High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel

We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy and microanalysis Vol. 25; no. 1; pp. 21 - 29
Main Authors: DeCost, Brian L., Lei, Bo, Francis, Toby, Holm, Elizabeth A.
Format: Journal Article
Language:English
Published: New York, USA Cambridge University Press 01.02.2019
Oxford University Press
Subjects:
ISSN:1431-9276, 1435-8115, 1435-8115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstätten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.
AbstractList We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstätten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.
We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstätten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstätten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov.
Author Lei, Bo
Francis, Toby
Holm, Elizabeth A.
DeCost, Brian L.
Author_xml – sequence: 1
  givenname: Brian L.
  orcidid: 0000-0002-3459-5888
  surname: DeCost
  fullname: DeCost, Brian L.
  email: brian.decost@nist.gov
  organization: 1Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg MD, 20899, USA
– sequence: 2
  givenname: Bo
  orcidid: 0000-0001-6011-5262
  surname: Lei
  fullname: Lei, Bo
  organization: 2Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA, 15213, USA
– sequence: 3
  givenname: Toby
  orcidid: 0000-0001-5665-7683
  surname: Francis
  fullname: Francis, Toby
  organization: 2Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA, 15213, USA
– sequence: 4
  givenname: Elizabeth A.
  orcidid: 0000-0003-3064-5769
  surname: Holm
  fullname: Holm, Elizabeth A.
  organization: 2Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA, 15213, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30869574$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wA9ggS2zYDNhxHMfsqkAp0lQItbOO7MxN4iqxgx-I2fLL62kHkIpg5et7v2NfnXOKjqyzgNBLSt5SQsW7a1oyKgtR0ZpQXjH-BJ3kFl_VlPKj-5qu9vNjdBrCLSGEEVE9Q8eM1JXkojxBPy_NMOKb0bs0jEuK-GtSNpqoovkO-AqimiY3eLWMO9w7jxs3LxP8wFem8y5En7qYPAS8CcYO-APAgtegvM239_gcNyoAvo5pu8PG4s0UvRr3HzbKa2fzBGB6jp72agrw4nCeoc3Fx5vmcrX-8ulzc75edSWTcVX3knEtNdWs6qVmW0LKjgoJUBVaCN33qqh7qnkNHdeKCNLRkhS1kh1hQpbsDL15eHfx7luCENvZhA6mSVlwKbQFlZTxshQko68fobcueZu3a4uCszrbTUSmXh2opGfYtos3s_K79pe7GaAPwN6r4KH_jVDS7hNs_0owa8QjTXefhrPZOzP9V8kOSjVrb7YD_Nn636o7P_Otzw
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129717
crossref_primary_10_1038_s41467_021_26565_5
crossref_primary_10_3390_met14091051
crossref_primary_10_1007_s11837_023_06075_z
crossref_primary_10_1371_journal_pone_0216493
crossref_primary_10_1016_j_commatsci_2024_113645
crossref_primary_10_1016_j_cageo_2023_105455
crossref_primary_10_1080_10584587_2025_2498313
crossref_primary_10_1007_s12613_022_2595_0
crossref_primary_10_1038_s41598_022_08484_7
crossref_primary_10_3390_met11111836
crossref_primary_10_1016_j_jmst_2025_04_045
crossref_primary_10_1007_s42243_024_01179_5
crossref_primary_10_1038_s41524_023_01172_8
crossref_primary_10_1016_j_scriptamat_2025_116581
crossref_primary_10_3390_met11050756
crossref_primary_10_1016_j_matchar_2024_114407
crossref_primary_10_1038_s41524_022_00734_6
crossref_primary_10_1016_j_measurement_2019_107224
crossref_primary_10_1016_j_matchar_2024_114003
crossref_primary_10_1016_j_mtnano_2020_100087
crossref_primary_10_1016_j_matchar_2021_111392
crossref_primary_10_1038_s41524_022_00878_5
crossref_primary_10_1017_S143192762002468X
crossref_primary_10_1007_s10853_021_06630_6
crossref_primary_10_1038_s41598_021_87557_5
crossref_primary_10_1016_j_inffus_2021_09_018
crossref_primary_10_1016_j_mtcomm_2025_113309
crossref_primary_10_1038_s41578_021_00340_w
crossref_primary_10_1016_j_mtcomm_2024_111468
crossref_primary_10_1007_s11666_024_01736_0
crossref_primary_10_1016_j_mechmat_2023_104684
crossref_primary_10_1038_s41524_020_00423_2
crossref_primary_10_1126_science_aax0162
crossref_primary_10_1007_s40962_022_00777_x
crossref_primary_10_1007_s12613_022_2547_8
crossref_primary_10_3390_app13063479
crossref_primary_10_3390_s23208462
crossref_primary_10_3389_fmats_2022_1033505
crossref_primary_10_1080_13621718_2019_1687635
crossref_primary_10_1017_S1431927621000556
crossref_primary_10_1007_s40033_025_00889_8
crossref_primary_10_1063_5_0021106
crossref_primary_10_1038_s41598_022_08651_w
crossref_primary_10_1016_j_actamat_2020_05_027
crossref_primary_10_1016_j_matchar_2021_111551
crossref_primary_10_1016_j_mtcomm_2023_106697
crossref_primary_10_1038_s41524_020_0317_6
crossref_primary_10_1002_srin_202400120
crossref_primary_10_1039_D3CP00402C
crossref_primary_10_1016_j_actamat_2023_119013
crossref_primary_10_1016_j_commatsci_2023_112261
crossref_primary_10_1016_j_ultramic_2022_113641
crossref_primary_10_1016_j_actamat_2023_119086
crossref_primary_10_1016_j_jmst_2021_04_009
crossref_primary_10_1109_ACCESS_2023_3305269
crossref_primary_10_1038_s41524_022_00703_z
crossref_primary_10_1017_S1431927621000386
crossref_primary_10_1038_s41598_022_16429_3
crossref_primary_10_1007_s40747_023_01166_5
crossref_primary_10_1002_srin_202200204
crossref_primary_10_1016_j_mechmat_2023_104661
crossref_primary_10_1016_j_mtcomm_2023_107531
crossref_primary_10_1063_5_0013720
crossref_primary_10_1107_S1600577521001314
crossref_primary_10_1007_s11837_021_04713_y
crossref_primary_10_1557_mrc_2019_73
crossref_primary_10_1016_j_commatsci_2021_111121
crossref_primary_10_1557_s43579_022_00265_7
crossref_primary_10_3390_ma14195764
crossref_primary_10_1016_j_eswa_2025_126925
crossref_primary_10_1016_j_jpowsour_2020_228458
crossref_primary_10_1016_j_matchar_2024_114576
crossref_primary_10_1016_j_scriptamat_2021_114478
crossref_primary_10_1016_j_engappai_2022_105636
crossref_primary_10_1557_s43578_025_01548_0
crossref_primary_10_1007_s11837_021_04805_9
crossref_primary_10_1016_j_matdes_2024_113031
crossref_primary_10_1016_j_matchar_2021_111213
crossref_primary_10_1016_j_clema_2022_100150
crossref_primary_10_1038_s41598_021_91761_8
crossref_primary_10_1016_j_commatsci_2021_110722
crossref_primary_10_1016_j_ultramic_2025_114116
crossref_primary_10_1016_j_measurement_2024_116450
crossref_primary_10_1007_s40192_021_00205_8
crossref_primary_10_1016_j_mtcomm_2020_101514
crossref_primary_10_1016_j_matt_2023_04_016
crossref_primary_10_1007_s10853_025_11544_8
crossref_primary_10_1016_j_matdes_2022_110799
crossref_primary_10_1016_j_matdes_2021_109747
crossref_primary_10_1007_s10853_024_09866_0
crossref_primary_10_1016_j_mtcomm_2022_104900
crossref_primary_10_1007_s13632_020_00676_9
crossref_primary_10_1016_j_mineng_2021_107007
crossref_primary_10_1007_s11661_024_07386_9
crossref_primary_10_1016_j_commatsci_2021_110855
crossref_primary_10_1155_2021_5511618
crossref_primary_10_1016_j_commatsci_2020_109687
crossref_primary_10_5802_crmeca_185
crossref_primary_10_1107_S1600577522006816
crossref_primary_10_1007_s11661_020_06008_4
crossref_primary_10_1007_s10853_023_09150_7
crossref_primary_10_1093_mam_ozae130
crossref_primary_10_1007_s40192_021_00210_x
crossref_primary_10_1016_j_actamat_2025_121219
crossref_primary_10_1016_j_mtcomm_2022_104062
crossref_primary_10_1038_s41578_020_00255_y
crossref_primary_10_1007_s40192_024_00369_z
crossref_primary_10_1016_j_mtcomm_2023_105608
crossref_primary_10_1038_s41524_021_00652_z
crossref_primary_10_1016_j_pmatsci_2023_101165
crossref_primary_10_1109_ACCESS_2022_3161507
crossref_primary_10_1016_j_actamat_2020_07_065
crossref_primary_10_1016_j_asoc_2025_112755
crossref_primary_10_1016_j_cossms_2024_101192
crossref_primary_10_1016_j_matchemphys_2020_123286
crossref_primary_10_1016_j_actamat_2021_117352
crossref_primary_10_3390_app14156489
crossref_primary_10_1016_j_scriptamat_2020_10_026
crossref_primary_10_1038_s41598_019_49105_0
crossref_primary_10_3390_met14050553
crossref_primary_10_1016_j_micron_2024_103665
crossref_primary_10_1016_j_calphad_2021_102303
crossref_primary_10_1016_j_mtcomm_2025_112553
crossref_primary_10_1016_j_commatsci_2020_109593
crossref_primary_10_1016_j_jeurceramsoc_2024_116873
crossref_primary_10_1007_s00170_020_05859_w
crossref_primary_10_1016_j_mineng_2023_108433
crossref_primary_10_1002_eng2_12274
crossref_primary_10_1557_s43579_024_00549_0
crossref_primary_10_1016_j_commatsci_2022_111985
crossref_primary_10_3139_147_110640
crossref_primary_10_1007_s40192_023_00305_7
Cites_doi 10.1080/01621459.1951.10500769
10.1109/ICCV.2015.123
10.1007/978-0-387-21606-5
10.1109/TPAMI.2016.2644615
10.1007/s11263-015-0816-y
10.1007/s11661-017-4012-2
10.1109/TSMC.1979.4310076
10.1007/s40192-017-0097-0
10.1038/s41598-018-20037-5
10.1109/CVPR.2015.7298642
10.1016/B978-0-08-051581-6.50024-6
10.1109/34.87344
10.1016/j.matchar.2016.04.012
10.1109/CVPR.2016.642
10.1088/0370-1301/64/9/303
10.1016/j.actamat.2017.05.014
10.1016/j.commatsci.2016.05.034
10.1016/j.commatsci.2015.08.011
10.7717/peerj.453
10.1007/978-3-319-24574-4_28
10.1038/nature14539
10.1007/s11548-013-0840-8
10.1109/CVPR.2015.7298965
ContentType Journal Article
Copyright Copyright © Microscopy Society of America 2019
Copyright_xml – notice: Copyright © Microscopy Society of America 2019
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1017/S1431927618015635
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & allied health premium.
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Microscopy and Microanalysis
Brian L. DeCost et al.
EISSN 1435-8115
EndPage 29
ExternalDocumentID 30869574
10_1017_S1431927618015635
Genre Journal Article
GroupedDBID ---
-E.
.FH
09C
0E1
0R~
123
29M
3V.
4.4
53G
5VS
5WD
74X
74Y
7RV
7X7
7~V
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AARAB
AASVR
AATID
AAUKB
ABBXD
ABEFU
ABITZ
ABJNI
ABKKG
ABMWE
ABMYL
ABPTD
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABWCF
ABWST
ABZCX
ACBEK
ACBMC
ACCHT
ACFRR
ACGFS
ACIMK
ACIPB
ACIWK
ACPRK
ACQFJ
ACQPF
ACREK
ACUFI
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADCGK
ADFEC
ADGEJ
ADIPN
ADIYS
ADKIL
ADOCW
ADOVH
ADQBN
ADRDM
ADVEK
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFGWE
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANFBD
ANPSP
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZGZS
BBLKV
BBNVY
BENPR
BGHMG
BGLVJ
BGNMA
BHPHI
BKEYQ
BLZWO
BMAJL
BPHCQ
BRIRG
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CJCSC
COF
CS3
DC4
DOHLZ
DU5
EBS
EJD
EX3
F5P
FYUFA
HCIFZ
HG-
HMCUK
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JVRFK
KCGVB
KFECR
KOP
L98
LAS
LK8
LW7
M-V
M1P
M4Y
M7P
NAPCQ
NIKVX
NU0
O9-
OBOKY
OJZSN
OVD
OWPYF
OYBOY
P62
PQQKQ
PROAC
PSQYO
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S6-
S6U
SAAAG
SDH
SY4
T9M
TEORI
UKHRP
UT1
UU6
VUG
WFFJZ
WOW
WQ3
WXU
WXY
WYP
ZYDXJ
AAPXW
AAUAY
AAYXX
ABDFA
ABDTM
ABEJV
ABGNP
ABMNT
ABPQP
ABVGC
ABVKB
ABXVV
ABZEO
ACVCV
ACZBC
ADNBA
ADVOB
ADYJX
AEMTJ
AEUYN
AFFHD
AGMDO
AHGBF
AJBYB
AJDVS
AJNCP
ATGXG
BCRHZ
CITATION
H13
NU-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ROX
NPM
7QO
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c439t-8f935b9b1b36f9b3d004c179ee62b77bffa28f1b58ec5ba070c14028a9c037943
IEDL.DBID M7P
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465593800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1431-9276
1435-8115
IngestDate Sun Nov 09 11:50:22 EST 2025
Mon Oct 06 17:58:22 EDT 2025
Wed Feb 19 02:36:51 EST 2025
Tue Nov 18 21:04:19 EST 2025
Sat Nov 29 05:37:14 EST 2025
Wed Mar 13 05:36:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
steel
segmentation
microstructure
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-8f935b9b1b36f9b3d004c179ee62b77bffa28f1b58ec5ba070c14028a9c037943
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6011-5262
0000-0002-3459-5888
0000-0001-5665-7683
0000-0003-3064-5769
PMID 30869574
PQID 2253880107
PQPubID 33692
PageCount 9
ParticipantIDs proquest_miscellaneous_2191354470
proquest_journals_2253880107
pubmed_primary_30869574
crossref_primary_10_1017_S1431927618015635
crossref_citationtrail_10_1017_S1431927618015635
cambridge_journals_10_1017_S1431927618015635
PublicationCentury 2000
PublicationDate 20190200
2019-02-00
2019-Feb
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 20190200
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: United States
– name: Oxford
PublicationTitle Microscopy and microanalysis
PublicationTitleAlternate Microsc Microanal
PublicationYear 2019
Publisher Cambridge University Press
Oxford University Press
Publisher_xml – name: Cambridge University Press
– name: Oxford University Press
References Azimi, Britz, Engstler, Fritz, Mücklich 2018; 8
Van Der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu 2014; 2
Decost, Hecht, Francis, Webler, Picard, Holm 2017; 6
Otsu 1979; 9
Zener 1948; 175
Badrinarayanan, Kendall, Cipolla 2017; 39
Hall 1951; 64
Massey 1951; 46
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay 2011; 12
Hecht, Webler, Picard 2016; 117
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Li 2015; 115
Nolden, Zelzer, Seitel, Wald, Müller, Franz, Maleike, Fangerau, Baumhauer, Maier-Hein, Maier-Hein, Meinzer, Wolf 2013; 8
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov 2014; 15
Decost, Francis, Holm 2017; 133
Hecht, Picard, Webler 2017; 48
Vincent, Soille 1991; 13
Lecun, Bengio, Hinton 2015; 521
Chowdhury, Kautz, Yener, Lewis 2016; 123
Decost, Holm 2015; 110
S1431927618015635_ref27
S1431927618015635_ref28
S1431927618015635_ref29
Srivastava (S1431927618015635_ref37) 2014; 15
Zener (S1431927618015635_ref41) 1948; 175
Goodfellow (S1431927618015635_ref12) 2016
Pedregosa (S1431927618015635_ref33) 2011; 12
S1431927618015635_ref40
S1431927618015635_ref21
S1431927618015635_ref22
S1431927618015635_ref23
S1431927618015635_ref24
S1431927618015635_ref25
S1431927618015635_ref26
S1431927618015635_ref16
S1431927618015635_ref38
S1431927618015635_ref39
S1431927618015635_ref17
S1431927618015635_ref2
S1431927618015635_ref18
S1431927618015635_ref1
S1431927618015635_ref19
S1431927618015635_ref8
S1431927618015635_ref7
Ioffe (S1431927618015635_ref20) 2015; 37
S1431927618015635_ref9
S1431927618015635_ref4
S1431927618015635_ref3
S1431927618015635_ref6
S1431927618015635_ref5
S1431927618015635_ref30
S1431927618015635_ref31
S1431927618015635_ref32
S1431927618015635_ref10
S1431927618015635_ref11
S1431927618015635_ref34
S1431927618015635_ref13
S1431927618015635_ref35
S1431927618015635_ref14
S1431927618015635_ref36
S1431927618015635_ref15
References_xml – volume: 48
  start-page: 1
  year: 2017
  end-page: 16
  article-title: Coarsening of inter and intragranular proeutectoid cementite in an initially pearlitic 2C-4Cr ultrahigh carbon steel
  publication-title: Metallurgical and Materials Transactions A
– volume: 175
  start-page: 15
  year: 1948
  article-title: Quoted by CS Smith
  publication-title: Trans AIME
– volume: 110
  start-page: 126
  year: 2015
  end-page: 133
  article-title: A computer vision approach for automated analysis and classification of microstructural image data
  publication-title: Comput Mater Sci
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 64
  start-page: 747
  year: 1951
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proceedings of the Physical Society Section B
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vision
– volume: 8
  start-page: 2128
  year: 2018
  article-title: Advanced steel microstructural classification by deep learning methods
  publication-title: Sci Rep
– volume: 117
  start-page: 134
  year: 2016
  end-page: 143
  article-title: Digital image analysis to quantify carbide networks in ultrahigh carbon steels
  publication-title: Mater Charact
– volume: 8
  start-page: 607
  year: 2013
  end-page: 620
  article-title: The medical imaging interaction toolkit: Challenges and advances
  publication-title: Int J Comput Assist Radiol Surg
– volume: 133
  start-page: 30
  year: 2017
  end-page: 40
  article-title: Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures
  publication-title: Acta Mater
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 6
  start-page: 197
  year: 2017
  end-page: 205
  article-title: UHCSDB (ultrahigh carbon steel micrograph database): tools for exploring large heterogeneous microstructure datasets
  publication-title: Integrating Materials and Manufacturing Innovation
– volume: 13
  start-page: 583
  year: 1991
  end-page: 598
  article-title: Watersheds in digital spaces: An efficient algorithm based on immersion simulations
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 39
  start-page: 1
  year: 2017
  end-page: 1
  article-title: Segnet: a deep convolutional encoder-decoder architecture for scene segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit-learn: Machine learning in python
  publication-title: The Journal of Machine Learning Research
– volume: 2
  start-page: e453
  year: 2014
  article-title: Scikit-image: Image processing in python
  publication-title: Peer J
– volume: 46
  start-page: 68
  year: 1951
  end-page: 78
  article-title: The Kolmogorov–Smirnov test for goodness of fit
  publication-title: J Am Stat Assoc
– volume: 123
  start-page: 176
  year: 2016
  end-page: 187
  article-title: Image driven machine learning methods for microstructure recognition
  publication-title: Comput Mater Sci
– ident: S1431927618015635_ref25
– ident: S1431927618015635_ref27
– volume-title: Deep Learning
  year: 2016
  ident: S1431927618015635_ref12
– ident: S1431927618015635_ref29
  doi: 10.1080/01621459.1951.10500769
– ident: S1431927618015635_ref21
– ident: S1431927618015635_ref16
  doi: 10.1109/ICCV.2015.123
– ident: S1431927618015635_ref15
  doi: 10.1007/978-0-387-21606-5
– ident: S1431927618015635_ref23
– ident: S1431927618015635_ref2
  doi: 10.1109/TPAMI.2016.2644615
– ident: S1431927618015635_ref35
  doi: 10.1007/s11263-015-0816-y
– ident: S1431927618015635_ref18
  doi: 10.1007/s11661-017-4012-2
– ident: S1431927618015635_ref32
  doi: 10.1109/TSMC.1979.4310076
– ident: S1431927618015635_ref3
– ident: S1431927618015635_ref9
  doi: 10.1007/s40192-017-0097-0
– ident: S1431927618015635_ref1
  doi: 10.1038/s41598-018-20037-5
– ident: S1431927618015635_ref14
  doi: 10.1109/CVPR.2015.7298642
– ident: S1431927618015635_ref5
  doi: 10.1016/B978-0-08-051581-6.50024-6
– ident: S1431927618015635_ref39
  doi: 10.1109/34.87344
– volume: 37
  start-page: 448
  volume-title: Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research
  year: 2015
  ident: S1431927618015635_ref20
– ident: S1431927618015635_ref10
– ident: S1431927618015635_ref28
– ident: S1431927618015635_ref19
  doi: 10.1016/j.matchar.2016.04.012
– ident: S1431927618015635_ref4
  doi: 10.1109/CVPR.2016.642
– ident: S1431927618015635_ref22
– ident: S1431927618015635_ref13
  doi: 10.1088/0370-1301/64/9/303
– ident: S1431927618015635_ref8
  doi: 10.1016/j.actamat.2017.05.014
– ident: S1431927618015635_ref7
  doi: 10.1016/j.commatsci.2016.05.034
– ident: S1431927618015635_ref6
– ident: S1431927618015635_ref40
– ident: S1431927618015635_ref11
  doi: 10.1016/j.commatsci.2015.08.011
– volume: 15
  start-page: 1929
  year: 2014
  ident: S1431927618015635_ref37
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: S1431927618015635_ref36
– volume: 175
  start-page: 15
  year: 1948
  ident: S1431927618015635_ref41
  article-title: Quoted by CS Smith
  publication-title: Trans AIME
– ident: S1431927618015635_ref38
  doi: 10.7717/peerj.453
– ident: S1431927618015635_ref34
  doi: 10.1007/978-3-319-24574-4_28
– ident: S1431927618015635_ref24
  doi: 10.1038/nature14539
– ident: S1431927618015635_ref31
  doi: 10.1007/s11548-013-0840-8
– ident: S1431927618015635_ref30
– ident: S1431927618015635_ref17
– volume: 12
  start-page: 2825
  year: 2011
  ident: S1431927618015635_ref33
  article-title: Scikit-learn: Machine learning in python
  publication-title: The Journal of Machine Learning Research
– ident: S1431927618015635_ref26
  doi: 10.1109/CVPR.2015.7298965
SSID ssj0003076
Score 2.5597076
Snippet We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures...
SourceID proquest
pubmed
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Annotations
Architectural engineering
Artificial neural networks
Automation
Carbon steel
Case depth
Cemented carbides
Cementite
Datasets
Deep learning
Design
Grain boundaries
High carbon steels
Machine learning
Materials Science Applications
Measurement techniques
Metallography
Microstructure
Neural networks
Photomicrographs
Quantitative analysis
Quantitative metallography
Scientists
Segmentation
Semantics
Spheroidizing
Teaching methods
Title High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel
URI https://www.cambridge.org/core/product/identifier/S1431927618015635/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/30869574
https://www.proquest.com/docview/2253880107
https://www.proquest.com/docview/2191354470
Volume 25
WOSCitedRecordID wos000465593800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: P5Z
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: M7P
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 7X7
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 7RV
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: BENPR
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB7yaKGXNH0kcZsaBXoqXerVPiT1UlI3IYfGOCEpphcjaaUQMGs3Xpfm2l_emdV6TSn1JSzooMdKMA_NSKNvAN5ygpXz3EdcFy5KjYkjJYyLbK5im2ppnK4h87-KwUCORmrYHLjNm7DKpU6sFXUxtXRG_gH5jnBL0Fv5NPsRUdYoul1tUmhswjahJPA6dG_YamLk3_C6KMEVcJEvbzUJMpoqqS6W9JiYsr2tsBX-3qP-Y3jWG9Dp04cufRd2GtOTHQdeeQYbrnwOj0MyyvsX8JtCPthVyNszW1TsYqHL-gkaKkR27iq6og_41gwtXUaaZOJ-sXMK6QswtAv03VkdhMC-ODdjDXjrzUd2zPq4XTKKWrxntyW7nlSo5WjCvr4z0xJbnJu8hOvTk6v-WdRkaIgsGjJVJL1KMqNMbJLcK5MUKHIWRdy5nBshjPeaSx-bTDqbGY3qxaJDx6VWtpcQNN0ebJXT0h0AyyW28TTPjRSp1_gVvkdsU8jUKGk78L6lz7iRs_k4xKiJ8T_k7EBvScKxbdDOKenGZN2Qd-2QWYD6WNf5cEnr1WpWhO7AUduM8kqXMLp00wX2QQc5ydJU9DqwH_ipnS1B_1JlIn21_uev4QmabSrEjh_CFlLYvYFH9md1O7_rwqa4_EblSNSl7ML255PB8LJbCweWw-z7H7-aD70
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NARovfH8UBhgJXhARieMkNhJCU8e0aW01pE6aeAmx40yTqrS0KdBX_iD-Ru7iJBVC9G0PKG_-TOzfnc_x-XcALznRyhW88HiWW09oHXgq0dYzsQqMyKS2WU2ZP0hGI3l2pk624Fd7F4bcKludWCvqfGroH_lbxB3xluBu5cPsq0dRo-h0tQ2h4WBxbFffccu2eH-0j_P7ivODj-P-oddEFfAMLr6VJwsVRlrpQIdxoXSYI0wMwtLamOsk0UWRcVkEOpLWRDpDkTC4CeEyU8YPiU4N270CV4XgPknRSfS50_woL-42U4hfzJO4PUUlimpKpLRA0uVlii635nL4c038h6FbL3gHt_63oboNNxvTmu05WbgDW7a8C9ddsM3VPfhJLi1s7OISzZYV-7TMyvqKHSp8NrQVuSA4_m6GljwjTTmxP9iQXBYdze5ybhesdrJg-9bOWENOe_6O7bE-mgOMvDJX7KJkp5MKtTh12M_melpijrWT-3B6KQPwALbLaWkfAYsl5nERx1omosjwyQufxCKXQitpevCmw0Pa6JFF6nzwkvQv-PTAbyGTmobNnYKKTDZVed1VmTkqk02Fd1tsrd9mDawevOiyUR_RIVNW2ukSywQqCCMhEr8HDx1-u95C3D-rKBGPNzf-HHYOx8NBOjgaHT-BG2iiKucnvwvbONv2KVwz36qLxfxZLX4Mvlw2iH8DA7xnGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Throughput+Quantitative+Metallography+for+Complex+Microstructures+Using+Deep+Learning%3A+A+Case+Study+in+Ultrahigh+Carbon+Steel&rft.jtitle=Microscopy+and+microanalysis&rft.au=DeCost%2C+Brian+L&rft.au=Lei%2C+Bo&rft.au=Francis%2C+Toby&rft.au=Holm%2C+Elizabeth+A&rft.date=2019-02-01&rft.eissn=1435-8115&rft.volume=25&rft.issue=1&rft.spage=21&rft_id=info:doi/10.1017%2FS1431927618015635&rft_id=info%3Apmid%2F30869574&rft.externalDocID=30869574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon