Deep learning approach for active classification of electrocardiogram signals

In this paper, we propose a novel approach based on deep learning for active classification of electrocardiogram (ECG) signals. To this end, we learn a suitable feature representation from the raw ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity constraint....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 345; s. 340 - 354
Hlavní autori: Rahhal, M.M. Al, Bazi, Yakoub, AlHichri, Haikel, Alajlan, Naif, Melgani, Farid, Yager, R.R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.06.2016
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose a novel approach based on deep learning for active classification of electrocardiogram (ECG) signals. To this end, we learn a suitable feature representation from the raw ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity constraint. After this feature learning phase, we add a softmax regression layer on the top of the resulting hidden representation layer yielding the so-called deep neural network (DNN). During the interaction phase, we allow the expert at each iteration to label the most relevant and uncertain ECG beats in the test record, which are then used for updating the DNN weights. As ranking criteria, the method relies on the DNN posterior probabilities to associate confidence measures such as entropy and Breaking-Ties (BT) to each test beat in the ECG record under analysis. In the experiments, we validate the method on the well-known MIT-BIH arrhythmia database as well as two other databases called INCART, and SVDB, respectively. Furthermore, we follow the recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for class labeling and results presentation. The results obtained show that the newly proposed approach provides significant accuracy improvements with less expert interaction and faster online retraining compared to state-of-the-art methods.
AbstractList In this paper, we propose a novel approach based on deep learning for active classification of electrocardiogram (ECG) signals. To this end, we learn a suitable feature representation from the raw ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity constraint. After this feature learning phase, we add a softmax regression layer on the top of the resulting hidden representation layer yielding the so-called deep neural network (DNN). During the interaction phase, we allow the expert at each iteration to label the most relevant and uncertain ECG beats in the test record, which are then used for updating the DNN weights. As ranking criteria, the method relies on the DNN posterior probabilities to associate confidence measures such as entropy and Breaking-Ties (BT) to each test beat in the ECG record under analysis. In the experiments, we validate the method on the well-known MIT-BIH arrhythmia database as well as two other databases called INCART, and SVDB, respectively. Furthermore, we follow the recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for class labeling and results presentation. The results obtained show that the newly proposed approach provides significant accuracy improvements with less expert interaction and faster online retraining compared to state-of-the-art methods.
Author Yager, R.R.
Bazi, Yakoub
Alajlan, Naif
AlHichri, Haikel
Melgani, Farid
Rahhal, M.M. Al
Author_xml – sequence: 1
  givenname: M.M. Al
  surname: Rahhal
  fullname: Rahhal, M.M. Al
  organization: ALISR Laboratory, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh 11543, Saudi Arabia
– sequence: 2
  givenname: Yakoub
  orcidid: 0000-0001-9287-0596
  surname: Bazi
  fullname: Bazi, Yakoub
  email: yakoub.bazi@gmail.com, ybazi@ksu.edu.sa
  organization: ALISR Laboratory, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh 11543, Saudi Arabia
– sequence: 3
  givenname: Haikel
  surname: AlHichri
  fullname: AlHichri, Haikel
  email: hhichri@ksu.edu.sa
  organization: ALISR Laboratory, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh 11543, Saudi Arabia
– sequence: 4
  givenname: Naif
  surname: Alajlan
  fullname: Alajlan, Naif
  email: najlan@ksu.edu.sa
  organization: ALISR Laboratory, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh 11543, Saudi Arabia
– sequence: 5
  givenname: Farid
  surname: Melgani
  fullname: Melgani, Farid
  email: melgani@disi.unitn.it
  organization: Department of Information Engineering and Computer Science, University of Trento, Via Sommarive, 14, I-38123 Trento, Italy
– sequence: 6
  givenname: R.R.
  surname: Yager
  fullname: Yager, R.R.
  email: yager@panix.com
  organization: Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, USA
BookMark eNp9kE1PAyEQhompibX6A7xx9LIr0N0F4snUz6TGi54JhaHSbKHCton_Xmo9eehpJpn3mcw852gUYgCEriipKaHdzar2IdestDWhNRHsBI2p4KzqmKQjNCaEkYqwtj1D5zmvCCEN77oxer0H2OAedAo-LLHebFLU5hO7mLA2g98BNr3O2Ttv9OBjwNFh6MEMKRqdrI_LpNc4-2XQfb5Ap64UuPyrE_Tx-PA-e67mb08vs7t5ZZqpHCphreBOaBC8M5QxbpgjgpbZgjhpG9kaLmzjGm4Z4bKFtpHctotFA9JQCtMJuj7sLdd-bSEPau2zgb7XAeI2K8rllHWSNrRE-SFqUsw5gVPGD7-fDEn7XlGi9gLVShWBai9QEaqKwELSf-Qm-bVO30eZ2wMD5fudh6Sy8RAMWJ-KM2WjP0L_AB0pi4k
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2918792
crossref_primary_10_1016_j_artmed_2021_102192
crossref_primary_10_1016_j_bspc_2024_106693
crossref_primary_10_1109_LGRS_2018_2800642
crossref_primary_10_1152_jn_00404_2023
crossref_primary_10_1155_2018_8676387
crossref_primary_10_1016_j_compbiomed_2018_03_016
crossref_primary_10_3390_computation6040062
crossref_primary_10_1007_s00521_020_04709_w
crossref_primary_10_1016_j_bspc_2022_103982
crossref_primary_10_1016_j_cmpb_2019_05_004
crossref_primary_10_3390_s22114075
crossref_primary_10_1038_s41591_020_0870_z
crossref_primary_10_1007_s11042_022_14233_9
crossref_primary_10_1109_JSEN_2025_3572080
crossref_primary_10_3390_rs11080949
crossref_primary_10_1007_s11042_022_13894_w
crossref_primary_10_1016_j_ins_2016_10_013
crossref_primary_10_3390_diagnostics13243605
crossref_primary_10_1109_TCSI_2018_2881508
crossref_primary_10_1016_j_compbiomed_2017_05_034
crossref_primary_10_1016_j_ins_2023_119898
crossref_primary_10_1186_s13040_022_00303_z
crossref_primary_10_1007_s13042_017_0677_5
crossref_primary_10_1109_TAFFC_2021_3110211
crossref_primary_10_1186_s12859_019_2979_y
crossref_primary_10_1007_s12046_022_02027_6
crossref_primary_10_1016_j_eswa_2022_119221
crossref_primary_10_1016_j_jvoice_2020_05_029
crossref_primary_10_1016_j_compbiomed_2020_103753
crossref_primary_10_3390_w12071942
crossref_primary_10_1016_j_bspc_2021_103331
crossref_primary_10_3233_JIFS_212438
crossref_primary_10_3390_app9081526
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_1109_ACCESS_2019_2938617
crossref_primary_10_1109_TCBB_2018_2827029
crossref_primary_10_1109_ACCESS_2019_2939947
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_1007_s12020_024_03931_z
crossref_primary_10_1038_s44325_024_00040_8
crossref_primary_10_1007_s13239_025_00777_y
crossref_primary_10_1007_s12652_019_01195_4
crossref_primary_10_1016_j_knosys_2018_06_018
crossref_primary_10_1016_j_eswa_2018_03_056
crossref_primary_10_3390_e18080285
crossref_primary_10_1080_10255842_2024_2378105
crossref_primary_10_3389_fphys_2022_850951
crossref_primary_10_1007_s11063_018_09976_2
crossref_primary_10_1109_JSEN_2019_2910853
crossref_primary_10_1007_s11571_022_09918_8
crossref_primary_10_1016_j_cmpb_2019_105219
crossref_primary_10_1007_s10916_019_1218_4
crossref_primary_10_1155_2019_6458719
crossref_primary_10_1109_ACCESS_2019_2950383
crossref_primary_10_1016_j_ins_2017_12_043
crossref_primary_10_1093_mnras_stz2816
crossref_primary_10_3390_e21050471
crossref_primary_10_1088_0967_3334_37_8_1326
crossref_primary_10_1155_2023_3145483
crossref_primary_10_1109_JBHI_2020_2981526
crossref_primary_10_3390_electronics11152280
crossref_primary_10_1016_j_cmpb_2018_11_005
crossref_primary_10_1016_j_future_2019_03_025
crossref_primary_10_1177_1475921719879965
crossref_primary_10_1109_TNNLS_2018_2790388
crossref_primary_10_1007_s10470_019_01556_1
crossref_primary_10_1016_j_patrec_2018_03_028
crossref_primary_10_1155_2018_7310496
crossref_primary_10_1016_j_jocs_2018_03_010
crossref_primary_10_4018_IJDWM_316145
crossref_primary_10_1016_j_bspc_2018_08_026
crossref_primary_10_1016_j_ins_2016_10_026
crossref_primary_10_1007_s11042_023_17410_6
crossref_primary_10_1016_j_neucom_2018_03_010
crossref_primary_10_32604_cmes_2021_016485
crossref_primary_10_1016_j_neucom_2021_04_047
crossref_primary_10_1007_s13246_021_01072_5
crossref_primary_10_3390_s18051387
crossref_primary_10_1016_j_eswa_2024_125482
crossref_primary_10_1016_j_ins_2018_06_062
crossref_primary_10_3390_s20216318
crossref_primary_10_1109_ACCESS_2023_3265305
crossref_primary_10_1109_LGRS_2019_2951800
crossref_primary_10_1016_j_neunet_2023_10_041
crossref_primary_10_1016_j_irbm_2021_04_002
crossref_primary_10_1061__ASCE_HE_1943_5584_0001694
crossref_primary_10_3390_s20072085
crossref_primary_10_1088_1361_6579_ac7938
crossref_primary_10_1007_s12652_018_0867_3
crossref_primary_10_1016_j_bspc_2020_101997
crossref_primary_10_1016_j_cmpb_2021_106379
crossref_primary_10_1109_JBHI_2018_2882518
crossref_primary_10_4218_etrij_2020_0036
crossref_primary_10_3390_app11062787
crossref_primary_10_1145_3326919
crossref_primary_10_1016_j_bspc_2023_105683
crossref_primary_10_1007_s11431_024_2638_x
crossref_primary_10_3390_app11031125
crossref_primary_10_1109_ACCESS_2021_3064084
crossref_primary_10_1109_TIM_2019_2910342
crossref_primary_10_1109_ACCESS_2018_2833841
crossref_primary_10_1016_j_eswa_2022_118508
crossref_primary_10_1088_1742_6596_2161_1_012003
crossref_primary_10_1007_s11390_020_9487_4
crossref_primary_10_1177_1475921719841690
crossref_primary_10_1007_s11277_024_11113_3
crossref_primary_10_1016_j_trb_2018_10_020
crossref_primary_10_1007_s11042_025_20959_z
crossref_primary_10_3390_math11081833
crossref_primary_10_1038_s41598_022_25260_9
crossref_primary_10_1016_j_asoc_2018_08_004
crossref_primary_10_1155_2021_3006397
crossref_primary_10_1016_j_hrtlng_2018_09_007
crossref_primary_10_1016_j_ecoinf_2022_101628
crossref_primary_10_3233_JIFS_179576
crossref_primary_10_3390_bios8040101
crossref_primary_10_1016_j_knosys_2020_106589
crossref_primary_10_1016_j_ins_2016_05_042
crossref_primary_10_1109_JSEN_2017_2772031
crossref_primary_10_3390_app11156711
crossref_primary_10_1007_s40846_022_00687_7
crossref_primary_10_1016_j_eswa_2019_02_035
crossref_primary_10_1016_j_bspc_2022_104238
crossref_primary_10_1016_j_compbiomed_2018_09_009
crossref_primary_10_1109_TIM_2021_3069021
crossref_primary_10_1016_j_procir_2020_03_045
crossref_primary_10_7717_peerj_cs_1189
crossref_primary_10_1016_j_compbiomed_2022_106142
crossref_primary_10_1016_j_irbm_2019_12_001
crossref_primary_10_1007_s11042_020_09938_8
crossref_primary_10_1016_j_bdr_2021_100271
crossref_primary_10_1016_j_cvdhj_2020_04_001
crossref_primary_10_1016_j_eswa_2018_08_011
crossref_primary_10_1371_journal_pone_0321270
crossref_primary_10_3390_s22041660
crossref_primary_10_1016_j_future_2018_10_005
crossref_primary_10_1016_j_cosrev_2021_100420
crossref_primary_10_1007_s11831_023_09927_8
crossref_primary_10_1016_j_knosys_2021_107187
crossref_primary_10_1016_j_ins_2020_07_045
crossref_primary_10_1007_s11517_018_1815_2
crossref_primary_10_1007_s00521_022_06889_z
crossref_primary_10_32604_cmc_2021_014682
crossref_primary_10_1016_j_procs_2021_01_249
crossref_primary_10_1007_s40031_021_00591_9
crossref_primary_10_1016_j_neunet_2024_106551
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1038_s41598_021_84374_8
crossref_primary_10_1007_s12204_018_1911_3
crossref_primary_10_1587_transinf_2017EDP7285
crossref_primary_10_3390_s16101695
crossref_primary_10_1016_j_compbiomed_2021_104807
crossref_primary_10_1111_risa_13425
crossref_primary_10_1007_s00034_019_01196_w
crossref_primary_10_1007_s12652_021_03456_7
crossref_primary_10_1016_j_aap_2022_106933
crossref_primary_10_1016_j_ins_2017_02_013
crossref_primary_10_1155_2020_8840910
crossref_primary_10_3390_jsan6040026
crossref_primary_10_1016_j_bspc_2025_107516
crossref_primary_10_1007_s11042_020_08671_6
crossref_primary_10_1002_ima_22940
crossref_primary_10_1016_j_bspc_2021_102461
crossref_primary_10_1371_journal_pone_0301691
crossref_primary_10_1007_s11042_021_11176_5
crossref_primary_10_3390_s17081786
crossref_primary_10_1088_1361_6579_aaaa9d
crossref_primary_10_1109_ACCESS_2019_2956179
crossref_primary_10_1007_s42600_021_00176_x
crossref_primary_10_1109_JBHI_2023_3325540
crossref_primary_10_1016_j_bbe_2022_03_006
crossref_primary_10_1016_j_finel_2019_07_001
crossref_primary_10_1155_2020_3215681
crossref_primary_10_1007_s00521_025_11092_x
crossref_primary_10_1016_j_artmed_2020_101963
crossref_primary_10_1155_2019_2826901
crossref_primary_10_1016_j_knosys_2021_107508
crossref_primary_10_1155_2021_8387680
crossref_primary_10_3389_fdgth_2020_610956
crossref_primary_10_1016_j_physa_2019_122492
crossref_primary_10_1016_j_datak_2022_102042
crossref_primary_10_1007_s00521_025_11319_x
crossref_primary_10_1016_j_compeleceng_2018_07_043
crossref_primary_10_1007_s13748_021_00243_5
crossref_primary_10_3390_jpm12020310
crossref_primary_10_1002_adma_201905522
crossref_primary_10_3390_molecules28020809
crossref_primary_10_1016_j_ins_2024_121607
crossref_primary_10_1002_acs_3926
crossref_primary_10_1109_ACCESS_2019_2930958
crossref_primary_10_3389_fphys_2022_982537
crossref_primary_10_1016_j_future_2019_09_012
crossref_primary_10_1016_j_ins_2020_08_109
crossref_primary_10_1142_S0218126625300053
crossref_primary_10_1109_ACCESS_2023_3339225
crossref_primary_10_1016_j_imu_2020_100330
crossref_primary_10_3390_biomedinformatics2010008
crossref_primary_10_1007_s13755_023_00237_8
crossref_primary_10_1371_journal_pone_0271270
crossref_primary_10_1016_j_cmpb_2020_105639
crossref_primary_10_1109_ACCESS_2020_3040166
crossref_primary_10_3389_fphys_2023_1118360
crossref_primary_10_1109_TBME_2017_2731158
crossref_primary_10_1007_s40846_018_0389_7
crossref_primary_10_1016_j_eswa_2020_113411
crossref_primary_10_1016_j_procs_2021_10_060
crossref_primary_10_1007_s12559_020_09739_z
crossref_primary_10_1016_j_biopsycho_2021_108117
crossref_primary_10_1007_s12652_020_01722_8
crossref_primary_10_1016_j_bspc_2020_102260
crossref_primary_10_1109_TII_2020_3018496
crossref_primary_10_1016_j_snb_2024_136085
crossref_primary_10_1371_journal_pone_0201059
crossref_primary_10_1016_j_neunet_2021_09_006
crossref_primary_10_1155_2018_3869106
crossref_primary_10_1016_j_neucom_2021_04_104
crossref_primary_10_1177_1550147718802186
crossref_primary_10_1016_j_jksuci_2022_05_009
crossref_primary_10_3390_s19061423
crossref_primary_10_7759_cureus_85638
crossref_primary_10_1016_j_bspc_2024_107480
crossref_primary_10_1016_j_dsp_2021_103094
crossref_primary_10_1155_2021_6217601
crossref_primary_10_1109_TBME_2021_3129306
crossref_primary_10_1007_s10844_021_00685_2
crossref_primary_10_1016_j_dsp_2022_103574
crossref_primary_10_1007_s13246_019_00815_9
crossref_primary_10_1109_TPAMI_2024_3372455
crossref_primary_10_3390_app12157711
crossref_primary_10_1007_s12539_021_00416_9
crossref_primary_10_1007_s42044_021_00080_8
crossref_primary_10_1016_j_bbe_2019_06_001
crossref_primary_10_1109_ACCESS_2019_2912519
crossref_primary_10_1016_j_compbiomed_2018_05_013
crossref_primary_10_1016_j_asoc_2019_105778
crossref_primary_10_1109_ACCESS_2019_2960116
crossref_primary_10_1109_TBME_2020_3024970
crossref_primary_10_1109_TBME_2019_2897651
crossref_primary_10_3390_app14167227
crossref_primary_10_1002_cnm_3241
crossref_primary_10_1155_2022_4610747
crossref_primary_10_3233_JIFS_169527
crossref_primary_10_1007_s11042_021_11594_5
crossref_primary_10_1016_j_jclepro_2020_122843
crossref_primary_10_1109_ACCESS_2021_3076683
crossref_primary_10_3390_agriculture15111148
crossref_primary_10_1016_j_energy_2018_01_165
crossref_primary_10_1016_j_cmpb_2021_106006
crossref_primary_10_1016_j_engappai_2023_107603
crossref_primary_10_1016_j_ins_2019_11_039
crossref_primary_10_1049_iet_spr_2018_5103
crossref_primary_10_3390_ijerph182111302
crossref_primary_10_1016_j_ins_2021_04_074
crossref_primary_10_3390_s23062948
crossref_primary_10_1145_3472291
crossref_primary_10_1016_j_asoc_2025_113655
crossref_primary_10_1016_j_compbiomed_2023_107115
crossref_primary_10_1016_j_neucom_2020_07_056
crossref_primary_10_1016_j_ins_2017_10_044
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_3390_electronics10172052
crossref_primary_10_1016_j_knosys_2024_112553
crossref_primary_10_3390_s23031392
crossref_primary_10_1016_j_isprsjprs_2019_07_001
crossref_primary_10_1109_ACCESS_2020_3039639
crossref_primary_10_1007_s11554_019_00937_z
crossref_primary_10_1109_JSYST_2019_2923670
crossref_primary_10_3390_s20113279
crossref_primary_10_1007_s00366_022_01717_3
crossref_primary_10_1109_ACCESS_2024_3425056
crossref_primary_10_1016_j_ins_2023_119606
crossref_primary_10_1016_j_compbiomed_2020_103726
crossref_primary_10_1109_RBME_2017_2757953
crossref_primary_10_1093_pnasnexus_pgad327
crossref_primary_10_1109_TCSII_2021_3091198
crossref_primary_10_1016_j_jpowsour_2022_231582
crossref_primary_10_1016_j_eswa_2023_119711
crossref_primary_10_1186_s40537_020_00311_y
crossref_primary_10_3390_rs16193728
crossref_primary_10_1016_j_asoc_2025_113623
crossref_primary_10_1109_ACCESS_2017_2771536
crossref_primary_10_3390_s24247896
crossref_primary_10_1016_j_eswa_2021_114809
crossref_primary_10_1088_2057_1976_acbd53
crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_1111_jph_70084
crossref_primary_10_1007_s10489_021_02696_6
crossref_primary_10_1007_s13534_020_00146_9
crossref_primary_10_3390_cancers11060756
crossref_primary_10_1016_j_cjca_2020_02_096
crossref_primary_10_1016_j_ins_2021_06_009
crossref_primary_10_1145_3461701
crossref_primary_10_1007_s12021_018_9397_6
crossref_primary_10_1016_j_patrec_2018_02_009
crossref_primary_10_3390_app9142921
crossref_primary_10_7759_cureus_48563
crossref_primary_10_1109_ACCESS_2019_2948857
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_1016_j_future_2020_05_035
crossref_primary_10_1109_TFUZZ_2024_3395488
crossref_primary_10_1007_s41939_023_00350_x
crossref_primary_10_1016_j_ins_2017_11_043
crossref_primary_10_1016_j_future_2018_03_057
crossref_primary_10_3389_fpls_2024_1356260
crossref_primary_10_1002_mp_16534
crossref_primary_10_1109_ACCESS_2019_2931500
crossref_primary_10_1109_TCSS_2024_3406528
crossref_primary_10_1016_j_ins_2022_05_070
crossref_primary_10_1109_TNNLS_2019_2947789
crossref_primary_10_1007_s13198_021_01077_z
crossref_primary_10_1016_j_bbe_2022_05_006
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1007_s10278_018_0143_2
crossref_primary_10_1016_j_neucom_2021_07_024
crossref_primary_10_1155_2018_6245728
crossref_primary_10_1007_s42979_023_02081_9
crossref_primary_10_1109_JTEHM_2023_3250352
crossref_primary_10_1016_j_knosys_2023_110323
crossref_primary_10_1108_DTA_03_2020_0076
crossref_primary_10_1007_s00500_020_05140_y
crossref_primary_10_3390_s22072431
crossref_primary_10_1016_j_compbiomed_2025_110594
crossref_primary_10_1155_2022_9060340
crossref_primary_10_1007_s00530_020_00713_1
crossref_primary_10_1038_s41591_018_0268_3
crossref_primary_10_1016_j_bspc_2022_103690
crossref_primary_10_1016_j_bbe_2020_02_004
crossref_primary_10_1016_j_chemolab_2016_06_018
crossref_primary_10_1109_TBCAS_2024_3418085
crossref_primary_10_1109_TBME_2022_3187874
crossref_primary_10_1038_s41467_020_15432_4
crossref_primary_10_1080_00051144_2024_2423430
crossref_primary_10_3389_fphy_2019_00103
crossref_primary_10_1038_s41598_024_53107_y
crossref_primary_10_3390_s20174975
crossref_primary_10_1109_ACCESS_2019_2933473
crossref_primary_10_1109_TIM_2017_2698738
crossref_primary_10_1155_2018_4752191
crossref_primary_10_1016_j_eswa_2017_09_022
crossref_primary_10_1016_j_asoc_2017_05_011
crossref_primary_10_1007_s11633_018_1136_9
crossref_primary_10_1016_j_cmpb_2020_105607
crossref_primary_10_1371_journal_pone_0187042
crossref_primary_10_1109_JBHI_2022_3173655
crossref_primary_10_1177_09603360211024971
crossref_primary_10_1007_s11431_023_2460_2
Cites_doi 10.1016/j.eswa.2011.08.025
10.1016/j.cmpb.2011.10.002
10.1126/science.1127647
10.1090/S0025-5718-1980-0572855-7
10.1007/s11760-012-0339-8
10.1016/j.eswa.2012.12.063
10.1109/TGRS.2015.2399978
10.1016/j.bspc.2012.10.005
10.1109/TBME.2012.2213253
10.1109/TITB.2010.2048922
10.1109/TPAMI.2013.50
10.1016/j.bspc.2013.06.005
10.1109/TEVC.2003.814633
10.1109/JBHI.2013.2263311
10.1109/TBME.2012.2208964
10.1109/TBME.2004.827359
10.1109/TITB.2008.923147
10.1109/TBME.2013.2279998
10.1109/TBME.2013.2290800
10.1016/j.patcog.2015.03.011
10.1162/NECO_a_00682
10.1109/TBME.2007.897817
10.1016/j.bspc.2014.10.012
10.1162/neco.2006.18.7.1527
10.1016/j.eswa.2007.05.006
10.1007/s13042-013-0198-9
10.1109/TASE.2013.2263497
10.1109/TPAMI.2014.2353635
10.1049/iet-spr.2014.0005
10.1109/TNN.2007.900239
10.1016/j.bspc.2013.01.005
10.1109/TBME.2006.883802
10.1016/j.neucom.2011.10.045
10.1109/LSP.2014.2324759
10.1016/j.asoc.2012.06.004
10.1109/TBME.2012.2191407
10.1155/2012/107046
10.1016/j.patrec.2014.01.008
10.1109/TIP.2008.924286
10.1007/BF01589116
10.1109/LSP.2014.2325781
10.1109/TIT.2008.920189
10.1109/MSP.2012.2205597
10.1109/LGRS.2010.2083630
10.1109/TBME.2009.2013934
10.1109/TPAMI.2014.2307881
10.1016/j.compbiomed.2013.11.019
10.1109/TKDE.2013.165
10.1016/j.eswa.2015.02.012
10.1109/TBME.2011.2171037
10.1016/j.neunet.2014.09.003
10.1109/TCBB.2013.38
10.1016/j.neucom.2015.03.017
10.1016/j.eswa.2009.06.022
10.1007/s13042-015-0419-5
10.1109/10.623058
10.1109/TBME.2011.2112658
10.1016/j.medengphy.2010.08.007
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2016.01.082
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 354
ExternalDocumentID 10_1016_j_ins_2016_01_082
S0020025516300184
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c439t-8dd87f8ae876c1227c2f081439b0f9d495c78d4f47d20795e5497d5bb4e9c11e3
ISICitedReferencesCount 432
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372687300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Sep 27 18:33:37 EDT 2025
Sat Nov 29 07:27:22 EST 2025
Tue Nov 18 22:18:50 EST 2025
Fri Feb 23 02:33:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ECG signal classification
Feature learning
Denoising autoencoder (DAE)
Active learning (AL)
Deep neural network (DNN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-8dd87f8ae876c1227c2f081439b0f9d495c78d4f47d20795e5497d5bb4e9c11e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9287-0596
OpenAccessLink https://www.sciencedirect.com/science/article/abs/pii/S0020025516300184
PQID 1793269141
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1793269141
crossref_citationtrail_10_1016_j_ins_2016_01_082
crossref_primary_10_1016_j_ins_2016_01_082
elsevier_sciencedirect_doi_10_1016_j_ins_2016_01_082
PublicationCentury 2000
PublicationDate 2016-06-01
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Alvarado, Lakshminarayan, Principe (bib0004) 2012; 59
Zhang, Ding, Zhang, Shi (bib0065) 2016; 7
Ince, Kiranyaz, Gabbouj (bib0032) 2009; 56
Bono, Mazomenos, Chen, Rosengarten, Acharyya, Maharatna (bib0009) 2014; 18
Chang, Lin, Hsieh, Weng (bib0012) 2012; 12
De Chazal, Reilly (bib0015) 2006; 53
Liu, Nocedal (bib0038) 1989; 45
Sameni, Shamsollahi, Jutten, Clifford (bib0051) 2007; 54
Bengio, Courville, Vincent (bib0008) 2013; 35
Homaeinezhad, Atyabi, Tavakkoli, Toosi, Ghaffari, Ebrahimpour (bib0027) 2012; 39
Pasolli, Melgani, Bazi (bib0049) 2011; 8
Brosch, Tam (bib0010) 2015; 27
Luo, Kramer, Goldgof (bib0039) 2005; 6
da S. Luz, Nunes, de Albuquerque, Papa, Menotti (bib0040) 2013; 40
Langkvist, Karlsson, Loutfi (bib0041) 2012
Huang, Wang, Shan, Chen (bib0029) 2015; 48
Hinton (bib0025) 2006; 313
Castro, Nowak (bib0011) 2008; 54
De Chazal, O'Dwyer, Reilly (bib0014) 2004; 51
Jiang, Kong (bib0034) 2007; 18
Ahn, Ramakrishna (bib0005) 2003; 7
Li, Ng, Yeung, Chan (bib0013) 2014; 5
Kutlu, Kuntalp (bib0035) 2012; 105
Zhang, Dong, Luo, Choi, Wu (bib0064) 2014; 46
Ye, Kumar, Coimbra (bib0062) 2012; 59
Deng, Zhang, Eyben, Schuller (bib0016) 2014; 21
Schmidhuber (bib0052) 2015; 61
Melgani, Bazi (bib0044) 2008
Pasolli, Melgani (bib0048) 2010; 14
Swietojanski, Ghoshal, Renals (bib0054) 2014; 21
Wang, Ye, Pan, Gao (bib0059) 2015; 18
Alcaraz, Sandberg, Sörnmo, Rieta (bib0002) 2011; 58
Huanhuan, Yue (bib0030) 2014
Alonso-Atienza, Morgado, Fernandez-Martinez, Garcia-Alberola, Rojo-Alvarez (bib0003) 2014; 61
minFunc - unconstrained differentiable multivariate optimization in Matlab, 2005 (n.d.).
Melgani, Bazi (bib0043) 2008; 12
Tracey, Miller (bib0055) 2012; 59
Fu, Li, Zhu, Zhang (bib0020) 2014; 26
Haque, Holder, Skinner, Cook (bib0022) 2013; 10
Hinton, Osindero, Teh (bib0026) 2006; 18
Längkvist, Karlsson, Loutfi (bib0036) 2014; 42
de Lannoy, Francois, Delbeke, Verleysen (bib0037) 2012; 59
Wang, Chiang, Hsu, Yang (bib0058) 2013; 116
Wang, Shang (bib0057) 2013; 3
Dima, Panagiotou, Mazomenos, Rosengarten, Maharatna, Gialelis (bib0018) 2013; 60
Yadav, Sinha, Bora (bib0060) 2015; 9
Javadi, Arani, Sajedin, Ebrahimpour (bib0033) 2013; 8
Vincent, Larochelle, Bengio, Manzagol (bib0056) 2008
Alajlan, Bazi, Melgani, Malek, Bencherif (bib0001) 2014; 8
Yang, Kan, Liu, Chen (bib0061) 2013; 10
Huang, Jin, Zhou (bib0028) 2014; 36
Sun, Nasrabadi, Tran (bib0053) 2015; 53
Ning, Selesnick (bib0046) 2013; 8
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (bib0024) 2012; 29
Bai, Wu, Zhang, Chen (bib0006) 2015; 165
Phukpattaranont (bib0050) 2015; 42
Derya Übeyli (bib0017) 2010; 37
Mirowski, LeCun, Madhavan, Kuzniecky (bib0045) 2008
Dutta, Chatterjee, Munshi (bib0019) 2010; 32
Hu, Palreddy, Tompkins (bib0031) 1997; 44
Gosselin, Cord (bib0021) 2008; 17
Nocedal (bib0047) 1980; 35
Yu, Chou (bib0063) 2008; 34
Bengio (bib0007) 2012
Hayat, Bennamoun, An (bib0023) 2015; 37
Martis, Acharya, Min (bib0042) 2013; 8
Ince (10.1016/j.ins.2016.01.082_bib0032) 2009; 56
Jiang (10.1016/j.ins.2016.01.082_bib0034) 2007; 18
Phukpattaranont (10.1016/j.ins.2016.01.082_bib0050) 2015; 42
Sun (10.1016/j.ins.2016.01.082_bib0053) 2015; 53
Fu (10.1016/j.ins.2016.01.082_bib0020) 2014; 26
Dutta (10.1016/j.ins.2016.01.082_bib0019) 2010; 32
Homaeinezhad (10.1016/j.ins.2016.01.082_bib0027) 2012; 39
Wang (10.1016/j.ins.2016.01.082_bib0058) 2013; 116
Alajlan (10.1016/j.ins.2016.01.082_bib0001) 2014; 8
Mirowski (10.1016/j.ins.2016.01.082_bib0045) 2008
Längkvist (10.1016/j.ins.2016.01.082_bib0036) 2014; 42
Haque (10.1016/j.ins.2016.01.082_bib0022) 2013; 10
Martis (10.1016/j.ins.2016.01.082_bib0042) 2013; 8
Swietojanski (10.1016/j.ins.2016.01.082_bib0054) 2014; 21
Zhang (10.1016/j.ins.2016.01.082_bib0065) 2016; 7
Brosch (10.1016/j.ins.2016.01.082_bib0010) 2015; 27
Chang (10.1016/j.ins.2016.01.082_bib0012) 2012; 12
De Chazal (10.1016/j.ins.2016.01.082_bib0014) 2004; 51
Bono (10.1016/j.ins.2016.01.082_bib0009) 2014; 18
Kutlu (10.1016/j.ins.2016.01.082_bib0035) 2012; 105
Hayat (10.1016/j.ins.2016.01.082_bib0023) 2015; 37
Melgani (10.1016/j.ins.2016.01.082_bib0043) 2008; 12
Wang (10.1016/j.ins.2016.01.082_bib0059) 2015; 18
10.1016/j.ins.2016.01.082_bib0066
Alonso-Atienza (10.1016/j.ins.2016.01.082_bib0003) 2014; 61
Derya Übeyli (10.1016/j.ins.2016.01.082_bib0017) 2010; 37
Hinton (10.1016/j.ins.2016.01.082_bib0024) 2012; 29
Nocedal (10.1016/j.ins.2016.01.082_bib0047) 1980; 35
Javadi (10.1016/j.ins.2016.01.082_bib0033) 2013; 8
da S. Luz (10.1016/j.ins.2016.01.082_bib0040) 2013; 40
Pasolli (10.1016/j.ins.2016.01.082_bib0049) 2011; 8
Huang (10.1016/j.ins.2016.01.082_bib0028) 2014; 36
Sameni (10.1016/j.ins.2016.01.082_bib0051) 2007; 54
Alcaraz (10.1016/j.ins.2016.01.082_bib0002) 2011; 58
Ye (10.1016/j.ins.2016.01.082_bib0062) 2012; 59
Hinton (10.1016/j.ins.2016.01.082_bib0025) 2006; 313
Wang (10.1016/j.ins.2016.01.082_bib0057) 2013; 3
Bengio (10.1016/j.ins.2016.01.082_bib0008) 2013; 35
Melgani (10.1016/j.ins.2016.01.082_bib0044) 2008
Deng (10.1016/j.ins.2016.01.082_bib0016) 2014; 21
Yadav (10.1016/j.ins.2016.01.082_bib0060) 2015; 9
Hinton (10.1016/j.ins.2016.01.082_bib0026) 2006; 18
De Chazal (10.1016/j.ins.2016.01.082_bib0015) 2006; 53
Alvarado (10.1016/j.ins.2016.01.082_bib0004) 2012; 59
Bengio (10.1016/j.ins.2016.01.082_bib0007) 2012
Castro (10.1016/j.ins.2016.01.082_bib0011) 2008; 54
Bai (10.1016/j.ins.2016.01.082_bib0006) 2015; 165
Hu (10.1016/j.ins.2016.01.082_bib0031) 1997; 44
de Lannoy (10.1016/j.ins.2016.01.082_bib0037) 2012; 59
Schmidhuber (10.1016/j.ins.2016.01.082_bib0052) 2015; 61
Langkvist (10.1016/j.ins.2016.01.082_bib0041) 2012
Luo (10.1016/j.ins.2016.01.082_bib0039) 2005; 6
Ning (10.1016/j.ins.2016.01.082_bib0046) 2013; 8
Yu (10.1016/j.ins.2016.01.082_bib0063) 2008; 34
Gosselin (10.1016/j.ins.2016.01.082_bib0021) 2008; 17
Tracey (10.1016/j.ins.2016.01.082_bib0055) 2012; 59
Liu (10.1016/j.ins.2016.01.082_bib0038) 1989; 45
Li (10.1016/j.ins.2016.01.082_bib0013) 2014; 5
Zhang (10.1016/j.ins.2016.01.082_bib0064) 2014; 46
Ahn (10.1016/j.ins.2016.01.082_bib0005) 2003; 7
Dima (10.1016/j.ins.2016.01.082_bib0018) 2013; 60
Huanhuan (10.1016/j.ins.2016.01.082_bib0030) 2014
Vincent (10.1016/j.ins.2016.01.082_bib0056) 2008
Yang (10.1016/j.ins.2016.01.082_bib0061) 2013; 10
Pasolli (10.1016/j.ins.2016.01.082_bib0048) 2010; 14
Huang (10.1016/j.ins.2016.01.082_bib0029) 2015; 48
References_xml – volume: 58
  start-page: 1441
  year: 2011
  end-page: 1449
  ident: bib0002
  article-title: Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 3
  start-page: 505
  year: 2013
  end-page: 511
  ident: bib0057
  article-title: Modeling physiological data with deep belief networks
  publication-title: Int. J. Inf. Educ. Technol. IJIET
– volume: 60
  start-page: 3399
  year: 2013
  end-page: 3409
  ident: bib0018
  article-title: On the detection of myocadial scar based on ECG/VCG analysis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bib0038
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 18
  start-page: 193
  year: 2014
  end-page: 204
  ident: bib0009
  article-title: Development of an automated updated Selvester QRS scoring system using SWT-based QRS fractionation detection and classification
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 12
  start-page: 3165
  year: 2012
  end-page: 3175
  ident: bib0012
  article-title: Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 931
  year: 2014
  end-page: 942
  ident: bib0001
  article-title: Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods
  publication-title: Signal Image Video Process.
– volume: 10
  start-page: 632
  year: 2013
  end-page: 644
  ident: bib0022
  article-title: Generalized query-based active learning to identify differentially methylated regions in DNA
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 48
  start-page: 3113
  year: 2015
  end-page: 3124
  ident: bib0029
  article-title: Face recognition on large-scale video in the wild with hybrid Euclidean-and-Riemannian metric learning
  publication-title: Pattern Recognit.
– reference: minFunc - unconstrained differentiable multivariate optimization in Matlab, 2005 (n.d.).
– volume: 21
  start-page: 1068
  year: 2014
  end-page: 1072
  ident: bib0016
  article-title: Autoencoder-based unsupervised domain adaptation for speech emotion recognition
  publication-title: IEEE Signal Process. Lett.
– volume: 51
  start-page: 1196
  year: 2004
  end-page: 1206
  ident: bib0014
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 105
  start-page: 257
  year: 2012
  end-page: 267
  ident: bib0035
  article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
  publication-title: Comput. Methods Progr. Biomed.
– volume: 5
  start-page: 73
  year: 2014
  end-page: 83
  ident: bib0013
  article-title: Bi-firing deep neural networks
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 21
  start-page: 1120
  year: 2014
  end-page: 1124
  ident: bib0054
  article-title: Convolutional neural networks for distant speech recognition
  publication-title: IEEE Signal Process. Lett.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0008
  article-title: Representation Learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0052
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 46
  start-page: 79
  year: 2014
  end-page: 89
  ident: bib0064
  article-title: Heartbeat classification using disease-specific feature selection
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0026
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– start-page: 237
  year: 2008
  end-page: 240
  ident: bib0044
  article-title: Detecting premature ventricular contractions in ECG signals with Gaussian processes
  publication-title: Comput. Cardiol.
– volume: 7
  start-page: 367
  year: 2003
  end-page: 385
  ident: bib0005
  article-title: Elitism-based compact genetic algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 437
  year: 2012
  end-page: 478
  ident: bib0007
  article-title: Practical recommendations for gradient-based training of deep architectures
  publication-title: Neural Network Tricks Trade
– volume: 18
  start-page: 36
  year: 2015
  end-page: 41
  ident: bib0059
  article-title: Parallel-type fractional zero-phase filtering for ECG signal denoising
  publication-title: Biomed. Signal Process. Control.
– volume: 59
  start-page: 2383
  year: 2012
  end-page: 2386
  ident: bib0055
  article-title: Nonlocal means denoising of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0024
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– volume: 26
  start-page: 808
  year: 2014
  end-page: 822
  ident: bib0020
  article-title: Active learning without knowing individual instance labels: A pairwise label homogeneity query approach
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 53
  start-page: 4457
  year: 2015
  end-page: 4471
  ident: bib0053
  article-title: Task-driven dictionary learning for hyperspectral image classification with structured sparsity constraints
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 211
  year: 2015
  end-page: 227
  ident: bib0010
  article-title: Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images
  publication-title: Neural Comput.
– start-page: 244
  year: 2008
  end-page: 249
  ident: bib0045
  article-title: Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG
  publication-title: Proceedings of the IEEE Workshop on Machine Learning Signal Process, 2008 MLSP 2008
– volume: 165
  start-page: 280
  year: 2015
  end-page: 292
  ident: bib0006
  article-title: Subset based deep learning for RGB-D object recognition
  publication-title: Neurocomputing
– start-page: 7
  year: 2014
  end-page: 12
  ident: bib0030
  article-title: Classification of electrocardiogram signals with deep belief networks
  publication-title: Proceedings of the 2014 IEEE Seventeenth International Conference on Computer Science Engineering CSE
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0025
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 17
  start-page: 1200
  year: 2008
  end-page: 1211
  ident: bib0021
  article-title: Active learning methods for interactive image retrieval
  publication-title: IEEE Trans. Image Process.
– volume: 39
  start-page: 2047
  year: 2012
  end-page: 2058
  ident: bib0027
  article-title: ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 11
  year: 2014
  end-page: 24
  ident: bib0036
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit. Lett.
– volume: 116
  start-page: 38
  year: 2013
  end-page: 45
  ident: bib0058
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
– volume: 37
  start-page: 1192
  year: 2010
  end-page: 1199
  ident: bib0017
  article-title: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals
  publication-title: Expert Syst. Appl.
– volume: 35
  start-page: 773
  year: 1980
  end-page: 782
  ident: bib0047
  article-title: Updating quasi-Newton matrices with limited storage
  publication-title: Math. Comput.
– volume: 53
  start-page: 2535
  year: 2006
  end-page: 2543
  ident: bib0015
  article-title: A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 289
  year: 2013
  end-page: 296
  ident: bib0033
  article-title: Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning
  publication-title: Biomed. Signal Process. Control
– volume: 42
  start-page: 4867
  year: 2015
  end-page: 4877
  ident: bib0050
  article-title: QRS detection algorithm based on the quadratic filter
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 891
  year: 1997
  end-page: 900
  ident: bib0031
  article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 59
  start-page: 241
  year: 2012
  end-page: 247
  ident: bib0037
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 3561
  year: 2013
  end-page: 3573
  ident: bib0040
  article-title: ECG arrhythmia classification based on optimum-path forest
  publication-title: Expert Syst. Appl.
– volume: 61
  start-page: 832
  year: 2014
  end-page: 840
  ident: bib0003
  article-title: Detection of life-threatening arrhythmias using feature selection and support vector machines
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: 589
  year: 2005
  end-page: 613
  ident: bib0039
  article-title: Active learning to recognize multiple types of plankton
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 437
  year: 2013
  end-page: 448
  ident: bib0042
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process. Control
– volume: 59
  start-page: 2930
  year: 2012
  end-page: 2941
  ident: bib0062
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 34
  start-page: 2841
  year: 2008
  end-page: 2846
  ident: bib0063
  article-title: Integration of independent component analysis and neural networks for ECG beat classification
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 431
  year: 2011
  end-page: 435
  ident: bib0049
  article-title: Support vector machine active learning through significance space construction
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 56
  start-page: 1415
  year: 2009
  end-page: 1426
  ident: bib0032
  article-title: A generic and robust system for automated patient-specific classification of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 713
  year: 2013
  end-page: 723
  ident: bib0046
  article-title: ECG enhancement and QRS detection based on sparse derivatives
  publication-title: Biomed. Signal Process. Control
– volume: 59
  start-page: 1641
  year: 2012
  end-page: 1648
  ident: bib0004
  article-title: Time-based compression and classification of heartbeats
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 54
  start-page: 2172
  year: 2007
  end-page: 2185
  ident: bib0051
  article-title: A nonlinear Bayesian filtering framework for ECG Denoising
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 7
  start-page: 111
  year: 2016
  end-page: 120
  ident: bib0065
  article-title: Incremental extreme learning machine based on deep feature embedded
  publication-title: Int. J. Mach. Learn. Cybern.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0056
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the Twenty Fifth International Conference on Machine Learning
– volume: 12
  start-page: 667
  year: 2008
  end-page: 677
  ident: bib0043
  article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 9
  start-page: 88
  year: 2015
  end-page: 96
  ident: bib0060
  article-title: Electrocardiogram signal denoising using non-local wavelet transform domain filtering
  publication-title: IET Signal Process.
– year: 2012
  ident: bib0041
  article-title: Sleep stage classification using unsupervised feature learning
  publication-title: Adv. Artif. Neural Syst.
– volume: 54
  start-page: 2339
  year: 2008
  end-page: 2353
  ident: bib0011
  article-title: Minimax bounds for active learning
  publication-title: IEEE Trans. Inf. Theory
– volume: 10
  start-page: 938
  year: 2013
  end-page: 947
  ident: bib0061
  article-title: Spatiotemporal differentiation of myocardial infarctions
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 36
  start-page: 1936
  year: 2014
  end-page: 1949
  ident: bib0028
  article-title: Active learning by querying informative and representative examples
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 713
  year: 2015
  end-page: 727
  ident: bib0023
  article-title: Deep reconstruction models for image set classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 1161
  year: 2010
  end-page: 1169
  ident: bib0019
  article-title: Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification
  publication-title: Med. Eng. Phys.
– volume: 14
  start-page: 1405
  year: 2010
  end-page: 1416
  ident: bib0048
  article-title: Active learning methods for electrocardiographic signal classification
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 18
  start-page: 1750
  year: 2007
  end-page: 1761
  ident: bib0034
  article-title: Block-based neural networks for personalized ECG signal classification
  publication-title: IEEE Trans. Neural Netw.
– volume: 39
  start-page: 2047
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0027
  article-title: ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.025
– volume: 105
  start-page: 257
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0035
  article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2011.10.002
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.ins.2016.01.082_bib0025
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 35
  start-page: 773
  year: 1980
  ident: 10.1016/j.ins.2016.01.082_bib0047
  article-title: Updating quasi-Newton matrices with limited storage
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1980-0572855-7
– volume: 8
  start-page: 931
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0001
  article-title: Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-012-0339-8
– start-page: 244
  year: 2008
  ident: 10.1016/j.ins.2016.01.082_bib0045
  article-title: Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG
– volume: 40
  start-page: 3561
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0040
  article-title: ECG arrhythmia classification based on optimum-path forest
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.12.063
– volume: 53
  start-page: 4457
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0053
  article-title: Task-driven dictionary learning for hyperspectral image classification with structured sparsity constraints
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2399978
– volume: 8
  start-page: 289
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0033
  article-title: Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.10.005
– volume: 59
  start-page: 2930
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0062
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2213253
– volume: 14
  start-page: 1405
  year: 2010
  ident: 10.1016/j.ins.2016.01.082_bib0048
  article-title: Active learning methods for electrocardiographic signal classification
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2048922
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0008
  article-title: Representation Learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 8
  start-page: 713
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0046
  article-title: ECG enhancement and QRS detection based on sparse derivatives
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.06.005
– volume: 7
  start-page: 367
  year: 2003
  ident: 10.1016/j.ins.2016.01.082_bib0005
  article-title: Elitism-based compact genetic algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814633
– volume: 18
  start-page: 193
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0009
  article-title: Development of an automated updated Selvester QRS scoring system using SWT-based QRS fractionation detection and classification
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2013.2263311
– volume: 59
  start-page: 2383
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0055
  article-title: Nonlocal means denoising of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208964
– volume: 51
  start-page: 1196
  year: 2004
  ident: 10.1016/j.ins.2016.01.082_bib0014
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– volume: 12
  start-page: 667
  year: 2008
  ident: 10.1016/j.ins.2016.01.082_bib0043
  article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.923147
– volume: 60
  start-page: 3399
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0018
  article-title: On the detection of myocadial scar based on ECG/VCG analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2279998
– volume: 61
  start-page: 832
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0003
  article-title: Detection of life-threatening arrhythmias using feature selection and support vector machines
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2290800
– volume: 6
  start-page: 589
  year: 2005
  ident: 10.1016/j.ins.2016.01.082_bib0039
  article-title: Active learning to recognize multiple types of plankton
  publication-title: J. Mach. Learn. Res.
– volume: 48
  start-page: 3113
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0029
  article-title: Face recognition on large-scale video in the wild with hybrid Euclidean-and-Riemannian metric learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.011
– volume: 27
  start-page: 211
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0010
  article-title: Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00682
– volume: 54
  start-page: 2172
  year: 2007
  ident: 10.1016/j.ins.2016.01.082_bib0051
  article-title: A nonlinear Bayesian filtering framework for ECG Denoising
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.897817
– volume: 18
  start-page: 36
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0059
  article-title: Parallel-type fractional zero-phase filtering for ECG signal denoising
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2014.10.012
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.ins.2016.01.082_bib0026
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 34
  start-page: 2841
  year: 2008
  ident: 10.1016/j.ins.2016.01.082_bib0063
  article-title: Integration of independent component analysis and neural networks for ECG beat classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.006
– volume: 5
  start-page: 73
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0013
  article-title: Bi-firing deep neural networks
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-013-0198-9
– volume: 10
  start-page: 938
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0061
  article-title: Spatiotemporal differentiation of myocardial infarctions
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2013.2263497
– volume: 37
  start-page: 713
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0023
  article-title: Deep reconstruction models for image set classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2353635
– volume: 9
  start-page: 88
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0060
  article-title: Electrocardiogram signal denoising using non-local wavelet transform domain filtering
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2014.0005
– volume: 18
  start-page: 1750
  year: 2007
  ident: 10.1016/j.ins.2016.01.082_bib0034
  article-title: Block-based neural networks for personalized ECG signal classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.900239
– volume: 8
  start-page: 437
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0042
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 53
  start-page: 2535
  year: 2006
  ident: 10.1016/j.ins.2016.01.082_bib0015
  article-title: A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.883802
– volume: 116
  start-page: 38
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0058
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.045
– volume: 21
  start-page: 1068
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0016
  article-title: Autoencoder-based unsupervised domain adaptation for speech emotion recognition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2324759
– volume: 12
  start-page: 3165
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0012
  article-title: Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.06.004
– volume: 59
  start-page: 1641
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0004
  article-title: Time-based compression and classification of heartbeats
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2191407
– year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0041
  article-title: Sleep stage classification using unsupervised feature learning
  publication-title: Adv. Artif. Neural Syst.
  doi: 10.1155/2012/107046
– start-page: 7
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0030
  article-title: Classification of electrocardiogram signals with deep belief networks
– start-page: 437
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0007
  article-title: Practical recommendations for gradient-based training of deep architectures
– volume: 42
  start-page: 11
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0036
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.01.008
– volume: 17
  start-page: 1200
  year: 2008
  ident: 10.1016/j.ins.2016.01.082_bib0021
  article-title: Active learning methods for interactive image retrieval
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.924286
– volume: 45
  start-page: 503
  year: 1989
  ident: 10.1016/j.ins.2016.01.082_bib0038
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 21
  start-page: 1120
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0054
  article-title: Convolutional neural networks for distant speech recognition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2325781
– start-page: 1096
  year: 2008
  ident: 10.1016/j.ins.2016.01.082_bib0056
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 54
  start-page: 2339
  year: 2008
  ident: 10.1016/j.ins.2016.01.082_bib0011
  article-title: Minimax bounds for active learning
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.920189
– ident: 10.1016/j.ins.2016.01.082_bib0066
– volume: 29
  start-page: 82
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0024
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 8
  start-page: 431
  year: 2011
  ident: 10.1016/j.ins.2016.01.082_bib0049
  article-title: Support vector machine active learning through significance space construction
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2083630
– volume: 3
  start-page: 505
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0057
  article-title: Modeling physiological data with deep belief networks
  publication-title: Int. J. Inf. Educ. Technol. IJIET
– volume: 56
  start-page: 1415
  year: 2009
  ident: 10.1016/j.ins.2016.01.082_bib0032
  article-title: A generic and robust system for automated patient-specific classification of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2013934
– start-page: 237
  year: 2008
  ident: 10.1016/j.ins.2016.01.082_bib0044
  article-title: Detecting premature ventricular contractions in ECG signals with Gaussian processes
  publication-title: Comput. Cardiol.
– volume: 36
  start-page: 1936
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0028
  article-title: Active learning by querying informative and representative examples
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2307881
– volume: 46
  start-page: 79
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0064
  article-title: Heartbeat classification using disease-specific feature selection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.11.019
– volume: 26
  start-page: 808
  year: 2014
  ident: 10.1016/j.ins.2016.01.082_bib0020
  article-title: Active learning without knowing individual instance labels: A pairwise label homogeneity query approach
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.165
– volume: 42
  start-page: 4867
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0050
  article-title: QRS detection algorithm based on the quadratic filter
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.012
– volume: 59
  start-page: 241
  year: 2012
  ident: 10.1016/j.ins.2016.01.082_bib0037
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2171037
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0052
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 10
  start-page: 632
  year: 2013
  ident: 10.1016/j.ins.2016.01.082_bib0022
  article-title: Generalized query-based active learning to identify differentially methylated regions in DNA
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2013.38
– volume: 165
  start-page: 280
  year: 2015
  ident: 10.1016/j.ins.2016.01.082_bib0006
  article-title: Subset based deep learning for RGB-D object recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.017
– volume: 37
  start-page: 1192
  year: 2010
  ident: 10.1016/j.ins.2016.01.082_bib0017
  article-title: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.022
– volume: 7
  start-page: 111
  year: 2016
  ident: 10.1016/j.ins.2016.01.082_bib0065
  article-title: Incremental extreme learning machine based on deep feature embedded
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-015-0419-5
– volume: 44
  start-page: 891
  year: 1997
  ident: 10.1016/j.ins.2016.01.082_bib0031
  article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.623058
– volume: 58
  start-page: 1441
  year: 2011
  ident: 10.1016/j.ins.2016.01.082_bib0002
  article-title: Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2112658
– volume: 32
  start-page: 1161
  year: 2010
  ident: 10.1016/j.ins.2016.01.082_bib0019
  article-title: Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.08.007
SSID ssj0004766
Score 2.6528075
Snippet In this paper, we propose a novel approach based on deep learning for active classification of electrocardiogram (ECG) signals. To this end, we learn a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 340
SubjectTerms Active learning (AL)
Classification
Deep neural network (DNN)
Denoising autoencoder (DAE)
ECG signal classification
Entropy
Feature learning
Learning
Neural networks
Recommendations
Representations
Retraining
Title Deep learning approach for active classification of electrocardiogram signals
URI https://dx.doi.org/10.1016/j.ins.2016.01.082
https://www.proquest.com/docview/1793269141
Volume 345
WOSCitedRecordID wos000372687300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg4wAHBAPEgCEjIQ5UmfLh2PGxwFBBtOIwpHKKbMem7aK0Wls08dfzHDsf67SJHbhEURJbSd7P7z3bv_ceQm-ZAsfewEgTGSEBSZUOpGRhAJYqlVRQmbqqJd_YZJJNp_y73y5Y1-UEWFVlFxd89V9FDddA2DZ09hbibjuFC3AOQocjiB2O_yT4T1qvmmIQv9qc4Y4tWSu3gbIes6UIte6iL4ajanKq5WsNLK9DlOu-7-ojl-o23nB2RHkxm9WlAwbj4_HxYNjyNj6IPzVf4Kc4W25lC69yNFczF-Q-EvMzXXZ3xKJ0i7ITMTf9RYmIduSpNkggDOx0pa9oE5L2VGXi0jR5q5u4VNJXFLpbW1jALMTmVo9onWPVlSu6nDx7x6i1VMOGxbbIoYvcdpGHUQ5d3EX7MUs5aML94ZeT6dcumpa5He7mE5q98JoVuPMe13kzO3a9dlZOH6GHfpaBhw4dj9EdXR2gB73ckwfoyEes4He4J1jsdf0TNLY4wg2OcIMjDI9ihyN8GUd4afAVHGGPo6fox-eT04-jwNfeCBS4qJsgK4qMmUxosJYqimOmYgPeI9yToeEFTKsVywpiCCvikPFUp4SzIpWSaK6iSCfP0F61rPRzhA0NiYwLcJcoJczILKJSwO_khuosKfghCpt_mCufmN7WRynza2V3iN63TVYuK8tND5NGMLkfHc5dzAFkNzV70wgxB5Vr99FEpZfbdW5tWkx5RKIXt3mPl-h-N1Reob3N-VYfoXvq92a-Pn_tUfgX-S6jwg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+approach+for+active+classification+of+electrocardiogram+signals&rft.jtitle=Information+sciences&rft.au=Rahhal%2C+M.M.+Al&rft.au=Bazi%2C+Yakoub&rft.au=AlHichri%2C+Haikel&rft.au=Alajlan%2C+Naif&rft.date=2016-06-01&rft.issn=0020-0255&rft.volume=345&rft.spage=340&rft.epage=354&rft_id=info:doi/10.1016%2Fj.ins.2016.01.082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2016_01_082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon