) 1988; 17 Contreras (B8) 2015; 1130 Mols (B40) 2010; 12 Zhao (B68) 2007; 47 Widderich (B59) 2014; 9 Huber (B22) 1989 Levicán (B34) 2012; 22 Wood (B61) 2011; 65 Medeiros (B39) 2007; 1141 Moritz (B41) 2015; 19 Krämer (B33) 2010; 10 Empadinhas (B12) 2008; 11 Sleator (B54) 2001; 26 Ferrer (B14); 7 Issotta (B25) 2016; 11 Marhual (B37) 2008; 99 Zammit (B65) 2012; 93 Potrykus (B45) 2011; 11 Johnson (B28) 2017; 8 Ferrer (B13) Alexander (B1) 1987; 133 Parro (B44) 2007; 9 Mangold (B36) 2011; 2 Wang (B58) 2012; 121 Giebner (B19) 2017; 168 Ram (B47) 2005; 308 Matthis (B38) 1995; 34 Saum (B52) 2012; 15 Wood (B62) 2015; 145 Gahan (B16) 2009; 172 Rea (B48) 2015; 75 Davidson (B10) 1996; 93 |
| References_xml | – volume: 100 start-page: 6779 year: 2016 ident: B56 article-title: Ectoine and 5-hydroxyectoine accumulation in the halophile Virgibacillus halodenitrificans PDB-F2 in response to salt stress. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7549-x – volume: 7 ident: B14 article-title: Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00748 – volume: 4 year: 2013 ident: B42 article-title: Metabolites associated with adaptation of microorganisms to an acidophilic, metal-rich environment identified by stable-isotope-enabled metabolomics. publication-title: mBio doi: 10.1128/mBio.00484-12 – volume: 12 year: 2017 ident: B32 article-title: Osmoregulation in the halophilic bacterium Halomonas elongata: a case study for integrative systems biology. publication-title: PLoS One doi: 10.1371/journal.pone.0168818 – volume: 133 start-page: 1171 year: 1987 ident: B1 article-title: The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-133-5-1171 – volume: 241 start-page: 700 year: 1966 ident: B64 article-title: Studies on cytochrome c peroxidase. 3. Kinetics of the peroxidatic oxidation of ferrocytochrome c catalyzed by cytochrome c peroxidase. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96895-X – volume: 145 start-page: 381 year: 2015 ident: B62 article-title: Bacterial responses to osmotic challenges. publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201411296 – volume: 168 start-page: 64 year: 2017 ident: B19 article-title: Measurements of dissolved oxygen in bioleaching reactors by optode application. publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.08.001 – volume: 262 start-page: 385 year: 2017 ident: B49 article-title: Comparative study of NaCl-tolerance mechanisms in acidophilic iron-oxidizing bacteria and archaea. publication-title: Solid State Phenomena doi: 10.4028/www.scientific.net/ssp.262.385 – volume: 8 year: 2017 ident: B28 article-title: Editorial: recent advances in acidophile microbiology: fundamentals and applications. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00428 – volume: 59 start-page: 301 year: 2014 ident: B21 article-title: Proteomic and molecular investigations revealed that Acidithiobacillus caldus adopts multiple strategies for adaptation to NaCl stress. publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-013-0039-y – volume: 15 start-page: 1619 year: 2012 ident: B52 article-title: Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2012.02770.x – volume: 22 start-page: 94 year: 2012 ident: B34 article-title: Comparative genomic analysis reveals novel facts about Leptospirillum spp. cytochromes. publication-title: J. Mol. Microbiol. Biotechnol. doi: 10.1159/000338105 – volume: 6 start-page: 201 year: 2002 ident: B53 article-title: Acidophiles of saline water at thermal vents of Vulcano, Italy. publication-title: Extremophiles doi: 10.1007/s007920100242 – volume: 262 start-page: 364 year: 2017 ident: B24 article-title: Microorganisms oxidize iron(II) ions in the presence of high concentrations sof sodium chloride – potentially useful for bioleaching. publication-title: Solid State Phenomena doi: 10.4028/www.scientific.net/ssp.262.364 – volume: 188 start-page: 3774 year: 2006 ident: B18 article-title: The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. publication-title: J. Bacteriol. doi: 10.1128/jb.00136-06 – volume: 4 year: 2014 ident: B4 article-title: Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion. publication-title: AMB Express doi: 10.1186/s13568-014-0084-1 – volume: 170 start-page: 319 year: 1998 ident: B29 article-title: Uptake and synthesis of compatible solutes. publication-title: Arch. Microbiol. doi: 10.1007/s002030050649 – volume: 2 year: 2014 ident: B7 article-title: Draft genome sequence of the iron-oxidizing acidophile Leptospirillum ferriphilum type strain DSM 14647. publication-title: Genome Announc. doi: 10.1128/genomeA.01153-14 – volume: 53 start-page: 121 year: 1989 ident: B9 article-title: Physiological and genetic responses of bacteria to osmotic stress. publication-title: Microbiol. Rev. doi: 10.1128/MR.53.1.121-147.1989 – volume: 75 start-page: 981 year: 2009 ident: B60 article-title: Acid and base stress and transcriptomic responses in Bacillus subtilis. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01652-08 – volume: 65 start-page: 5163 year: 1999 ident: B55 article-title: Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.11.5163-5168.1999 – volume: 7 start-page: 248 year: 1976 ident: B6 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. publication-title: Anal. Biochem. doi: 10.1006/abio.1976.9999 – start-page: 49 year: 2016 ident: B66 article-title: Adaption to extreme acidity and osmotic stress publication-title: Acidophiles: Life in Extremely Acidic Environments doi: 10.21775/9781910190333.03 – volume: 1130 start-page: 23 year: 2015 ident: B8 article-title: Dyp-type peroxidase (DypA) from the bioleaching acidophilic bacterium Leptospirillum ferriphilum DSM 14647. publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/amr.1130.23 – volume: 93 start-page: 5116 year: 1996 ident: B10 article-title: Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.10.5116 – volume: 125 start-page: 457 year: 2018 ident: B51 article-title: Ectoine: a compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM19 strain to prevent ultraviolet-induced protein damage. publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13903 – volume: 47 start-page: 937 year: 2007 ident: B68 article-title: Study progress on compatible solutes in moderately halophilic bacteria. publication-title: Wei Sheng Wu Xue Bao – volume: 34 start-page: 9985 year: 1995 ident: B38 article-title: Cytochrome c peroxidase-catalyzed oxidation of yeast iso-1 derrocytochrome c by hydrogen peroxide. Ionic strength dependence of the steady-state parameters?. publication-title: Biochemistry doi: 10.1021/bi00031a021 – volume: 10 year: 2019 ident: B2 article-title: Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00592 – volume: 11 start-page: 151 year: 2008 ident: B12 article-title: Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. publication-title: Int. Microbiol. – volume: 99 start-page: 8331 year: 2008 ident: B37 article-title: Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.03.003 – volume: 7 start-page: 856 year: 2009 ident: B69 article-title: Bacterial responses to photo-oxidative stress. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2237 – volume: 4 start-page: 520 year: 2010 ident: B3 article-title: Cultivation and quantitative proteomic analyses of acidophilic microbial communities. publication-title: ISME J. doi: 10.1038/ismej.2009.139 – volume: 10 year: 2009 ident: B46 article-title: Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. publication-title: BMC Genomics doi: 10.1186/1471-2164-10-394 – volume: 97 start-page: 6271 year: 2013 ident: B57 article-title: Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: a study using Bacillus halodurans xylanase as a model. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4528-8 – volume: 93 year: 2017 ident: B67 article-title: Cytochrome c peroxidase (CcP) is a molecular determinant of the oxidative stress response in the extreme acidophilic Leptospirillum sp. CF-1. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fix001 – volume: 10 start-page: 217 year: 2010 ident: B33 article-title: Bacterial stimulus perception and signal transduction: response to osmotic stress. publication-title: Chem. Rec. doi: 10.1002/tcr.201000005 – volume: 121 start-page: 348 year: 2012 ident: B58 article-title: Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.114 – start-page: 479 year: 1989 ident: B22 article-title: Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch. Microbiol. doi: 10.1007/bf00454862 – start-page: 63 ident: B13 article-title: Oxidative stress and metal tolerance in extreme acidophiles publication-title: Acidophiles: Life in Extremely Acidic Environments doi: 10.21775/9781910190333.04 – volume: 14 start-page: 1597 year: 2011 ident: B5 article-title: Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environmentse. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02626.x – volume: 30 start-page: 24 year: 2014 ident: B27 article-title: Biomining — biotechnologies for extracting and recovering metals from ores and waste materials. publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.04.008 – volume: 184 start-page: 313 year: 2002 ident: B63 article-title: The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. publication-title: J. Bacteriol. doi: 10.1128/jb.184.1.313-317.2002 – volume: 1141 start-page: 271 year: 2007 ident: B39 article-title: Analysis of sugars in environmental samples by gas chromatography–mass spectrometry. publication-title: J. Chromatogr. A. doi: 10.1016/j.chroma.2006.12.017 – volume: 138 start-page: 52 year: 2019 ident: B23 article-title: Effect of sodium chloride on Leptospirillum ferriphilum DSM 14647T and Sulfobacillus thermosulfidooxidans DSM 9293T: growth, iron oxidation activity and bioleaching of sulfidic metal ores. publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.04.033 – volume: 9 start-page: 453 year: 2007 ident: B44 article-title: Analysis of environmental transcriptomes by DNA microarrays. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01162.x – volume: 93 start-page: 319 year: 2012 ident: B65 article-title: Bioleaching in brackish waters - effect of chloride ions on the acidophile population and proteomes of model species. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3731-3 – volume: 17 start-page: 689 year: 2013 ident: B35 article-title: Response of Acidithiobacillus caldus toward suboptimal pH conditions. publication-title: Extremophiles doi: 10.1007/s00792-013-0553-5 – volume: 11 year: 2016 ident: B25 article-title: Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile. publication-title: Stand. Genomic Sci. doi: 10.1186/s40793-016-0142-1 – volume: 17 start-page: 255 year: 1988 ident: B31 article-title: Osmoregulation in Thiobacillus ferrooxidans: stimulation of iron oxidation by proline and betaine under salt stress. publication-title: Curr. Microbiol. doi: 10.1007/bf01571324 – volume: 106 start-page: 422 year: 2010 ident: B15 article-title: Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture. publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22709 – volume: 172 start-page: 1273 year: 2009 ident: B16 article-title: A study on the toxic effects of chloride on the biooxidation efficiency of pyrite. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.07.133 – volume: 12 start-page: 873 year: 2010 ident: B40 article-title: Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2009.02132.x – volume: 7 year: 2012 ident: B43 article-title: Thiol/disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum. publication-title: PLoS One doi: 10.1371/journal.pone.0044576 – volume: 65 start-page: 215 year: 2011 ident: B61 article-title: Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-090110-102815 – volume: 73 start-page: 2698 year: 2009 ident: B26 article-title: The implication of YggT of Escherichia coli in osmotic regulation. publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.90558 – volume: 75 start-page: 126 year: 2015 ident: B48 article-title: Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce. publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.09.011 – volume: 9 year: 2014 ident: B59 article-title: Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. publication-title: PLoS One doi: 10.1371/journal.pone.0093809 – volume: 7 year: 2017 ident: B11 article-title: Multiple osmotic stress responses in Acidihalobacter prosperus result in tolerance to chloride ions. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.02132 – volume: 10 year: 2019 ident: B30 article-title: Uncovering the mechanisms of halotolerance in the extremely acidophilic members of the Acidihalobacter genus through comparative genome analysis. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00155 – volume: 11 start-page: 52 year: 2011 ident: B45 article-title: Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus. publication-title: Proteomics doi: 10.1002/pmic.201000193 – volume: 2 year: 2011 ident: B36 article-title: Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2011.00017 – volume: 56 start-page: 727 year: 2018 ident: B17 article-title: Identification of trehalose as a compatible solute in different species of acidophilic bacteria. publication-title: J. Microbiol. doi: 10.1007/s12275-018-8176-2 – volume: 1 year: 2005 ident: B50 article-title: Organic compatible solutes of halotolerant and halophilic microorganisms. publication-title: Saline Syst. doi: 10.1186/1746-1448-1-5 – volume: 308 start-page: 1915 year: 2005 ident: B47 article-title: Community proteomics of a natural microbial biofilm. publication-title: Science doi: 10.1126/science. 1109070 – volume: 19 start-page: 87 year: 2015 ident: B41 article-title: The hydroxyectoine gene cluster of the non-halophilic acidophile Acidiphilium cryptum. publication-title: Extremophiles doi: 10.1007/s00792-014-0687-0 – volume: 75 start-page: 4599 year: 2009 ident: B20 article-title: Community genomic and proteomic analyses of chemoautotrophic iron- oxidizing “Leptospirillum rubarum” (group II) and “Leptospirillum ferrodiazotrophum” (group III) bacteria in acid mine drainage biofilms. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02943-08 – volume: 26 start-page: 49 year: 2001 ident: B54 article-title: Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. publication-title: FEMS Microbiol. doi: 10.1111/j.1574-6976.2002.tb00598.x |
| SSID | ssj0000402000 |
| Score | 2.3978105 |
| Snippet | In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2455 |
| SubjectTerms | acidophiles bioleaching chloride Leptospirillum spp Microbiology osmolarity oxidative stress |
| Title | Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria |
| URI | https://www.proquest.com/docview/2315526166 https://pubmed.ncbi.nlm.nih.gov/PMC6828654 https://doaj.org/article/d8d78c07b262454991d135fd5fc00f4f |
| Volume | 10 |
| WOSCitedRecordID | wos000496487900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BBRIXBLQVy6MyEhekhia7duIc21UrkKBF6kN7s-yxrUaiyardovbClb_NjLOtNpdy4ZJD7CTOzMTzTTz-BuBjRSCBPJnNMLo8k8rnWa1jzCYT5aKqJ14mnoKzb9XhoZ7N6h8rpb44J6ynB-4Ft-O1rzTmlRuXY8nBTOGLiYpeRczzKCPPvoR6VoKpNAdzWJTn_bokRWE1qalBx6lc9WdebVQDP5To-gcYc5ghueJyDl7A8yVWFLv9GF_Co9C-gqd99cjbdfhzlGrwoPh64ThBEcO2mN4uujkB4guxi43nNKAkeWFbL45uGp9ovsVx2iAiuGxH2tYguLYn4XBBaFBw5oc46W4aJIAuuiim55yl54No2nTXbs4_YVDs9UTPdgNOD_ZPpl-yZV2FDAl-LDJbjIMskZCR1qi1ipY0JhE1uSYsCHKHWEby68wNpxWJskBdEVQqIzUxf-ImrLVdG16DyEPU0lpHQQdKjt-cI3xio7TOETQLI9i5k7LBJek41774aSj4YL2YpBfDejFJLyP4dH_FvCfceKDvHivuvh9TZacTZEBmaUDmXwY0gg93ajf0afF6iW1Dd31lCPoqRRFmWY6gGtjD4InDlrY5TyTdJe_PV_LN_xjiW3jGL80uc1y_g7XF5XV4D0_w16K5utyCx9VMbyX7p-P33_t_AYx9DKE |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osmotic+Imbalance%2C+Cytoplasm+Acidification+and+Oxidative+Stress+Induction+Support+the+High+Toxicity+of+Chloride+in+Acidophilic+Bacteria&rft.jtitle=Frontiers+in+microbiology&rft.au=Rivera-Araya%2C+Javier&rft.au=Pollender%2C+Andre&rft.au=Huynh%2C+Dieu&rft.au=Schl%C3%B6mann%2C+Michael&rft.date=2019-10-29&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmicb.2019.02455&rft_id=info%3Apmid%2F31736901&rft.externalDocID=PMC6828654 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |