Nonlinear algorithm for the solution of the Kohn-Sham equations in solids

We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure calculations. Traditionally, the nonlinear self-consistent problem is linearized into successive fixed potential eigenvalue problems with potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter Jg. 17; H. 25; S. 3701
Hauptverfasser: Wang, Jian, Wang, Yu, Yu, Shaoying, Kolb, Dietmar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 29.06.2005
ISSN:0953-8984
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure calculations. Traditionally, the nonlinear self-consistent problem is linearized into successive fixed potential eigenvalue problems with potentials updated between them. In the new method, the self-consistent problem is solved directly with the FAS scheme. First, the error of self-consistence in density is calculated; then, an FAS coarse grid problem is defined and solved; finally, a correction is interpolated to the fine grid to modify the density. The eigenvalue problem is integrated inside the FAS scheme, and evolves along with the self-consistent problem within the FAS frame. Calculations are demonstrated for Si and Al.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0953-8984
DOI:10.1088/0953-8984/17/25/001