Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System

The tools available to farmers to manage grazed pastures and adjust forage demand to grass growth are generally rather static. Unmanned aerial systems (UASs) are interesting versatile tools that can provide relevant 3D information, such as sward height (3D structure), or even describe the physical c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 11; číslo 5; s. 473 - 486
Hlavní autori: Michez, Adrien, Lejeune, Philippe, Bauwens, Sébastien, Herinaina, Andriamandroso, Blaise, Yannick, Castro Muñoz, Eloy, Lebeau, Frédéric, Bindelle, Jérôme
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2019
MDPI
Multidisciplinary Digital Publishing Institute (MDPI)
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The tools available to farmers to manage grazed pastures and adjust forage demand to grass growth are generally rather static. Unmanned aerial systems (UASs) are interesting versatile tools that can provide relevant 3D information, such as sward height (3D structure), or even describe the physical condition of pastures through the use of spectral information. This study aimed to evaluate the potential of UAS to characterize a pasture’s sward height and above-ground biomass at a very fine spatial scale. The pasture height provided by UAS products showed good agreement (R2 = 0.62) with a reference terrestrial light detection and ranging (LiDAR) dataset. We tested the ability of UAS imagery to model pasture biomass based on three different combinations: UAS sward height, UAS sward multispectral reflectance/vegetation indices, and a combination of both UAS data types. The mixed approach combining the UAS sward height and spectral data performed the best (adj. R2 = 0.49). This approach reached a quality comparable to that of more conventional non-destructive on-field pasture biomass monitoring tools. As all of the UAS variables used in the model fitting process were extracted from spatial information (raster data), a high spatial resolution map of pasture biomass was derived based on the best fitted model. A sward height differences map was also derived from UAS-based sward height maps before and after grazing. Our results demonstrate the potential of UAS imagery as a tool for precision grazing study applications. The UAS approach to height and biomass monitoring was revealed to be a potential alternative to the widely used but time-consuming field approaches. While reaching a similar level of accuracy to the conventional field sampling approach, the UAS approach provides wall-to-wall pasture characterization through very high spatial resolution maps, opening up a new area of research for precision grazing.
AbstractList The tools available to farmers to manage grazed pastures and adjust forage demand to grass growth are generally rather static. Unmanned aerial systems (UASs) are interesting versatile tools that can provide relevant 3D information, such as sward height (3D structure), or even describe the physical condition of pastures through the use of spectral information. This study aimed to evaluate the potential of UAS to characterize a pasture’s sward height and above-ground biomass at a very fine spatial scale. The pasture height provided by UAS products showed good agreement (R2 = 0.62) with a reference terrestrial light detection and ranging (LiDAR) dataset. We tested the ability of UAS imagery to model pasture biomass based on three different combinations: UAS sward height, UAS sward multispectral reflectance/vegetation indices, and a combination of both UAS data types. The mixed approach combining the UAS sward height and spectral data performed the best (adj. R2 = 0.49). This approach reached a quality comparable to that of more conventional non-destructive on-field pasture biomass monitoring tools. As all of the UAS variables used in the model fitting process were extracted from spatial information (raster data), a high spatial resolution map of pasture biomass was derived based on the best fitted model. A sward height differences map was also derived from UAS-based sward height maps before and after grazing. Our results demonstrate the potential of UAS imagery as a tool for precision grazing study applications. The UAS approach to height and biomass monitoring was revealed to be a potential alternative to the widely used but time-consuming field approaches. While reaching a similar level of accuracy to the conventional field sampling approach, the UAS approach provides wall-to-wall pasture characterization through very high spatial resolution maps, opening up a new area of research for precision grazing.
The tools available to farmers to manage grazed pastures and adjust forage demand to grass growth are generally rather static. Unmanned aerial systems (UASs) are interesting versatile tools that can provide relevant 3D information, such as sward height (3D structure), or even describe the physical condition of pastures through the use of spectral information. This study aimed to evaluate the potential of UAS to characterize a pasture's sward height and above-ground biomass at a very fine spatial scale. The pasture height provided by UAS products showed good agreement (R2 = 0.62) with a reference terrestrial light detection and ranging (LiDAR) dataset. We tested the ability of UAS imagery to model pasture biomass based on three different combinations: UAS sward height, UAS sward multispectral reflectance/vegetation indices, and a combination of both UAS data types. The mixed approach combining the UAS sward height and spectral data performed the best (adj. R2 = 0.49). This approach reached a quality comparable to that of more conventional non-destructive on-field pasture biomass monitoring tools. As all of the UAS variables used in the model fitting processwereextractedfromspatialinformation(rasterdata),ahighspatialresolutionmapofpasture biomass was derived based on the best fitted model. A sward height differences map was also derived from UAS-based sward height maps before and after grazing. Our results demonstrate the potential of UAS imagery as a tool for precision grazing study applications. The UAS approach to height and biomass monitoring was revealed to be a potential alternative to the widely used but time-consumingfield approaches. While reachinga similarlevel ofaccuracy to theconventional field sampling approach, the UAS approach provides wall-to-wall pasture characterization through very high spatial resolution maps, opening up a new area of research for precision grazing.
Author Bauwens, Sébastien
Herinaina, Andriamandroso
Blaise, Yannick
Castro Muñoz, Eloy
Bindelle, Jérôme
Lebeau, Frédéric
Lejeune, Philippe
Michez, Adrien
Author_xml – sequence: 1
  givenname: Adrien
  orcidid: 0000-0003-4329-6422
  surname: Michez
  fullname: Michez, Adrien
– sequence: 2
  givenname: Philippe
  surname: Lejeune
  fullname: Lejeune, Philippe
– sequence: 3
  givenname: Sébastien
  surname: Bauwens
  fullname: Bauwens, Sébastien
– sequence: 4
  givenname: Andriamandroso
  surname: Herinaina
  fullname: Herinaina, Andriamandroso
– sequence: 5
  givenname: Yannick
  surname: Blaise
  fullname: Blaise, Yannick
– sequence: 6
  givenname: Eloy
  surname: Castro Muñoz
  fullname: Castro Muñoz, Eloy
– sequence: 7
  givenname: Frédéric
  surname: Lebeau
  fullname: Lebeau, Frédéric
– sequence: 8
  givenname: Jérôme
  surname: Bindelle
  fullname: Bindelle, Jérôme
BackLink https://hal.inrae.fr/hal-02609184$$DView record in HAL
BookMark eNptkVtrFDEUx4O0YK198RMM-KSwmstMMnlci73AFgtafAy5nNlmmU3WJFtpP72ZHcULhkBOTv7_X05yXqCjEAMg9Irgd4xJ_D5lQnCHW8GeoROKBV20VNKjP-Ln6CznDa6DMSJxe4K-3ujdzod1o4NrbmLwJaZpG4fmg49bnfPh5DLppyntQ3Orc9knaL77cl_Pmruw1SGAa5aQvB6bz4-5wPYlOh70mOHs53qK7i4-fjm_Wqw-XV6fL1cL2zJZFtxx0puOSkdgoMJgEBwGgTvX2VZTx6zsbCeEMRILSfngsOktMEkN6cAN7BRdz1wX9Ubtkt_q9Kii9uqQiGmtdCrejqCY7jvuXIup4S233ECdVsiKafvekspiM2v0sIbqNV490APsEO_HCrPKgKKU94qy-gRWXW9m170e_yrgarlSUw5TjiXp24fphtezdpfitz3kojZxn0L9oErDTEqOCa8qPKtsijknGJT1RRcfQ0naj4pgNfVb_e53tbz9x_Krkv-IfwDIcqqj
CitedBy_id crossref_primary_10_1016_j_jag_2022_102870
crossref_primary_10_3390_rs11111261
crossref_primary_10_3390_rs15143543
crossref_primary_10_1016_j_ecolind_2021_108515
crossref_primary_10_3390_drones5010009
crossref_primary_10_1016_j_jag_2021_102355
crossref_primary_10_3390_rs13173459
crossref_primary_10_1016_j_animal_2022_100703
crossref_primary_10_3390_land13030386
crossref_primary_10_3390_rs14081882
crossref_primary_10_1016_j_compag_2023_108520
crossref_primary_10_3390_rs12122017
crossref_primary_10_1007_s11119_020_09737_z
crossref_primary_10_3390_rs15071890
crossref_primary_10_3390_rs15020405
crossref_primary_10_1002_ecs2_3649
crossref_primary_10_1016_j_anifeedsci_2021_114880
crossref_primary_10_3390_rs14174360
crossref_primary_10_2184_lsj_49_10_580
crossref_primary_10_3390_rs13030408
crossref_primary_10_3390_rs11212494
crossref_primary_10_1007_s12065_022_00736_9
crossref_primary_10_3390_rs11131623
crossref_primary_10_3390_rs12050814
crossref_primary_10_1186_s13717_024_00566_w
crossref_primary_10_3390_app14177599
crossref_primary_10_1016_j_agee_2023_108400
crossref_primary_10_1016_j_ecoinf_2025_103361
crossref_primary_10_1080_17538947_2025_2543563
crossref_primary_10_3390_rs14133066
crossref_primary_10_1002_agj2_21346
crossref_primary_10_3390_rs15030639
crossref_primary_10_3390_rs13040738
crossref_primary_10_1002_agg2_20571
crossref_primary_10_1016_j_eja_2025_127647
crossref_primary_10_3390_rs16142684
crossref_primary_10_3390_s24030834
crossref_primary_10_3390_s25020431
crossref_primary_10_5194_essd_15_1287_2023
crossref_primary_10_1016_j_jenvman_2022_115502
crossref_primary_10_3390_agronomy14040830
crossref_primary_10_3390_rs12101650
crossref_primary_10_1016_j_livsci_2023_105373
crossref_primary_10_1016_j_agsy_2023_103755
crossref_primary_10_1016_j_apsoil_2021_104160
crossref_primary_10_3390_land10030321
crossref_primary_10_1016_j_rsase_2022_100867
crossref_primary_10_1016_j_compag_2021_106574
crossref_primary_10_3390_rs12223831
crossref_primary_10_1371_journal_pone_0245784
crossref_primary_10_1111_gfs_12517
crossref_primary_10_1007_s41064_020_00117_w
crossref_primary_10_3389_fpls_2021_763479
crossref_primary_10_3390_rs14102358
crossref_primary_10_1080_01431161_2020_1731930
crossref_primary_10_3390_rs17020279
crossref_primary_10_1111_avsc_12792
crossref_primary_10_1051_e3sconf_202340102011
crossref_primary_10_3389_fpls_2023_1108109
crossref_primary_10_1111_gfs_12520
Cites_doi 10.1111/j.1365-3180.2008.00682.x
10.1017/S1751731112000304
10.1007/s11119-012-9274-5
10.1111/j.1365-3180.2010.00829.x
10.1590/S1516-35982009001300014
10.1081/PLN-200025858
10.2307/3899662
10.1016/j.procs.2017.06.127
10.1093/aob/mcs209
10.1016/j.isprsjprs.2015.02.009
10.1071/AN14641
10.3389/fpls.2017.01111
10.1016/j.compag.2017.05.020
10.1071/AN14896
10.1093/biomet/60.2.255
10.25518/1780-4507.13058
10.1071/CP13429
10.1016/j.geomorph.2014.01.006
10.3390/s90503586
10.5333/KGFS.2015.35.3.225
10.2134/agronj1997.00021962008900040020x
10.5333/KGFS.2016.36.4.365
10.2134/agronj2005.0200
10.1007/s10661-015-4996-2
10.1017/S1751731112002297
10.1117/1.JRS.8.083671
10.3390/rs10111798
10.1007/978-0-387-21706-2
10.1016/j.geomorph.2012.08.021
10.1016/j.geomorph.2016.11.021
10.1371/journal.pone.0054700
10.3390/agriculture8050070
10.1016/j.agrformet.2016.09.010
10.2111/REM-D-11-00204.1
10.3390/rs8020109
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
JLOSS
Q33
DOA
DOI 10.3390/rs11050473
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
Environmental Sciences
EISSN 2072-4292
EndPage 486
ExternalDocumentID oai_doaj_org_article_3a856dd402b646c6be6bec79edf488c1
oai_orbi_ulg_ac_be_2268_234393
oai:HAL:hal-02609184v1
10_3390_rs11050473
GeographicLocations Ecuador
Belgium
France
United States--US
GeographicLocations_xml – name: Belgium
– name: Ecuador
– name: France
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
2XV
C1A
IPNFZ
ITC
RIG
VOOES
JLOSS
Q33
ID FETCH-LOGICAL-c439t-6d618b529d1ef27b0e76ef705d5c4a2d3c95c577bb907926fd0b8ce392b15edf3
IEDL.DBID BENPR
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462544500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 18:59:00 EDT 2025
Sat Nov 29 01:28:33 EST 2025
Tue Oct 14 20:24:59 EDT 2025
Mon Oct 20 01:50:23 EDT 2025
Tue Nov 18 20:52:04 EST 2025
Sat Nov 29 07:13:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords HAUTEUR DE PÂTURAGE
HAUTEUR D'HERBE
AÉRONEF SANS PILOTE
PÂTURAGE DE PRÉCISION
MODÉLISATION DE LA BIOMASSE PRAIRIALE
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-6d618b529d1ef27b0e76ef705d5c4a2d3c95c577bb907926fd0b8ce392b15edf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
scopus-id:2-s2.0-85062980752
ORCID 0000-0003-4329-6422
0000-0002-8443-5874
0000-0001-9987-9673
0000-0001-6974-4313
0000-0002-8724-5363
OpenAccessLink https://www.proquest.com/docview/2303996016?pq-origsite=%requestingapplication%
PQID 2303996016
PQPubID 2032338
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_3a856dd402b646c6be6bec79edf488c1
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_234393
hal_primary_oai_HAL_hal_02609184v1
proquest_journals_2303996016
crossref_citationtrail_10_3390_rs11050473
crossref_primary_10_3390_rs11050473
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Multidisciplinary Digital Publishing Institute (MDPI)
Publisher_xml – name: MDPI AG
– name: MDPI
– name: Multidisciplinary Digital Publishing Institute (MDPI)
References Moges (ref_37) 2005; 27
Lee (ref_27) 2016; 36
ref_14
ref_36
ref_35
Sripada (ref_38) 2006; 98
Lee (ref_26) 2015; 35
Burow (ref_4) 2013; 7
Yang (ref_25) 2017; 8
Henriques (ref_34) 2015; 104
ref_30
Harmoney (ref_42) 1997; 89
Dumortier (ref_6) 2017; 232
Pinto (ref_31) 2012; 65
Laca (ref_43) 1989; 42
ref_18
Michez (ref_19) 2016; 188
Tilly (ref_17) 2014; 8
Laca (ref_10) 2009; 38
(ref_1) 2012; 110
Boval (ref_5) 2012; 6
Bareth (ref_29) 2015; 24
Polder (ref_15) 2009; 49
Michez (ref_21) 2016; 44
ref_23
George (ref_11) 2015; 55
Schellberg (ref_13) 2014; 65
Westoby (ref_28) 2012; 179
ref_44
ref_20
Andriamandroso (ref_8) 2016; 20
ref_41
Andriamandroso (ref_45) 2017; 139
ref_40
French (ref_12) 2015; 55
ref_3
Akaike (ref_39) 1973; 60
ref_2
Javernick (ref_33) 2014; 213
Zhang (ref_22) 2012; 13
Debauche (ref_9) 2017; 110
James (ref_32) 2017; 280
(ref_24) 2011; 51
ref_7
Handcock (ref_16) 2009; 9
References_xml – ident: ref_7
– volume: 49
  start-page: 164
  year: 2009
  ident: ref_15
  article-title: Real-time vision-based detection of Rumex obtusifolius in grassland
  publication-title: Weed Res.
  doi: 10.1111/j.1365-3180.2008.00682.x
– volume: 6
  start-page: 748
  year: 2012
  ident: ref_5
  article-title: The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics
  publication-title: Animal
  doi: 10.1017/S1751731112000304
– volume: 13
  start-page: 693
  year: 2012
  ident: ref_22
  article-title: The application of small unmanned aerial systems for precision agriculture: A review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 51
  start-page: 1
  year: 2011
  ident: ref_24
  article-title: Weed detection for site-specific weed management: Mapping and real-time approaches
  publication-title: Weed Res.
  doi: 10.1111/j.1365-3180.2010.00829.x
– volume: 38
  start-page: 123
  year: 2009
  ident: ref_10
  article-title: Precision livestock production: Tools and concepts
  publication-title: Rev. Bras. Zootec.
  doi: 10.1590/S1516-35982009001300014
– volume: 27
  start-page: 1431
  year: 2005
  ident: ref_37
  article-title: Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield
  publication-title: J. Plant Nutr.
  doi: 10.1081/PLN-200025858
– ident: ref_3
– volume: 42
  start-page: 71
  year: 1989
  ident: ref_43
  article-title: Comparison of weight estimate and rising-plate meter methods to measure herbage mass of a mountain meadow
  publication-title: J. Range Manag.
  doi: 10.2307/3899662
– volume: 110
  start-page: 110
  year: 2017
  ident: ref_9
  article-title: Web-based cattle behavior service for researchers based on the smartphone inertial central
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.06.127
– volume: 110
  start-page: 1263
  year: 2012
  ident: ref_1
  article-title: The role of grasslands in food security and climate change
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs209
– volume: 104
  start-page: 101
  year: 2015
  ident: ref_34
  article-title: UAV photogrammetry for topographic monitoring of coastal areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.009
– volume: 55
  start-page: 284
  year: 2015
  ident: ref_11
  article-title: Spatial and temporal domains of scale of grazing cattle
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN14641
– volume: 44
  start-page: 88
  year: 2016
  ident: ref_21
  article-title: Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_14
– volume: 8
  start-page: 1111
  year: 2017
  ident: ref_25
  article-title: Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01111
– ident: ref_35
– ident: ref_44
– volume: 139
  start-page: 126
  year: 2017
  ident: ref_45
  article-title: Development of an open-source algorithm based on inertial measurement units (IMU) of a smartphone to detect cattle grass intake and ruminating behaviors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.05.020
– volume: 24
  start-page: 1
  year: 2015
  ident: ref_29
  article-title: Feasibility study of using non-calibrated UAV-based RGB imagery for grassland monitoring: Case study at the Rengen Long-term Grassland Experiment (RGE), Germany
  publication-title: DGPF Tagungsband
– volume: 55
  start-page: 931
  year: 2015
  ident: ref_12
  article-title: Development and adoption of new technologies to increase the efficiency and sustainability of pasture-based systems
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN14896
– volume: 60
  start-page: 255
  year: 1973
  ident: ref_39
  article-title: Maximum likelihood identification of Gaussian autoregressive moving average models
  publication-title: Biometrika
  doi: 10.1093/biomet/60.2.255
– volume: 20
  start-page: 273
  year: 2016
  ident: ref_8
  article-title: A review on the use of sensors to monitor cattle jaw movements and behavior when grazing
  publication-title: BASE
  doi: 10.25518/1780-4507.13058
– volume: 65
  start-page: 508
  year: 2014
  ident: ref_13
  article-title: Frontiers and perspectives on research strategies in grassland technology
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP13429
– ident: ref_2
– volume: 213
  start-page: 166
  year: 2014
  ident: ref_33
  article-title: Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.01.006
– volume: 9
  start-page: 3586
  year: 2009
  ident: ref_16
  article-title: Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing
  publication-title: Sensors
  doi: 10.3390/s90503586
– volume: 35
  start-page: 225
  year: 2015
  ident: ref_26
  article-title: Mapping Herbage Biomass on a Hill Pasture using a Digital Camera with an Unmanned Aerial Vehicle System
  publication-title: J. Korean Soc. Grassl. Forage Sci.
  doi: 10.5333/KGFS.2015.35.3.225
– volume: 89
  start-page: 665
  year: 1997
  ident: ref_42
  article-title: Determination of pasture biomass using four indirect methods
  publication-title: Agron. J.
  doi: 10.2134/agronj1997.00021962008900040020x
– volume: 36
  start-page: 365
  year: 2016
  ident: ref_27
  article-title: Estimating the spatial distribution of Rumex acetosella L. on hill pasture using UAV monitoring system and digital camera
  publication-title: J. Korean Soc. Grassl. Forage Sci.
  doi: 10.5333/KGFS.2016.36.4.365
– ident: ref_41
– volume: 98
  start-page: 968
  year: 2006
  ident: ref_38
  article-title: Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0200
– volume: 188
  start-page: 146
  year: 2016
  ident: ref_19
  article-title: Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4996-2
– volume: 7
  start-page: 834
  year: 2013
  ident: ref_4
  article-title: Effect of grazing on the cow welfare of dairy herds evaluated by a multidimensional welfare index
  publication-title: Animal
  doi: 10.1017/S1751731112002297
– volume: 8
  start-page: 083671
  year: 2014
  ident: ref_17
  article-title: Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.8.083671
– ident: ref_23
  doi: 10.3390/rs10111798
– ident: ref_40
  doi: 10.1007/978-0-387-21706-2
– volume: 179
  start-page: 300
  year: 2012
  ident: ref_28
  article-title: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.08.021
– volume: 280
  start-page: 51
  year: 2017
  ident: ref_32
  article-title: Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.11.021
– ident: ref_36
– ident: ref_20
  doi: 10.1371/journal.pone.0054700
– ident: ref_30
  doi: 10.3390/agriculture8050070
– volume: 232
  start-page: 527
  year: 2017
  ident: ref_6
  article-title: Methane balance of an intensively grazed pasture and estimation of the enteric methane emissions from cattle
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.09.010
– volume: 65
  start-page: 382
  year: 2012
  ident: ref_31
  article-title: Forage allowance as a target of grazing management: Implications on grazing time and forage searching
  publication-title: Rangel. Ecol. Manag.
  doi: 10.2111/REM-D-11-00204.1
– ident: ref_18
  doi: 10.3390/rs8020109
SSID ssj0000331904
Score 2.4759853
Snippet The tools available to farmers to manage grazed pastures and adjust forage demand to grass growth are generally rather static. Unmanned aerial systems (UASs)...
SourceID doaj
liege
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 473
SubjectTerms Agriculture
Agriculture & agronomie
Agriculture & agronomy
Biomass
drone
Environmental Sciences
Farmers
Geomorphology
Grasslands
Grazing
Image detection
Lidar
Life sciences
Mapping
Monitoring
Nitrogen
Pasture
pasture biomass modeling
pasture height
Plant growth
precision grazing
Reflectance
Remote sensing
Sciences du vivant
Spatial data
Spatial resolution
Sward
sward height
Topography
unmanned aerial systems
Unmanned aerial vehicles
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9iBb1Iv8SntoS2l4KLu8km2RyfovXQigel3kI-9cHrWt4-H_jfdya7fmHBi7CHZTNkw8wkmV8y_IaQb3WqKumCLWx0rqidS4WGyKGwEPxbxZX2zudiE-rkpLm40KePSn1hTlhPD9wrbo_bRsgQAOY4WUsvXYTHKx1DAt_zGfhA1PMITOU1mINrlXXPR8oB1-_NOtjoRFkr_mQHykT9sK9cYRrkmyleVD9blfNWc_SWrA8xIh33Y3tHlmL7nqwO5cqvbj-Q378s0ipcUtsG2s9KPJ6j14nuTzDhp8stP2bIHX1JJy09tR1eFVA8doU2et7-sbjC0nH2QNoTl38k50eHZwfHxVAhofAQSMwLGWTVOMF0qGJiypVRyZhUKYLwtWWBey28UMo5wMCayRRK1_gIMZGrBGiQb5Dl9rqNm4QyD-CrFqksUwAD6kZb5qtaMctSSA0bke93WjN-oA_HKhZTAzACNWweNDwiX-9l__akGf-V2kfl30sg0XX-AOY3g_nNS-YfkS9guid9HI9_GvyGbGkaAOwChHazZaFnNzELlsXy-80UfuWNiwbC0MYwDmqFge3cOYAZZnQHTSVHJptKbr3GuLfJGoReus9m2yHL89lN_ERW_GI-6WafszP_A4wy-QU
  priority: 102
  providerName: Directory of Open Access Journals
Title Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System
URI https://www.proquest.com/docview/2303996016
https://hal.inrae.fr/hal-02609184
https://orbi.uliege.be/handle/2268/234393
https://doaj.org/article/3a856dd402b646c6be6bec79edf488c1
Volume 11
WOSCitedRecordID wos000462544500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-0FdQHP07F6lkW9UUwXLL52OyTtNLzBK8U9fD0Zdmv9Ao1PZNewRf_dmc22x6H4osQlpAdNkv2t7Mzk-E3hLzMqiQptFWRclpHmdZVJMByiBQY_4qnXBhtfLEJPp2Wp6diFgJubUir3OpEr6jtymCM_ABM5RSZRJLizfmPCKtG4d_VUELjOukjU1nWI_3xZDr7uIuyxClALM46XtIU_PuDpoUDL48znl45iTxhP5wvZ5gO2V_iD-s_tLM_cg7v_u9k75E7wdikow4d98k1V--R26N5Ewg33B65Gaqgn_18QL4cK2RrmFNVW9ptdoz60VVFxwvMI2p9z7sGKanndFHTmWpxGIrRXOijJ_V3hYqbjjywaceH_pCcHE4-vz2KQuGFyIB9so4KWySlzpmwiasY17Hjhat4nNvcZIrZ1Ijc5JxrDa61YEVlY10aB6aWTnJnq_QR6dWr2j0mlBnw6bK8iuPKAi5EKRQzScaZYpWtSjYgr7aLIE1gJcfiGEsJ3gkumLxcsAF5sZM977g4_io1xrXcSSB_tn-wauYybEeZqjIvrAXnWRdZYQrt4DJcwORBo5lkQJ4DEq6McTT6IPEZkrAJ8Is3IPTaAwVG1gu5YV7M318s4VVGaifBui0lS-GzwsT2t2CRQVG08hIpT_7d_ZTcAltNdOlv-6S3bi7cM3LDbNaLthkG3A99SGGICayfsP01gXaWf4P-2fvj2dffL48R-A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGi7TxwGWAVhhgcXlAIlriXBw_INQBo9Xaqg-b2J6Mr12lko6kK9qf4jdy7KSdJhBve0DKQxQfOY79-Vxs5zsIvU5sFGVSi0AYKYNEShsw8BwCAc6_oDFlSiqfbIKORvnJCRtvoF-rf2HcscqVTvSKWs-VWyPfA1c5dkwiUfbh_Efgska53dVVCo0aFofm8ieEbNX7_icY3zeEHHw--tgLmqwCgQLjuwgynUW5TAnTkbGEytDQzFgapjpViSA6VixVKaVSQtzISGZ1KHNlwI-QUWq0jaHeW6idANjzFmqP-8Px6XpVJ4wB0mFS86DGMQv3ygoMbBomNL5m-XyCALBnZ-74ZXvmNsj_sAbexB3c-9865z662zjTuFuj_wHaMMU2utOdlA2hiNlGm02W97PLh-jrUDg2igkWhca1MnOrmnhu8f7UnZOqfMmX0lFuT_C0wGNRuWqwW62GMnxcfBfOMOGun7i45nt_hI5v5Csfo1YxL8wOwkRBzJqkNgytBtyznAmiooQSQay2Oemgt6tB56phXXfJP2Ycoi8HEH4FkA56tZY9r7lG_iq177CzlnD84P7BvJzwRt3wWORppnUSEpklmcqkgUtRBo0Hja2iDnoJyLtWR6874O6ZI5ljEPcvQeidBybULKd8SbyYv7-YwasUl4aD955zEkO3QsN2V-DkjSKs-BUyn_y7-AXa7B0NB3zQHx0-RVvgl7L6qN8uai3KC_MM3VbLxbQqnzdzDqNvN43k33EvalY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGi7g8cBkgCgMsLg9IRHWci-MHhNKNsmmjqhDT9mZ87SqVdCRd0f4av47jJO00gXjbA1IeIvvIcZzP5xzbJ99B6HXswjBVRgbSKhXESrmAg-cQSHD-JYsY10rXySbYaJQdH_PxBvq1-hfGh1WudGKtqM1c-z3yPrjKkWcSCdO-a8MixjvDD6c_Ap9Byp-0rtJpNBDZt-c_YflWvd_bgW_9htLhx6_bu0GbYSDQYIgXQWrSMFMJ5Sa0jjJFLEutYyQxiY4lNZHmiU4YUwrWkJymzhCVaQs-hQoTa1wE7V5D3SxlhHZQd7w9yL-sd3hIBPAmccOJGkWc9MsKjG1CYhZdsoJ1sgCwbSc-FLM784flf1iG2twN7_7PA3UP3WmdbJw3s-I-2rDFJrqdT8qWaMRuoptt9veT8wfo6LP0LBUTLAuDGyXndzvx3OHB1MdPVXXNp9JTcU_wtMBjWflmsN_Fhjp8WHyX3mDhvJ7QuOGBf4gOr-QtH6FOMS_sY4SphrVsnDhCnIH5wDMuqQ5jRiV1xmW0h96uACB0y8buk4LMBKzKPFjEBVh66NVa9rThIPmr1MDjaC3hecPrgnk5Ea0aEpHMktSYmFCVxqlOlYVLMw6dB02uwx56CSi81MZufiB8mSef42EWL0HoXQ1SaFlNxZLWYvX92QwepYWyArz6TNAIhhU6trUCqmgVZCUuUPrk39Uv0A2ArzjYG-0_RbfAXeVNBOAW6izKM_sMXdfLxbQqn7fTD6NvVw3k3zHecsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+and+Monitoring+of+Biomass+and+Grazing+in+Pasture+with+an+Unmanned+Aerial+System&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Michez%2C+Adrien&rft.au=Lejeune%2C+Philippe&rft.au=Bauwens%2C+S%C3%A9bastien&rft.au=Herinaina%2C+Andriamandroso+Andriamasinoro+Lalaina&rft.date=2019-03-01&rft.pub=Multidisciplinary+Digital+Publishing+Institute+%28MDPI%29&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390%2Frs11050473&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_234393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon