Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees

Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified fro...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 183; pp. 205 - 214
Main Authors: Park, Myung-Sook, Kim, Minsang, Lee, Myong-In, Im, Jungho, Park, Seonyoung
Format: Journal Article
Language:English
Published: Elsevier Inc 15.09.2016
Subjects:
ISSN:0034-4257, 1879-0704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation. •A tropical cyclone genesis detection model is developed using remote sensing.•Dynamical and hydrologic factors are quantified from WindSat.•An objective model is constructed using decision trees algorithm.•The model shows the circulation symmetry and intensity are the most important.•Validation shows that the model produces high hit rate and low false alarm rate.
AbstractList Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation. •A tropical cyclone genesis detection model is developed using remote sensing.•Dynamical and hydrologic factors are quantified from WindSat.•An objective model is constructed using decision trees algorithm.•The model shows the circulation symmetry and intensity are the most important.•Validation shows that the model produces high hit rate and low false alarm rate.
Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and quantitative way. This study develops a new model using WindSat data and a machine learning approach. Dynamic and hydrologic indices are quantified from WindSat wind and rainfall snapshot images over 352 developing and 973 non-developing tropical disturbances from 2005 to 2009. The degree of cyclonic circulation symmetry near the system center is quantified using circular variances, and the degree of strong wind aggregation (heavy rainfall) is defined using a spatial pattern analysis program tool called FRAGSTATS. In addition, the circulation strength and convection are defined based on the areal averages of wind speed and rainfall. An objective TC formation detection model is then developed by applying those indices to a machine-learning decision tree algorithm using calibration data from 2005 to 2007. Results suggest that the circulation symmetry and intensity are the most important parameters that characterize developing tropical disturbances. Despite inherent sampling issues associated with the polar orbiting satellite, a validation from 2008 to 2009 shows that the model produced a positive detection rate of approximately 95.3% and false alarm rate of 28.5%, which is comparable with the pre-existing objective methods based on cloud-pattern recognition. This study suggests that the quantitative microwave-sensed dynamic ocean surface wind pattern and intensity recognition model provides a new method of detecting TC formation.
Author Kim, Minsang
Im, Jungho
Park, Myung-Sook
Park, Seonyoung
Lee, Myong-In
Author_xml – sequence: 1
  givenname: Myung-Sook
  surname: Park
  fullname: Park, Myung-Sook
– sequence: 2
  givenname: Minsang
  surname: Kim
  fullname: Kim, Minsang
– sequence: 3
  givenname: Myong-In
  orcidid: 0000-0001-8983-8624
  surname: Lee
  fullname: Lee, Myong-In
  email: milee@unist.ac.kr
– sequence: 4
  givenname: Jungho
  surname: Im
  fullname: Im, Jungho
  email: ersgis@unist.ac.kr
– sequence: 5
  givenname: Seonyoung
  surname: Park
  fullname: Park, Seonyoung
BookMark eNqNkU1r3DAQhkVJoZu0P6A3HXvxVl-WbXoq6ScEemnPYiyPgxZH2mjkLfsL-rejzfbUQxoYmBG8r0Z6n0t2EVNExt5KsZVC2ve7bSbcqjpuRS1hX7CN7LuhEZ0wF2wjhDaNUW33il0S7YSQbd_JDfvzCQv6ElLkaeYlp33wsHB_9EtdwG8xIgXihwD8foVYQoESDsgJCi5LKMiTR4ic1jyDR_47xInvoRTMkUOdQywYKZRjPcFyJCS-Uoi3fEIf6LS3ZER6zV7OsBC--duv2K8vn39ef2tufnz9fv3xpvFGD6Vp1ahmpVBbnOSIagJtDahRm07WDsPkRw-jMEZjb8GMUzv1AxoLdpxBWH3F3p3v3ed0vyIVdxfI169AxLSSU6ImJXXfqf9KZa9bW2Ps-2dIZWuHVtiuSuVZ6nMiyji7fQ53kI9OCndC6XauonQnlE7Uenx094_HP3JIsWQIy5POD2cn1kwPAbMjHzB6nEKu2N2UwhPuBykSvnk
CitedBy_id crossref_primary_10_1007_s11600_022_00849_w
crossref_primary_10_3389_fmars_2022_1046964
crossref_primary_10_1080_19476337_2018_1545800
crossref_primary_10_1016_j_swevo_2017_11_003
crossref_primary_10_1007_s11430_023_1383_6
crossref_primary_10_3390_rs11101195
crossref_primary_10_3390_atmos13030381
crossref_primary_10_1109_JSTARS_2025_3544865
crossref_primary_10_3389_feart_2022_902596
crossref_primary_10_1029_2019EF001226
crossref_primary_10_1007_s00382_022_06316_y
crossref_primary_10_1002_2016JD025535
crossref_primary_10_3390_rs14020254
crossref_primary_10_3390_w9050332
crossref_primary_10_3390_rs10040631
crossref_primary_10_1002_joc_7457
crossref_primary_10_1007_s42488_024_00128_x
crossref_primary_10_3390_rs12010149
crossref_primary_10_1016_j_atmosenv_2024_120891
crossref_primary_10_3390_jmse10111686
crossref_primary_10_1016_j_future_2018_12_042
crossref_primary_10_1016_j_wace_2021_100405
crossref_primary_10_1080_17538947_2024_2356118
crossref_primary_10_1007_s11707_020_0849_6
crossref_primary_10_1109_TGRS_2021_3069217
crossref_primary_10_3390_rs9070685
crossref_primary_10_3390_atmos12070802
crossref_primary_10_1109_TGRS_2023_3266814
crossref_primary_10_1007_s12145_021_00711_5
crossref_primary_10_1016_j_jweia_2023_105591
crossref_primary_10_3390_rs14010073
crossref_primary_10_3390_jmse11102010
crossref_primary_10_3390_app12010181
crossref_primary_10_3390_atmos11070676
crossref_primary_10_3389_fbuil_2022_811460
Cites_doi 10.1109/TGRS.2005.862506
10.1029/2007JC004163
10.1016/j.rse.2008.03.001
10.1175/BAMS-87-9-1195
10.1080/01431160601075582
10.1109/TGRS.2011.2179662
10.1175/2009MWR2989.1
10.1175/MWR-D-11-00239.1
10.1016/j.rse.2005.09.008
10.1080/15481603.2013.819161
10.1175/JAS-D-11-0225.1
10.1175/WAF-D-14-00023.1
10.3390/rs70709184
10.1080/15481603.2014.900983
10.1080/15481603.2015.1026050
10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2
10.1080/15481603.2015.1076561
10.1175/WAF-D-14-00113.1
10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
10.1007/s13143-013-0038-6
10.1109/TGRS.2004.836867
10.3390/rs4020327
10.1175/2010JTECHA1522.1
10.1175/JAS-D-12-083.1
10.1175/MWR-D-14-00119.1
10.1007/s00382-010-0922-z
10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2
10.5589/m02-035
10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
10.1109/LGRS.2010.2048694
10.1016/S0034-4257(97)00049-7
10.1016/j.landurbplan.2014.07.005
10.1175/JAS-D-11-0311.1
10.1175/JAS3604.1
10.1175/2008WAF2007109.1
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7SN
C1K
F1W
H96
L.G
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.rse.2016.06.006
DatabaseName CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Ecology Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 214
ExternalDocumentID 10_1016_j_rse_2016_06_006
S0034425716302449
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
7SN
C1K
F1W
H96
L.G
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c439t-52b2f22e36ed1be2da364a2b34714a2a9dcbcab0443e86a4bd5d89e46a6bfa063
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382345400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sun Nov 09 11:55:08 EST 2025
Thu Oct 02 08:11:34 EDT 2025
Tue Oct 07 09:22:25 EDT 2025
Tue Nov 18 22:09:28 EST 2025
Sat Nov 29 02:51:19 EST 2025
Fri Feb 23 02:30:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic pattern and intensity recognition
Microwave sea surface wind
Tropical cyclone
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-52b2f22e36ed1be2da364a2b34714a2a9dcbcab0443e86a4bd5d89e46a6bfa063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8983-8624
OpenAccessLink http://www.sciencedirect.com/science/article/pii/S0034425716302449
PQID 1815695067
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_2000313872
proquest_miscellaneous_1835615888
proquest_miscellaneous_1815695067
crossref_primary_10_1016_j_rse_2016_06_006
crossref_citationtrail_10_1016_j_rse_2016_06_006
elsevier_sciencedirect_doi_10_1016_j_rse_2016_06_006
PublicationCentury 2000
PublicationDate 2016-09-15
PublicationDateYYYYMMDD 2016-09-15
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Remote sensing of environment
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Velden, Harper, Wells, Beven, Zehr, Olander (bb0210) 2006; 87
Li, Im, Beier (bb0120) 2013; 50
Gaiser, St Germain, Twarog, Poe, Purdy, Richardson (bb0040) 2004; 42
Im, Jensen, Tullis (bb0080) 2008; 29
Dvorak (bb0015) 1972; 36
Dvorak (bb0025) 1984; 11
Houze (bb0065) 2010; 138
Park, Ho, Kim, Elsberry (bb0155) 2011; 37
Hendricks, Montgomery, Davis (bb0055) 2004; 61
Lu, Im, Rhee, Hodgson (bb0125) 2014; 130
Friedl, Brodley (bb0035) 1997; 61
Kim, Im, Ha, Choi, Ha (bb0105) 2014; 51
Park, Penny, Elsberry, Billings, Doyle (bb0165) 2013; 70
Adams, Hennon, Jones, Ahmad (bb0005) 2006; 44
Jensen, Im, Hardin, Jensen (bb0095) 2008
Im, Jensen (bb0070) 2005; 99
Hennon, Helms, Knapp, Bowen (bb0060) 2011; 28
Kerns, Chen (bb0100) 2013; 141
Kim, Im, Han, Kim, Lee, Shin, Kim (bb0110) 2015; 52
Davis, Ahijevych (bb0010) 2012; 69
Tsai, Elsberry, Jordan (bb0205) 2013; 49
Meissner, Wentz (bb0135) 2013; 50
Dvorak (bb0020) 1975; 103
Velden, Olander, Zehr (bb0215) 1998; 13
Quinlan (bb0180) 2003
Park, Elsberry (bb0150) 2013; 70
Pineros, Ritchie, Tyo (bb0170) 2010; 7
Zhang, Fu, Peng, Li (bb0225) 2015; 30
Gray (bb0045) 1968; 96
Jensen (bb0085) 2015
Jensen, Im (bb0090) 2007
Im, Jensen, Jensen, Gladden, Waugh, Serrato (bb0075) 2012; 4
Wood, Rodriguez-Herrera, Ritchie, Piñeros, Hernández, Tyo (bb0220) 2015; 30
McGarigal, Cushman, Ene (bb0130) 2012
Montgomery, Nicholls, Cram, Saunders (bb0140) 2006; 63
Figa-Saldaña, Wilson, Attema, Gelsthorpe, Drinkwater, Stoffelen (bb0030) 2002; 28
Kucas, Darlow (bb0115) 2012; 1
Park, Kim, Ho, Elsberry, Lee (bb0160) 2015; 143
Nolan (bb0145) 2007; 56
Rhee, Im, Carbone, Jensen (bb0190) 2008; 112
Schumacher, DeMaria, Knaff (bb0195) 2009; 24
Quilfen, Prigent, Chapron, Mouche, Houti (bb0175) 2007; 112
Han, Lee, Im, Kim, Lee, Ahn, Chung (bb0050) 2015; 7
Torbick, Corbiere (bb0200) 2015; 52
Tsai (10.1016/j.rse.2016.06.006_bb0205) 2013; 49
Wood (10.1016/j.rse.2016.06.006_bb0220) 2015; 30
Davis (10.1016/j.rse.2016.06.006_bb0010) 2012; 69
Im (10.1016/j.rse.2016.06.006_bb0080) 2008; 29
McGarigal (10.1016/j.rse.2016.06.006_bb0130)
Park (10.1016/j.rse.2016.06.006_bb0155) 2011; 37
Quinlan (10.1016/j.rse.2016.06.006_bb0180)
Zhang (10.1016/j.rse.2016.06.006_bb0225) 2015; 30
Friedl (10.1016/j.rse.2016.06.006_bb0035) 1997; 61
Pineros (10.1016/j.rse.2016.06.006_bb0170) 2010; 7
Schumacher (10.1016/j.rse.2016.06.006_bb0195) 2009; 24
Park (10.1016/j.rse.2016.06.006_bb0165) 2013; 70
Quilfen (10.1016/j.rse.2016.06.006_bb0175) 2007; 112
Gray (10.1016/j.rse.2016.06.006_bb0045) 1968; 96
Im (10.1016/j.rse.2016.06.006_bb0075) 2012; 4
Li (10.1016/j.rse.2016.06.006_bb0120) 2013; 50
Figa-Saldaña (10.1016/j.rse.2016.06.006_bb0030) 2002; 28
Adams (10.1016/j.rse.2016.06.006_bb0005) 2006; 44
Gaiser (10.1016/j.rse.2016.06.006_bb0040) 2004; 42
Torbick (10.1016/j.rse.2016.06.006_bb0200) 2015; 52
Lu (10.1016/j.rse.2016.06.006_bb0125) 2014; 130
Park (10.1016/j.rse.2016.06.006_bb0150) 2013; 70
Hennon (10.1016/j.rse.2016.06.006_bb0060) 2011; 28
Kucas (10.1016/j.rse.2016.06.006_bb0115) 2012; 1
Park (10.1016/j.rse.2016.06.006_bb0160) 2015; 143
Dvorak (10.1016/j.rse.2016.06.006_bb0025) 1984; 11
Kim (10.1016/j.rse.2016.06.006_bb0110) 2015; 52
Velden (10.1016/j.rse.2016.06.006_bb0215) 1998; 13
Han (10.1016/j.rse.2016.06.006_bb0050) 2015; 7
Jensen (10.1016/j.rse.2016.06.006_bb0085) 2015
Dvorak (10.1016/j.rse.2016.06.006_bb0015) 1972; 36
Im (10.1016/j.rse.2016.06.006_bb0070) 2005; 99
Houze (10.1016/j.rse.2016.06.006_bb0065) 2010; 138
Meissner (10.1016/j.rse.2016.06.006_bb0135) 2013; 50
Jensen (10.1016/j.rse.2016.06.006_bb0090) 2007
Nolan (10.1016/j.rse.2016.06.006_bb0145) 2007; 56
Hendricks (10.1016/j.rse.2016.06.006_bb0055) 2004; 61
Velden (10.1016/j.rse.2016.06.006_bb0210) 2006; 87
Jensen (10.1016/j.rse.2016.06.006_bb0095) 2008
Montgomery (10.1016/j.rse.2016.06.006_bb0140) 2006; 63
Dvorak (10.1016/j.rse.2016.06.006_bb0020) 1975; 103
Kerns (10.1016/j.rse.2016.06.006_bb0100) 2013; 141
Kim (10.1016/j.rse.2016.06.006_bb0105) 2014; 51
Rhee (10.1016/j.rse.2016.06.006_bb0190) 2008; 112
References_xml – volume: 44
  start-page: 656
  year: 2006
  end-page: 667
  ident: bb0005
  article-title: Evaluation of hurricane ocean vector winds from WindSat
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 61
  start-page: 399
  year: 1997
  end-page: 409
  ident: bb0035
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sensing of Environment
– volume: 51
  start-page: 158
  year: 2014
  end-page: 174
  ident: bb0105
  article-title: Machine learning approaches to coastal water quality monitoring using GOCI satellite data
  publication-title: GIScience and Remote Sensing
– volume: 49
  start-page: 409
  year: 2013
  end-page: 420
  ident: bb0205
  article-title: Objective verifications and false alarm analyses of western North Pacific tropical cyclone event forecasts by the ECMWF 32-day ensemble
  publication-title: Asia-Pacific Journal of Atmospheric Sciences
– volume: 87
  start-page: 1195
  year: 2006
  end-page: 1210
  ident: bb0210
  article-title: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30
  publication-title: Bulletin of the American Meteorological Society
– volume: 28
  start-page: 404
  year: 2002
  end-page: 412
  ident: bb0030
  article-title: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers
  publication-title: Canadian Journal of Remote Sensing
– volume: 24
  start-page: 456
  year: 2009
  end-page: 471
  ident: bb0195
  article-title: Objective estimation of the 24-h probability of tropical cyclone formation
  publication-title: Weather Forecasting
– volume: 70
  start-page: 37
  year: 2013
  end-page: 55
  ident: bb0165
  article-title: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: Radar-equivalent retrievals from mesoscale numerical models and ELDORA
  publication-title: Journal of the Atmospheric Sciences
– volume: 96
  start-page: 669
  year: 1968
  end-page: 700
  ident: bb0045
  article-title: Global view of the origin of tropical disturbances and storms
  publication-title: Monthly Weather Review
– volume: 61
  start-page: 1209
  year: 2004
  end-page: 1232
  ident: bb0055
  article-title: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984)
  publication-title: Journal of the Atmospheric Sciences
– volume: 143
  start-page: 88
  year: 2015
  end-page: 110
  ident: bb0160
  article-title: Tropical cyclone Mekkhala (2008)'s formation over South China Sea: Mesoscale, synoptic-scale, and largescale contributions
  publication-title: Monthly Weather Review
– year: 2003
  ident: bb0180
  article-title: C5.0 online tutorial
– volume: 30
  start-page: 446
  year: 2015
  end-page: 454
  ident: bb0225
  article-title: Discriminating developing versus nondeveloping tropical disturbances in the Western North Pacific through decision tree analysis
  publication-title: Weather and Forecasting
– volume: 112
  year: 2007
  ident: bb0175
  article-title: The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions
  publication-title: Journal of Geophysical Research
– volume: 99
  start-page: 326
  year: 2005
  end-page: 340
  ident: bb0070
  article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification
  publication-title: Remote Sensing of Environment
– year: 2015
  ident: bb0085
  article-title: Introductory digital image processing: A remote sensing perspective
– volume: 70
  start-page: 15
  year: 2013
  end-page: 35
  ident: bb0150
  article-title: Latent heating and cooling rates in developing and non-developing tropical disturbances during TCS-08: TRMM and ELDORA retrievals
  publication-title: Journal of the Atmospheric Sciences
– volume: 28
  start-page: 1007
  year: 2011
  end-page: 1018
  ident: bb0060
  article-title: An objective algorithm for detecting and tracking tropical cloud clusters: Implications for tropical cyclogenesis prediction
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 7
  start-page: 826
  year: 2010
  end-page: 830
  ident: bb0170
  article-title: Detecting tropical cyclone genesis from remotely sensed infrared image data
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 103
  start-page: 420
  year: 1975
  end-page: 430
  ident: bb0020
  article-title: Tropical cyclone intensity analysis and forecasting from satellite imagery
  publication-title: Monthly Weather Review
– volume: 4
  start-page: 327
  year: 2012
  end-page: 353
  ident: bb0075
  article-title: Vegetation cover analysis of hazardous waste sites in Utah and Arizona using hyperspectral remote sensing
  publication-title: Remote Sensing
– volume: 37
  start-page: 1483
  year: 2011
  end-page: 1499
  ident: bb0155
  article-title: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts
  publication-title: Climate Dynamics
– volume: 141
  start-page: 192
  year: 2013
  end-page: 210
  ident: bb0100
  article-title: Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment
  publication-title: Monthly Weather Review
– year: 2012
  ident: bb0130
  article-title: FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst
– volume: 56
  start-page: 241
  year: 2007
  end-page: 266
  ident: bb0145
  article-title: What is the trigger for tropical cyclogenesis?
  publication-title: Australian Meteorological Magazine
– volume: 52
  start-page: 746
  year: 2015
  end-page: 764
  ident: bb0200
  article-title: Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades
  publication-title: GIScience and Remote Sensing
– volume: 112
  start-page: 3099
  year: 2008
  end-page: 3111
  ident: bb0190
  article-title: Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas
  publication-title: Remote Sensing of Environment
– volume: 1
  start-page: 325
  year: 2012
  end-page: 330
  ident: bb0115
  article-title: A subjective method for assessing tropical cyclogenesis at the joint typhoon warning center
  publication-title: Tropical Cyclone research and Review
– volume: 50
  start-page: 3004
  year: 2013
  end-page: 3026
  ident: bb0135
  article-title: The emissivity of the ocean surface between 6 and 90
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 13
  start-page: 172
  year: 1998
  end-page: 186
  ident: bb0215
  article-title: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite imagery
  publication-title: Weather and Forecasting
– volume: 69
  start-page: 1284
  year: 2012
  end-page: 1305
  ident: bb0010
  article-title: Mesoscale structural evolution of three tropical weather systems observed during PREDICT
  publication-title: Journal of the Atmospheric Sciences
– volume: 29
  start-page: 399
  year: 2008
  end-page: 423
  ident: bb0080
  article-title: Object-based change detection using correlation image analysis and image segmentation techniques
  publication-title: International Journal of Remote Sensing
– volume: 11
  year: 1984
  ident: bb0025
  article-title: Tropical cyclone intensity analysis using satellite data
  publication-title: NOAA Technical Report NESDIS
– volume: 50
  start-page: 361
  year: 2013
  end-page: 384
  ident: bb0120
  article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest
  publication-title: GIScience and Remote Sensing
– volume: 130
  start-page: 134
  year: 2014
  end-page: 148
  ident: bb0125
  article-title: Building type classification using spatial attributes derived from LiDAR remote sensing data
  publication-title: Landscape and Urban Planning
– volume: 63
  start-page: 355
  year: 2006
  end-page: 386
  ident: bb0140
  article-title: A vortical hot tower route to tropical cyclogenesis
  publication-title: Journal of the Atmospheric Sciences
– volume: 138
  start-page: 293
  year: 2010
  end-page: 344
  ident: bb0065
  article-title: Clouds in tropical cyclones
  publication-title: Monthly Weather Review
– volume: 42
  start-page: 2347
  year: 2004
  end-page: 2361
  ident: bb0040
  article-title: The WindSat space borne polarimetric microwave radiometer: Sensor description and early orbit performance
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 7
  year: 2007
  end-page: 31
  ident: bb0090
  article-title: Remote sensing change detection in urban environments
  publication-title: Geo-spatial technologies in urban environments: Policy, practice, and pixels
– volume: 36
  year: 1972
  ident: bb0015
  article-title: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures
  publication-title: NOAA Technical Memorandum NESS
– volume: 30
  start-page: 1663
  year: 2015
  end-page: 1672
  ident: bb0220
  article-title: Tropical cyclogenesis detection in the North Pacific using the deviation angle variance technique
  publication-title: Weather Forecasting
– volume: 7
  start-page: 9184
  year: 2015
  end-page: 9204
  ident: bb0050
  article-title: Detection of convective initiation using meteorological imager on board communication, ocean, and meteorological satellite based on machine learning approaches
  publication-title: Remote Sensing
– start-page: 269
  year: 2008
  end-page: 281
  ident: bb0095
  article-title: Image classification
  publication-title: The SAGE handbook of remote sensing
– volume: 52
  start-page: 239
  year: 2015
  end-page: 256
  ident: bb0110
  article-title: Landfast sea ice monitoring using multisensory fusion in the Antarctic
  publication-title: GIScience and Remote Sensing
– volume: 44
  start-page: 656
  issue: 3
  year: 2006
  ident: 10.1016/j.rse.2016.06.006_bb0005
  article-title: Evaluation of hurricane ocean vector winds from WindSat
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2005.862506
– volume: 112
  year: 2007
  ident: 10.1016/j.rse.2016.06.006_bb0175
  article-title: The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2007JC004163
– volume: 112
  start-page: 3099
  year: 2008
  ident: 10.1016/j.rse.2016.06.006_bb0190
  article-title: Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.03.001
– volume: 87
  start-page: 1195
  year: 2006
  ident: 10.1016/j.rse.2016.06.006_bb0210
  article-title: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30years
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/BAMS-87-9-1195
– volume: 29
  start-page: 399
  issue: 2
  year: 2008
  ident: 10.1016/j.rse.2016.06.006_bb0080
  article-title: Object-based change detection using correlation image analysis and image segmentation techniques
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160601075582
– volume: 50
  start-page: 3004
  issue: 8
  year: 2013
  ident: 10.1016/j.rse.2016.06.006_bb0135
  article-title: The emissivity of the ocean surface between 6 and 90GHz over a large range of wind speeds and earth incidence angles
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2011.2179662
– volume: 138
  start-page: 293
  year: 2010
  ident: 10.1016/j.rse.2016.06.006_bb0065
  article-title: Clouds in tropical cyclones
  publication-title: Monthly Weather Review
  doi: 10.1175/2009MWR2989.1
– volume: 141
  start-page: 192
  year: 2013
  ident: 10.1016/j.rse.2016.06.006_bb0100
  article-title: Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR-D-11-00239.1
– volume: 99
  start-page: 326
  year: 2005
  ident: 10.1016/j.rse.2016.06.006_bb0070
  article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.09.008
– volume: 50
  start-page: 361
  year: 2013
  ident: 10.1016/j.rse.2016.06.006_bb0120
  article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest
  publication-title: GIScience and Remote Sensing
  doi: 10.1080/15481603.2013.819161
– ident: 10.1016/j.rse.2016.06.006_bb0130
– volume: 69
  start-page: 1284
  year: 2012
  ident: 10.1016/j.rse.2016.06.006_bb0010
  article-title: Mesoscale structural evolution of three tropical weather systems observed during PREDICT
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/JAS-D-11-0225.1
– volume: 30
  start-page: 446
  year: 2015
  ident: 10.1016/j.rse.2016.06.006_bb0225
  article-title: Discriminating developing versus nondeveloping tropical disturbances in the Western North Pacific through decision tree analysis
  publication-title: Weather and Forecasting
  doi: 10.1175/WAF-D-14-00023.1
– volume: 7
  start-page: 9184
  year: 2015
  ident: 10.1016/j.rse.2016.06.006_bb0050
  article-title: Detection of convective initiation using meteorological imager on board communication, ocean, and meteorological satellite based on machine learning approaches
  publication-title: Remote Sensing
  doi: 10.3390/rs70709184
– volume: 51
  start-page: 158
  year: 2014
  ident: 10.1016/j.rse.2016.06.006_bb0105
  article-title: Machine learning approaches to coastal water quality monitoring using GOCI satellite data
  publication-title: GIScience and Remote Sensing
  doi: 10.1080/15481603.2014.900983
– volume: 52
  start-page: 239
  year: 2015
  ident: 10.1016/j.rse.2016.06.006_bb0110
  article-title: Landfast sea ice monitoring using multisensory fusion in the Antarctic
  publication-title: GIScience and Remote Sensing
  doi: 10.1080/15481603.2015.1026050
– volume: 13
  start-page: 172
  year: 1998
  ident: 10.1016/j.rse.2016.06.006_bb0215
  article-title: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite imagery
  publication-title: Weather and Forecasting
  doi: 10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2
– volume: 52
  start-page: 746
  year: 2015
  ident: 10.1016/j.rse.2016.06.006_bb0200
  article-title: Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades
  publication-title: GIScience and Remote Sensing
  doi: 10.1080/15481603.2015.1076561
– volume: 30
  start-page: 1663
  year: 2015
  ident: 10.1016/j.rse.2016.06.006_bb0220
  article-title: Tropical cyclogenesis detection in the North Pacific using the deviation angle variance technique
  publication-title: Weather Forecasting
  doi: 10.1175/WAF-D-14-00113.1
– volume: 61
  start-page: 1209
  year: 2004
  ident: 10.1016/j.rse.2016.06.006_bb0055
  article-title: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984)
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
– volume: 49
  start-page: 409
  issue: 4
  year: 2013
  ident: 10.1016/j.rse.2016.06.006_bb0205
  article-title: Objective verifications and false alarm analyses of western North Pacific tropical cyclone event forecasts by the ECMWF 32-day ensemble
  publication-title: Asia-Pacific Journal of Atmospheric Sciences
  doi: 10.1007/s13143-013-0038-6
– volume: 42
  start-page: 2347
  issue: 11
  year: 2004
  ident: 10.1016/j.rse.2016.06.006_bb0040
  article-title: The WindSat space borne polarimetric microwave radiometer: Sensor description and early orbit performance
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.836867
– volume: 4
  start-page: 327
  year: 2012
  ident: 10.1016/j.rse.2016.06.006_bb0075
  article-title: Vegetation cover analysis of hazardous waste sites in Utah and Arizona using hyperspectral remote sensing
  publication-title: Remote Sensing
  doi: 10.3390/rs4020327
– volume: 28
  start-page: 1007
  year: 2011
  ident: 10.1016/j.rse.2016.06.006_bb0060
  article-title: An objective algorithm for detecting and tracking tropical cloud clusters: Implications for tropical cyclogenesis prediction
  publication-title: Journal of Atmospheric and Oceanic Technology
  doi: 10.1175/2010JTECHA1522.1
– volume: 70
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.rse.2016.06.006_bb0150
  article-title: Latent heating and cooling rates in developing and non-developing tropical disturbances during TCS-08: TRMM and ELDORA retrievals
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/JAS-D-12-083.1
– volume: 1
  start-page: 325
  year: 2012
  ident: 10.1016/j.rse.2016.06.006_bb0115
  article-title: A subjective method for assessing tropical cyclogenesis at the joint typhoon warning center
  publication-title: Tropical Cyclone research and Review
– volume: 56
  start-page: 241
  year: 2007
  ident: 10.1016/j.rse.2016.06.006_bb0145
  article-title: What is the trigger for tropical cyclogenesis?
  publication-title: Australian Meteorological Magazine
– volume: 143
  start-page: 88
  issue: 1
  year: 2015
  ident: 10.1016/j.rse.2016.06.006_bb0160
  article-title: Tropical cyclone Mekkhala (2008)'s formation over South China Sea: Mesoscale, synoptic-scale, and largescale contributions
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR-D-14-00119.1
– volume: 36
  year: 1972
  ident: 10.1016/j.rse.2016.06.006_bb0015
  article-title: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures
  publication-title: NOAA Technical Memorandum NESS
– volume: 11
  year: 1984
  ident: 10.1016/j.rse.2016.06.006_bb0025
  article-title: Tropical cyclone intensity analysis using satellite data
  publication-title: NOAA Technical Report NESDIS
– volume: 37
  start-page: 1483
  year: 2011
  ident: 10.1016/j.rse.2016.06.006_bb0155
  article-title: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts
  publication-title: Climate Dynamics
  doi: 10.1007/s00382-010-0922-z
– volume: 103
  start-page: 420
  year: 1975
  ident: 10.1016/j.rse.2016.06.006_bb0020
  article-title: Tropical cyclone intensity analysis and forecasting from satellite imagery
  publication-title: Monthly Weather Review
  doi: 10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2
– start-page: 269
  year: 2008
  ident: 10.1016/j.rse.2016.06.006_bb0095
  article-title: Image classification
– ident: 10.1016/j.rse.2016.06.006_bb0180
– volume: 28
  start-page: 404
  issue: 3
  year: 2002
  ident: 10.1016/j.rse.2016.06.006_bb0030
  article-title: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.5589/m02-035
– volume: 96
  start-page: 669
  year: 1968
  ident: 10.1016/j.rse.2016.06.006_bb0045
  article-title: Global view of the origin of tropical disturbances and storms
  publication-title: Monthly Weather Review
  doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
– volume: 7
  start-page: 826
  issue: 4
  year: 2010
  ident: 10.1016/j.rse.2016.06.006_bb0170
  article-title: Detecting tropical cyclone genesis from remotely sensed infrared image data
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2010.2048694
– volume: 61
  start-page: 399
  issue: 3
  year: 1997
  ident: 10.1016/j.rse.2016.06.006_bb0035
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(97)00049-7
– volume: 130
  start-page: 134
  year: 2014
  ident: 10.1016/j.rse.2016.06.006_bb0125
  article-title: Building type classification using spatial attributes derived from LiDAR remote sensing data
  publication-title: Landscape and Urban Planning
  doi: 10.1016/j.landurbplan.2014.07.005
– start-page: 7
  year: 2007
  ident: 10.1016/j.rse.2016.06.006_bb0090
  article-title: Remote sensing change detection in urban environments
– volume: 70
  start-page: 37
  year: 2013
  ident: 10.1016/j.rse.2016.06.006_bb0165
  article-title: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: Radar-equivalent retrievals from mesoscale numerical models and ELDORA
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/JAS-D-11-0311.1
– year: 2015
  ident: 10.1016/j.rse.2016.06.006_bb0085
– volume: 63
  start-page: 355
  year: 2006
  ident: 10.1016/j.rse.2016.06.006_bb0140
  article-title: A vortical hot tower route to tropical cyclogenesis
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/JAS3604.1
– volume: 24
  start-page: 456
  year: 2009
  ident: 10.1016/j.rse.2016.06.006_bb0195
  article-title: Objective estimation of the 24-h probability of tropical cyclone formation
  publication-title: Weather Forecasting
  doi: 10.1175/2008WAF2007109.1
SSID ssj0015871
Score 2.4171839
Snippet Microwave remote sensing can be used to measure ocean surface winds, which can be used to detect tropical cyclone (TC) formation in an objective and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms algorithms
artificial intelligence
Circulation
convection
Cyclones
decision support systems
Decision trees
Disturbances
Dynamic pattern and intensity recognition
Dynamics
Formations
hurricanes
hydrology
Machine learning
methodology
Microwave sea surface wind
Ocean surface
rain
Rainfall
remote sensing
satellites
Tropical cyclone
wind speed
Title Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees
URI https://dx.doi.org/10.1016/j.rse.2016.06.006
https://www.proquest.com/docview/1815695067
https://www.proquest.com/docview/1835615888
https://www.proquest.com/docview/2000313872
Volume 183
WOSCitedRecordID wos000382345400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4IXBIOJcZOREA9MQbk5l8cJujG0FiQ6qW-R4zijU5WUJi3rL-Bf8Fs5x7GTarBqPPCSVqmdtD2fj7_Y53yHkNeeb6d-lOVWFka-5buuxDGH5V4CIcIgj5kQqthEOBpFk0n8pdf7ZXJhVrOwKKLLy3j-X00N58DYmDr7D-ZuLwon4D0YHY5gdjjeyPAfZC2F4YH1opw3GiBrMSuBUJ6jb5tWB6spx4TKQuWYYfRQxZU2J0YNCFydr5aLnMOg_zFFJQGlwlloqSYV9F6jcBMKmsjqYKkWHDJdrgeD13VkolH-lgAIuAX2a4KsN_Lruk2sJmp7uAb_Y3015J-3FZ-H06LieqLtQoiG6xKan3QY12nfxfm3cnNJwwkw_qJJ6jRu2kPcNMrVnZv2Nh2tzTbmbLdJRP1jOmhWJi7eLSpURHUCJdVq_0V6e_Q5OTo7PU3Gg8n4zfy7hVXJcPdel2i5RXbckMVRn-wcngwmn9p9KhaFTU1G_YXNvrmKILxy1-uYzxUOoIjN-AG5r59I6GGDpIekJ4tdsjfoDAQf6hmg2iV3j6UWOd8ld45VWej1I_KzBR0tc2pARzXoqAYdBdDRTdDRFnRUgY5q0FEEHdWgowA62oKOGtBRBTpqQEcV6B6Ts6PB-P1HS5f4sAQw4dpiburm4CC8QGZOKt2Me4HP3dQDzgSvPM5EKnhq-74no4D7acayKJZ-wIM050Cv90i_gB_yhFA_dwSwzzAX-FQArD9nqS1FyjyWM7DePrHN358IrX-PZVhmiQl0vEjAYglaLFHBnsE-edt2mTfiL9sa-8amiWavDStNAI3bur0y9k_As-N2HS9kuawSB4WcYgZ0clsbDx6AWBRF17fBZDzP8aLQfXqDez0j97oh-Zz068VSviC3xaqeVouXGv-_AR2a5og
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+tropical+cyclone+genesis+via+quantitative+satellite+ocean+surface+wind+pattern+and+intensity+analyses+using+decision+trees&rft.jtitle=Remote+sensing+of+environment&rft.au=Park%2C+Myung-Sook&rft.au=Kim%2C+Minsang&rft.au=Lee%2C+Myong-In&rft.au=Im%2C+Jungho&rft.date=2016-09-15&rft.issn=0034-4257&rft.volume=183&rft.spage=205&rft.epage=214&rft_id=info:doi/10.1016%2Fj.rse.2016.06.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon