On the potential of computational methods and numerical simulation in ice mechanics

This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and "engineering judgme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering Jg. 10; H. 1; S. 012102
Hauptverfasser: Bergan, Pål G, Cammaert, Gus, Skeie, Geir, Tharigopula, Venkatapathi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.06.2010
Schlagworte:
ISSN:1757-899X, 1757-8981, 1757-899X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and "engineering judgment". However, it is believed that computational mechanics and advanced computer simulations of ice-structure interaction can play an important role in developing safer and more efficient structures, especially for irregular structural configurations. The paper explains the complexity of ice as a material in computational mechanics terms. Some key words here are large displacements and deformations, multi-body contact mechanics, instabilities, multi-phase materials, inelasticity, time dependency and creep, thermal effects, fracture and crushing, and multi-scale effects. The paper points towards the use of advanced methods like ALE formulations, mesh-less methods, particle methods, XFEM, and multi-domain formulations in order to deal with these challenges. Some examples involving numerical simulation of interaction and loads between level sea ice and offshore structures are presented. It is concluded that computational mechanics may prove to become a very useful tool for analysing structures in ice; however, much research is still needed to achieve satisfactory reliability and versatility of these methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1757-899X
1757-8981
1757-899X
DOI:10.1088/1757-899X/10/1/012102