Nonlinear algorithm for the solution of the Kohn-Sham equations in solids

We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure calculations. Traditionally, the nonlinear self-consistent problem is linearized into successive fixed potential eigenvalue problems with potenti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Condensed matter Ročník 17; číslo 25; s. 3701
Hlavní autori: Wang, Jian, Wang, Yu, Yu, Shaoying, Kolb, Dietmar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 29.06.2005
ISSN:0953-8984
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure calculations. Traditionally, the nonlinear self-consistent problem is linearized into successive fixed potential eigenvalue problems with potentials updated between them. In the new method, the self-consistent problem is solved directly with the FAS scheme. First, the error of self-consistence in density is calculated; then, an FAS coarse grid problem is defined and solved; finally, a correction is interpolated to the fine grid to modify the density. The eigenvalue problem is integrated inside the FAS scheme, and evolves along with the self-consistent problem within the FAS frame. Calculations are demonstrated for Si and Al.
AbstractList We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure calculations. Traditionally, the nonlinear self-consistent problem is linearized into successive fixed potential eigenvalue problems with potentials updated between them. In the new method, the self-consistent problem is solved directly with the FAS scheme. First, the error of self-consistence in density is calculated; then, an FAS coarse grid problem is defined and solved; finally, a correction is interpolated to the fine grid to modify the density. The eigenvalue problem is integrated inside the FAS scheme, and evolves along with the self-consistent problem within the FAS frame. Calculations are demonstrated for Si and Al.We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure calculations. Traditionally, the nonlinear self-consistent problem is linearized into successive fixed potential eigenvalue problems with potentials updated between them. In the new method, the self-consistent problem is solved directly with the FAS scheme. First, the error of self-consistence in density is calculated; then, an FAS coarse grid problem is defined and solved; finally, a correction is interpolated to the fine grid to modify the density. The eigenvalue problem is integrated inside the FAS scheme, and evolves along with the self-consistent problem within the FAS frame. Calculations are demonstrated for Si and Al.
We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure calculations. Traditionally, the nonlinear self-consistent problem is linearized into successive fixed potential eigenvalue problems with potentials updated between them. In the new method, the self-consistent problem is solved directly with the FAS scheme. First, the error of self-consistence in density is calculated; then, an FAS coarse grid problem is defined and solved; finally, a correction is interpolated to the fine grid to modify the density. The eigenvalue problem is integrated inside the FAS scheme, and evolves along with the self-consistent problem within the FAS frame. Calculations are demonstrated for Si and Al.
Author Wang, Jian
Kolb, Dietmar
Wang, Yu
Yu, Shaoying
Author_xml – sequence: 1
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: School of Science, Huzhou University, Zhejiang 313000, People's Republic of China
– sequence: 2
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
– sequence: 3
  givenname: Shaoying
  surname: Yu
  fullname: Yu, Shaoying
– sequence: 4
  givenname: Dietmar
  surname: Kolb
  fullname: Kolb, Dietmar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21690691$$D View this record in MEDLINE/PubMed
BookMark eNo9jztPwzAUhT0U0Qf8AiTkjSnEjyS2R1RBqahgAObI8YMYOXYbJwP_nhQK09G559Mn3SWYhRgMAFcY3WLEeY5ESTMueJFjlpMyRwjPwOL_OgfLlD4RQgWnxTmYE1wJVAm8ANvnGLwLRvZQ-o_Yu6HtoI09HFoDU_Tj4GKA0f70p9iG7LWVHTSHUR6XBF04Yk6nC3BmpU_m8pQr8P5w_7Z-zHYvm-36bpepgoohY9YqK0xlS00ZpY3GzPKSUK0UqViDsKZWlcUUZhoKoZggDbZKKI0sUZyswM2vd9_Hw2jSUHcuKeO9DCaOqeaTFU_CciKvT-TYdEbX-951sv-q_74n33RxXRA
CitedBy_id crossref_primary_10_1002_pssb_200541446
crossref_primary_10_1109_TNANO_2007_891820
crossref_primary_10_1002_pssb_200541391
crossref_primary_10_1007_s00791_007_0062_0
ContentType Journal Article
DBID NPM
7X8
DOI 10.1088/0953-8984/17/25/001
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 21690691
Genre Journal Article
GroupedDBID ---
-~X
02O
1JI
1WK
29L
4.4
53G
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABLJU
ABVAM
ACAFW
ACARI
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AERVB
AFFNX
AFYNE
AHSEE
AI.
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
H~9
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TN5
VH1
W28
WH7
XPP
YQT
ZMT
~02
7X8
AAGCF
ADEQX
AEINN
AGQPQ
ID FETCH-LOGICAL-c439t-7ffcf9e6f5d3733bd17f8523dcc267b01d3fc541d3e7f849c792b1fc9cd0f2c82
IEDL.DBID 7X8
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230632400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0953-8984
IngestDate Thu Oct 02 10:18:58 EDT 2025
Thu Apr 03 06:53:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-7ffcf9e6f5d3733bd17f8523dcc267b01d3fc541d3e7f849c792b1fc9cd0f2c82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21690691
PQID 873315235
PQPubID 23479
ParticipantIDs proquest_miscellaneous_873315235
pubmed_primary_21690691
PublicationCentury 2000
PublicationDate 2005-06-29
PublicationDateYYYYMMDD 2005-06-29
PublicationDate_xml – month: 06
  year: 2005
  text: 2005-06-29
  day: 29
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAlternate J Phys Condens Matter
PublicationYear 2005
SSID ssj0004834
Score 1.8250782
Snippet We apply a nonlinear multigrid algorithm, named the full approximation storage (FAS) scheme, to the Kohn-Sham equations for pseudopotential band structure...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3701
Title Nonlinear algorithm for the solution of the Kohn-Sham equations in solids
URI https://www.ncbi.nlm.nih.gov/pubmed/21690691
https://www.proquest.com/docview/873315235
Volume 17
WOSCitedRecordID wos000230632400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_Vhf5OA1tGmbJjmJiKKgZcEHeytpHu6C2-5uV3-_SdouXsSDl5S0CQzDNPkmM_kGgEtluKApDZHWOkQJlgwVaSEQMZEgxDCs_fXot0eaZWw45IM2N6du0yq7NdEv1KqS7ow8YK64oPWayNV0hlzRKBdcbStorIJebJGMy-iiwx9k4cwHlR2jGmKcJR3pkPX5lu8CTIOIBGGIf4eYfqu52_6nkDtgq8WY8Loxil2woss9sOFzPWW9Dx6yhh5DzKH4eLfzF6MJtNgVWiwIO1OElfF9dyUGPY_EBOpZwwpew3Hpho1VfQBe725fbu5RW1EBSQs8FogaIw3XqSEqtqIWClPDrLxKyiilRYhVbCRJ7EPbDwmXlEcFNpJLFZpIsugQrJVVqY8BxCYmVFrnMXV0PoUUKiE6VVrRhFPFZB_ATkW5tVgXhhClrj7rfKmkPjhq1JxPG2aNPHJBu5Tjk78nn4JNz6IapijiZ6Bn7N-qz8G6_FqM6_mFtwTbZoOnb26qvaQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+algorithm+for+the+solution+of+the+Kohn-Sham+equations+in+solids&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Wang%2C+Jian&rft.au=Wang%2C+Yu&rft.au=Yu%2C+Shaoying&rft.au=Kolb%2C+Dietmar&rft.date=2005-06-29&rft.issn=0953-8984&rft.volume=17&rft.issue=25&rft.spage=3701&rft_id=info:doi/10.1088%2F0953-8984%2F17%2F25%2F001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon