Privacy and Utility of X-Vector Based Speaker Anonymization

We study the scenario where individuals ( speakers ) contribute to the publication of an anonymized speech corpus. Data users leverage this public corpus for downstream tasks, e.g., training an automatic speech recognition (ASR) system, while attackers may attempt to de-anonymize it using auxiliary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing Jg. 30; S. 2383 - 2395
Hauptverfasser: Srivastava, Brij Mohan Lal, Maouche, Mohamed, Sahidullah, Md, Vincent, Emmanuel, Bellet, Aurelien, Tommasi, Marc, Tomashenko, Natalia, Wang, Xin, Yamagishi, Junichi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:2329-9290, 2329-9304
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the scenario where individuals ( speakers ) contribute to the publication of an anonymized speech corpus. Data users leverage this public corpus for downstream tasks, e.g., training an automatic speech recognition (ASR) system, while attackers may attempt to de-anonymize it using auxiliary knowledge. Motivated by this scenario, speaker anonymization aims to conceal speaker identity while preserving the quality and usefulness of speech data. In this article, we study x-vector based speaker anonymization, the leading approach in the VoicePrivacy Challenge, which converts the speaker's voice into that of a random pseudo-speaker. We show that the strength of anonymization varies significantly depending on how the pseudo-speaker is chosen. We explore four design choices for this step: the distance metric between speakers, the region of speaker space where the pseudo-speaker is picked, its gender, and whether to assign it to one or all utterances of the original speaker. We assess the quality of anonymization from the perspective of the three actors involved in our threat model, namely the speaker, the user and the attacker. To measure privacy and utility, we use respectively the linkability score achieved by the attackers and the decoding word error rate achieved by an ASR model trained on the anonymized data. Experiments on LibriSpeech show that the best combination of design choices yields state-of-the-art performance in terms of both privacy and utility. Experiments on Mozilla Common Voice further show that it guarantees the same anonymization level against re-identification attacks among 50 speakers as original speech among 20,000 speakers.
AbstractList We study the scenario where individuals ( speakers ) contribute to the publication of an anonymized speech corpus. Data users leverage this public corpus for downstream tasks, e.g., training an automatic speech recognition (ASR) system, while attackers may attempt to de-anonymize it using auxiliary knowledge. Motivated by this scenario, speaker anonymization aims to conceal speaker identity while preserving the quality and usefulness of speech data. In this article, we study x-vector based speaker anonymization, the leading approach in the VoicePrivacy Challenge, which converts the speaker's voice into that of a random pseudo-speaker. We show that the strength of anonymization varies significantly depending on how the pseudo-speaker is chosen. We explore four design choices for this step: the distance metric between speakers, the region of speaker space where the pseudo-speaker is picked, its gender, and whether to assign it to one or all utterances of the original speaker. We assess the quality of anonymization from the perspective of the three actors involved in our threat model, namely the speaker, the user and the attacker. To measure privacy and utility, we use respectively the linkability score achieved by the attackers and the decoding word error rate achieved by an ASR model trained on the anonymized data. Experiments on LibriSpeech show that the best combination of design choices yields state-of-the-art performance in terms of both privacy and utility. Experiments on Mozilla Common Voice further show that it guarantees the same anonymization level against re-identification attacks among 50 speakers as original speech among 20,000 speakers.
We study the scenario where individuals (speakers) contribute to the publication of an anonymized speech corpus. Data users then leverage this public corpus to perform downstream tasks (such as training automatic speech recognition systems), while attackers may try to de-anonymize itbased on auxiliary knowledge they collect. Motivated by this scenario, speaker anonymization aims to conceal the speaker identity while preserving the quality and usefulness of speech data. In this paper, we study x-vector based speaker anonymization, the leading approach in the recent Voice Privacy Challenge, which converts an input utterance into that of a random pseudo-speaker. We show that the strength of the anonymization varies significantly depending on how the pseudo-speaker is selected. In particular, we investigate four design choices: the distance measure between speakers, the region of x-vector space where the pseudo-speaker is mapped, the gender selection and whether to use speaker or utterance level assignment. We assess the quality of anonymization from the perspective of the three actors involved in our threat model, namely the speaker, the user and the attacker. To measure privacy and utility, we use respectively the linkability score achieved by the attackers and the decoding word error rate incurred by an ASR model trained with the anonymized data. Experiments on LibriSpeech dataset confirm that the optimal combination ofdesign choices yield state-of-the-art performance in terms of privacy protection as well as utility. Experiments on Mozilla Common Voice dataset show that the best design choices with 50 speakers guarantee the same anonymization level against re-identification attack as raw speech with 20,000 speakers.
Author Sahidullah, Md
Srivastava, Brij Mohan Lal
Wang, Xin
Vincent, Emmanuel
Maouche, Mohamed
Tomashenko, Natalia
Yamagishi, Junichi
Bellet, Aurelien
Tommasi, Marc
Author_xml – sequence: 1
  givenname: Brij Mohan Lal
  orcidid: 0000-0001-7531-7123
  surname: Srivastava
  fullname: Srivastava, Brij Mohan Lal
  email: brij.srivastava@inria.fr
  organization: Inria, CNRS, Centrale, Univ. Lille, Lille, France
– sequence: 2
  givenname: Mohamed
  surname: Maouche
  fullname: Maouche, Mohamed
  email: mohamed.maouche@inria.fr
  organization: Inria, CNRS, Centrale, Univ. Lille, Lille, France
– sequence: 3
  givenname: Md
  orcidid: 0000-0002-0624-2903
  surname: Sahidullah
  fullname: Sahidullah, Md
  email: md.sahidullah@inria.fr
  organization: Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
– sequence: 4
  givenname: Emmanuel
  orcidid: 0000-0002-0183-7289
  surname: Vincent
  fullname: Vincent, Emmanuel
  email: emmanuel.vincent@inria.fr
  organization: Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
– sequence: 5
  givenname: Aurelien
  surname: Bellet
  fullname: Bellet, Aurelien
  email: aurelien.bellet@inria.fr
  organization: Inria, CNRS, Centrale, Univ. Lille, Lille, France
– sequence: 6
  givenname: Marc
  surname: Tommasi
  fullname: Tommasi, Marc
  email: marc.tommasi@inria.fr
  organization: Inria, CNRS, Centrale, Univ. Lille, Lille, France
– sequence: 7
  givenname: Natalia
  surname: Tomashenko
  fullname: Tomashenko, Natalia
  email: natalia.tomashenko@univ-avignon.fr
  organization: Laboratoire Informatique d' Avignon (LIA), Avignon Université, Avignon, France
– sequence: 8
  givenname: Xin
  orcidid: 0000-0001-8246-0606
  surname: Wang
  fullname: Wang, Xin
  email: wangxin@nii.ac.jp
  organization: National Institute of Informatics, Tokyo, Japan
– sequence: 9
  givenname: Junichi
  orcidid: 0000-0003-2752-3955
  surname: Yamagishi
  fullname: Yamagishi, Junichi
  email: jyamagis@nii.ac.jp
  organization: National Institute of Informatics, Tokyo, Japan
BackLink https://inria.hal.science/hal-03197376$$DView record in HAL
BookMark eNp9kD9PwzAQxS1UJErpF4AlEhNDytnOP4upVECRIlGpLWKzbMcRLmlcnLRS-PSkDXRgYLrT6b27d79z1CttqRG6xDDCGNjtYjxPZyMChIwoZhAH-AT1CSXMZxSC3m9PGJyhYVWtAABDzFgc9NHdzJmdUI0nysxb1qYwdePZ3HvzX7WqrfPuRaUzb77R4kM7b9yebtbmS9TGlhfoNBdFpYc_dYCWjw-LydRPX56eJ-PUVwFltR9mmOQaQh3LKAqVSrCKQynDMEtkAIpJCTiXOhcilxmlmGhKQixZIiEII8joAN10e99FwTfOrIVruBWGT8cp38-gfTumcbSjrfa6026c_dzqquYru3VlG4-TiEUkCaIgalWkUylnq8rp_LgWA98z5QemfM-U_zBtTckfkzL1AUTthCn-t151VqO1Pt5iCWFtIPoN6tOErQ
CODEN ITASFA
CitedBy_id crossref_primary_10_1109_TASLP_2024_3492793
crossref_primary_10_1109_TIFS_2025_3556345
crossref_primary_10_1016_j_csl_2025_101810
crossref_primary_10_1109_TASLP_2024_3407600
crossref_primary_10_1109_ACCESS_2025_3546618
crossref_primary_10_1109_TASLP_2023_3313429
crossref_primary_10_3390_app14093876
crossref_primary_10_1109_TIFS_2025_3592553
crossref_primary_10_1038_s43856_024_00609_5
crossref_primary_10_1109_JPROC_2023_3276209
crossref_primary_10_1016_j_patrec_2024_10_016
crossref_primary_10_1177_1088467X241301384
crossref_primary_10_1109_TASLP_2024_3430530
Cites_doi 10.1109/ASRU.2009.5373356
10.21437/Interspeech.2020-1887
10.21437/Interspeech.2018-1929
10.1109/ICASSP.2016.7472923
10.1109/ICME46284.2020.9102875
10.1016/j.csl.2022.101362
10.1109/FG.2015.7285021
10.1007/11744085_41
10.1109/ICASSP40776.2020.9053868
10.1561/9781601988195
10.1016/0167-6393(95)00009-D
10.1109/ICASSP.2014.6853882
10.21437/Interspeech.2020-2692
10.21437/Odyssey.2016-59
10.1109/ASRU46091.2019.9003979
10.1016/j.csl.2019.05.005
10.1007/978-3-540-71050-9
10.1016/j.csl.2017.05.001
10.1109/ICASSP.2016.7472729
10.1109/ICASSP.2018.8461375
10.21437/Interspeech.2008-644
10.1016/j.csl.2019.101024
10.21437/Interspeech.2019-2441
10.21437/Interspeech.2019-2415
10.21437/Interspeech.2020-1333
10.1109/FSKD.2007.347
10.21437/Odyssey.2018-36
10.21437/Interspeech.2011-91
10.1109/ICASSP39728.2021.9413386
10.1016/j.csl.2005.08.001
10.1109/ICASSP.2019.8682298
10.21437/Interspeech.2021-1070
10.21437/Interspeech.2019-1572
10.21437/Interspeech.2017-950
10.21437/Interspeech.2020-1090
10.1016/j.csl.2022.101351
10.1109/TIFS.2017.2788000
10.21437/Interspeech.2020-2248
10.21437/SSW.2019-28
10.1109/MIPRO.2014.6859761
10.1109/ICASSP.2015.7178964
10.21437/Interspeech.2019-2647
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TASLP.2022.3190741
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2329-9304
EndPage 2395
ExternalDocumentID oai:HAL:hal-03197376v3
10_1109_TASLP_2022_3190741
9829284
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACIWK
ACM
ADBCU
AEBYY
AEFXT
AEJOY
AENSD
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
EBS
EJD
GUFHI
HGAVV
IFIPE
IPLJI
JAVBF
LHSKQ
M43
OCL
PQQKQ
RIA
RIE
RNS
ROL
AAYXX
CITATION
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c439t-5d12fe05e7b665cc81c75bb55d8b40c9bb01fbefaafbd3312e3251b98b04560d3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833754800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9290
IngestDate Wed Nov 05 07:44:08 EST 2025
Mon Jun 30 04:05:46 EDT 2025
Sat Nov 29 02:44:47 EST 2025
Tue Nov 18 22:38:30 EST 2025
Wed Aug 27 02:25:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords linkability
privacy
utility
speech recognition
speaker identification
speaker anonymization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-5d12fe05e7b665cc81c75bb55d8b40c9bb01fbefaafbd3312e3251b98b04560d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8246-0606
0000-0003-2752-3955
0000-0002-0624-2903
0000-0001-7531-7123
0000-0002-0183-7289
0000-0003-2838-4408
0000-0003-3440-1251
0000-0001-6473-7173
OpenAccessLink https://inria.hal.science/hal-03197376
PQID 2696284646
PQPubID 85426
PageCount 13
ParticipantIDs proquest_journals_2696284646
crossref_primary_10_1109_TASLP_2022_3190741
crossref_citationtrail_10_1109_TASLP_2022_3190741
hal_primary_oai_HAL_hal_03197376v3
ieee_primary_9829284
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/ACM transactions on audio, speech, and language processing
PublicationTitleAbbrev TASLP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
Ardila (ref37) 2020
ref17
ref16
ref19
ref18
ref51
ref50
ref45
ref48
ref47
ref42
ref41
Qian (ref8) 2017
ref49
ref7
Abdi (ref43) 2010
ref9
ref4
ref3
Srivastava (ref38) 2021
ref6
ref5
ref40
Tomashenko (ref22) 2020
Turner (ref25) 2020
ref35
ref34
ref36
ref30
ref33
ref32
ref2
Kenny (ref28) 2010
ref1
ref39
ref24
ref23
ref26
ref20
Farrs (ref44) 2008
ref21
Champion (ref46) 2021
ref27
ref29
Dueck (ref31) 2009
References_xml – ident: ref9
  doi: 10.1109/ASRU.2009.5373356
– ident: ref23
  doi: 10.21437/Interspeech.2020-1887
– ident: ref35
  doi: 10.21437/Interspeech.2018-1929
– ident: ref3
  doi: 10.1109/ICASSP.2016.7472923
– ident: ref15
  doi: 10.1109/ICME46284.2020.9102875
– ident: ref26
  doi: 10.1016/j.csl.2022.101362
– ident: ref12
  doi: 10.1109/FG.2015.7285021
– ident: ref27
  doi: 10.1007/11744085_41
– year: 2020
  ident: ref25
  article-title: Speaker anonymization with distribution-preserving x-vector generation for the VoicePrivacy challenge 2020
– ident: ref16
  doi: 10.1109/ICASSP40776.2020.9053868
– ident: ref52
  doi: 10.1561/9781601988195
– ident: ref1
  doi: 10.1016/0167-6393(95)00009-D
– ident: ref30
  doi: 10.1109/ICASSP.2014.6853882
– ident: ref17
  doi: 10.21437/Interspeech.2020-2692
– year: 2017
  ident: ref8
  article-title: VoiceMask: Anonymize and sanitize voice input on mobile devices
– ident: ref29
  doi: 10.21437/Odyssey.2016-59
– ident: ref32
  doi: 10.1109/ASRU46091.2019.9003979
– start-page: 1
  volume-title: Proc. Encyclopedia Res. Des.
  year: 2010
  ident: ref43
  article-title: Jackknife
– ident: ref4
  doi: 10.1016/j.csl.2019.05.005
– ident: ref47
  doi: 10.1007/978-3-540-71050-9
– ident: ref18
  doi: 10.1016/j.csl.2017.05.001
– ident: ref7
  doi: 10.1109/ICASSP.2016.7472729
– start-page: 4218
  volume-title: Proc. 12th Conf. Lang. Resour. Eval.
  year: 2020
  ident: ref37
  article-title: Common voice: A massively-multilingual speech corpus
– ident: ref19
  doi: 10.1109/ICASSP.2018.8461375
– ident: ref39
  doi: 10.21437/Interspeech.2008-644
– ident: ref49
  doi: 10.1016/j.csl.2019.101024
– ident: ref36
  doi: 10.21437/Interspeech.2019-2441
– volume-title: Proc. Odyssey
  year: 2008
  ident: ref44
  article-title: How vulnerable are prosodic features to professional imitators?
– ident: ref14
  doi: 10.21437/Interspeech.2019-2415
– ident: ref6
  doi: 10.21437/Interspeech.2020-1333
– ident: ref45
  doi: 10.1109/FSKD.2007.347
– ident: ref11
  doi: 10.21437/Odyssey.2018-36
– ident: ref21
  doi: 10.21437/Interspeech.2011-91
– ident: ref2
  doi: 10.1109/ICASSP39728.2021.9413386
– ident: ref42
  doi: 10.1016/j.csl.2005.08.001
– volume-title: Proc. Odyssey
  year: 2010
  ident: ref28
  article-title: Bayesian speaker verification with heavy-tailed priors
– volume-title: Proc. 2nd AAAI Workshop Privacy-Preserving Artif. Intell.
  year: 2021
  ident: ref46
  article-title: A study of F0 modification for x-vector based speech pseudonymization across gender
– ident: ref20
  doi: 10.1109/ICASSP.2019.8682298
– ident: ref48
  doi: 10.21437/Interspeech.2021-1070
– ident: ref51
  doi: 10.21437/Interspeech.2019-1572
– ident: ref34
  doi: 10.21437/Interspeech.2017-950
– year: 2020
  ident: ref22
  article-title: The VoicePrivacy 2020 challenge evaluation plan
– ident: ref50
  doi: 10.21437/Interspeech.2020-1090
– ident: ref24
  doi: 10.1016/j.csl.2022.101351
– ident: ref40
  doi: 10.1109/TIFS.2017.2788000
– ident: ref41
  doi: 10.21437/Interspeech.2020-2248
– year: 2021
  ident: ref38
  article-title: Speaker anonymization Representation, evaluation and formal guarantees
– ident: ref13
  doi: 10.21437/SSW.2019-28
– ident: ref10
  doi: 10.1109/MIPRO.2014.6859761
– year: 2009
  ident: ref31
  article-title: Affinity propagation: Clustering data by passing messages
– ident: ref33
  doi: 10.1109/ICASSP.2015.7178964
– ident: ref5
  doi: 10.21437/Interspeech.2019-2647
SSID ssj0001079974
Score 2.402441
Snippet We study the scenario where individuals ( speakers ) contribute to the publication of an anonymized speech corpus. Data users leverage this public corpus for...
We study the scenario where individuals (speakers) contribute to the publication of an anonymized speech corpus. Data users then leverage this public corpus to...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2383
SubjectTerms Artificial Intelligence
Audio equipment
Automatic speech recognition
Cloning
Computation and Language
Computer Science
Corpus linguistics
Error analysis
Feature extraction
Linkability
Machine Learning
Measurement
Privacy
Quality assessment
speaker anonymization
Speech recognition
Speech synthesis
Task analysis
Training
voice conversion
Voice recognition
Title Privacy and Utility of X-Vector Based Speaker Anonymization
URI https://ieeexplore.ieee.org/document/9829284
https://www.proquest.com/docview/2696284646
https://inria.hal.science/hal-03197376
Volume 30
WOSCitedRecordID wos000833754800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9304
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001079974
  issn: 2329-9290
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZSiQxsHDEB33wFseLIL6tWdNX0sGnURQfBhnwYN6aHNWs7KIyjgP-vZV0z6yysuBb06nQoSp1dh0AR1bZjJaQG59nPK-N4lZI5JqUU-GkJackTi3pq-vrcjjUgzk4ntXCIGJMPsOf4TH-y_dP7jWEyk50mWoSpx3oKKWaWq2_8RShtI5Nl8lG0Jy0vpjWyAh9ctu76Q_IG0xTclKDP5h80kOdXyELMo5X-UcmR0VzufK9I67CcmtQsl5zA9ZgDh_XYelDm8ENOB2MHibGvTHz6NndOGTDvrGnmg35fYzZszNSZZ7dPKP5jSPWRATa-sxNuLu8uD2_4u3QBO7IthjzwidpjaJAZaUsnCsTpwpri8KXNhdOWyuS2mJtTG19liUpZmTiWF3aYNwJn23BPH0Gt4EZqxCJ6X0mkLzonHhVpqkjIyGgW5guJFMUVq7tKB4GW_ypomchdBXRXgW0Vy3au_Bjtue56afxX-hDoswMMLTCvur1q_AuVF8pko6TrAsbgQ4zqJYEXdibErJq-fKlSqWWtCZzufP1rl1YDAdogix7MD8eveI-LLjJ-OFldBCv3DswF9Cd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9RAcGirYH3wo7V4bdVFfNO1m02yyeLTKZYT43HQq9zbsh8TLEpbrteD_ntnN7lTsQi-hewsWWZ2PjMfAK9c5XJaQm5DkfOitRV3QiHXpJxKrxw5JWlqSVONx_Vspicb8GZdC4OIKfkM38bH9C8_XPjrGCo70rXUJE434U5ZFDLrqrV-RVREpXVqu0xWguak98WqSkboo-nwpJmQPygluanRI8z-0ESb32IeZBqw8pdUTqrm-OH_HfIRPOhNSjbs7sBj2MDzHbj_W6PBXXg3mZ8trb9h9jyw00XMh71hFy2b8a8pas_ekzIL7OQS7Xecsy4m0FdoPoHT44_TDyPej03gnqyLBS9DJlsUJVZOqdL7OvNV6VxZhtoVwmvnRNY6bK1tXcjzTGJORo7TtYvmnQj5HmzRZ_ApMOsqRGL7kAskP7ogblVSejITIrqFHUC2QqHxfU_xONrih0m-hdAmod1EtJse7QN4vd5z2XXU-Cf0S6LMGjA2wx4NGxPfxfqriuTjMh_AbqTDGqonwQAOV4Q0PWdeGam0ojVVqP3bd72Ae6Ppl8Y0n8afD2A7HqYLuRzC1mJ-jc_grl8uzq7mz9P1-wk3M9Pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+and+Utility+of+X-Vector+Based+Speaker+Anonymization&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Srivastava%2C+Brij+Mohan+Lal&rft.au=Maouche%2C+Mohamed&rft.au=Sahidullah%2C+Md&rft.au=Vincent%2C+Emmanuel&rft.date=2022-01-01&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=30&rft.spage=2383&rft.epage=2395&rft_id=info:doi/10.1109%2FTASLP.2022.3190741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASLP_2022_3190741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon