Development and in vitro evaluation of κ-carrageenan based polymeric hybrid nanocomposite scaffolds for bone tissue engineering

The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances Jg. 10; H. 66; S. 40529 - 40542
Hauptverfasser: Aslam Khan, Muhammad Umar, Raza, Mohsin Ali, Mehboob, Hassan, Abdul Kadir, Mohammed Rafiq, Abd Razak, Saiful Izwan, Shah, Saqlain A., Iqbal, Muhammad Zahir, Amin, Rashid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Royal Society of Chemistry 06.11.2020
The Royal Society of Chemistry
Schlagworte:
ISSN:2046-2069, 2046-2069
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast ( MC3T3-E1 ) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10 3 μm 2 ), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG- g -AAc-3 with a high optical density and better cell viability. Hence, CG- g -AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.
AbstractList The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast ( ) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10 μm ), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG- -AAc-3 with a high optical density and better cell viability. Hence, CG- -AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.
The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast ( MC3T3-E1 ) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10 3 μm 2 ), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG- g -AAc-3 with a high optical density and better cell viability. Hence, CG- g -AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.
The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.
The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.
The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration.
The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10³ μm²), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.
Author Iqbal, Muhammad Zahir
Abdul Kadir, Mohammed Rafiq
Abd Razak, Saiful Izwan
Amin, Rashid
Shah, Saqlain A.
Aslam Khan, Muhammad Umar
Raza, Mohsin Ali
Mehboob, Hassan
Author_xml – sequence: 1
  givenname: Muhammad Umar
  surname: Aslam Khan
  fullname: Aslam Khan, Muhammad Umar
  organization: Department of Polymer Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan, School of Biomedical Engineering and Health Sciences
– sequence: 2
  givenname: Mohsin Ali
  surname: Raza
  fullname: Raza, Mohsin Ali
  organization: Department of Metallurgy and Materials Engineering, CEET, University of the Punjab, Lahore, Pakistan
– sequence: 3
  givenname: Hassan
  surname: Mehboob
  fullname: Mehboob, Hassan
  organization: Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
– sequence: 4
  givenname: Mohammed Rafiq
  surname: Abdul Kadir
  fullname: Abdul Kadir, Mohammed Rafiq
  organization: School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Malaysia
– sequence: 5
  givenname: Saiful Izwan
  surname: Abd Razak
  fullname: Abd Razak, Saiful Izwan
  organization: School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Malaysia
– sequence: 6
  givenname: Saqlain A.
  surname: Shah
  fullname: Shah, Saqlain A.
  organization: Materials Science Lab, Department of Physics, Forman Christian College (University), Lahore, Pakistan
– sequence: 7
  givenname: Muhammad Zahir
  surname: Iqbal
  fullname: Iqbal, Muhammad Zahir
  organization: Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Pakistan
– sequence: 8
  givenname: Rashid
  orcidid: 0000-0003-4627-7147
  surname: Amin
  fullname: Amin, Rashid
  organization: Department of Biology, College of Sciences, University of Hafr Al Batin, 39524 Hafar Al-batin, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35520852$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1qFjEQhoNUbK098QIk4IkIq_nP5kSorX9QEESPQzY7-zVlN1mT3Q--M6_Li_CaTG2ttXhgThKYZ955JzMP0V5MERB6TMkLSrh5eUo-HRMthHp9Dx0wIlTDiDJ7t9776KiUC1KPkpQp-gDtcykZaSU7QN9OYQtjmieIC3axxyHibVhywrB14-qWkCJOA_7xvfEuZ7cBiC7izhXo8ZzG3QQ5eHy-63LocQ0ln6Y5lbAALt4NQxr7goeUcVd94yWUsgKGuAkRambcPEL3BzcWOLq-D9GXt28-n7xvzj6--3ByfNZ4wc3SCOgc7432EjrDqHJu8JwyGDThlDIvQAujaU-BSemp8VJLr1rNet62Rit-iF5d6c5rN0Hva7_ZjXbOYXJ5Z5ML9u9IDOd2k7bWkCqleRV4di2Q09cVymKnUDyMo4uQ1mKZUpS0xND_QCUTnJpWthV9ege9SGuO9ScsE7KtdSW_pJ7cNn_j-vccK_D8CvA5lZJhuEEosZd7Yv_sSYXJHdiH5deka-Nh_FfKTzrewR8
CitedBy_id crossref_primary_10_1007_s10924_022_02726_5
crossref_primary_10_1016_j_ijbiomac_2023_128503
crossref_primary_10_1002_agt2_731
crossref_primary_10_1002_adsu_202200279
crossref_primary_10_1002_slct_202103234
crossref_primary_10_1080_09205063_2022_2054544
crossref_primary_10_3390_pharmaceutics13121994
crossref_primary_10_1016_j_carbpol_2025_124308
crossref_primary_10_3390_polym14163268
crossref_primary_10_3390_coatings10111120
crossref_primary_10_3390_nano13222920
crossref_primary_10_3390_polym13213611
crossref_primary_10_3390_polym13183124
crossref_primary_10_1016_j_bioactmat_2021_01_007
crossref_primary_10_1016_j_mtcomm_2024_109646
crossref_primary_10_1016_j_mtchem_2023_101818
crossref_primary_10_3390_ijms23169493
crossref_primary_10_1016_j_bioadv_2022_212733
crossref_primary_10_1016_j_ijbiomac_2025_146667
crossref_primary_10_1002_term_3168
crossref_primary_10_1016_j_carbpol_2022_119126
crossref_primary_10_1016_j_arabjc_2024_105968
crossref_primary_10_1016_j_ijbiomac_2023_127882
crossref_primary_10_1016_j_ijbiomac_2023_127169
crossref_primary_10_1002_pc_27428
crossref_primary_10_1007_s13205_022_03210_6
crossref_primary_10_1016_j_heliyon_2025_e43429
crossref_primary_10_3390_nano11051319
crossref_primary_10_3390_polym13213703
crossref_primary_10_3390_polym16162345
crossref_primary_10_1088_1748_605X_ad6b8a
crossref_primary_10_1007_s10904_024_03539_w
crossref_primary_10_1088_1748_605X_ad6070
crossref_primary_10_1016_j_carbpol_2022_119142
crossref_primary_10_3390_molecules26030619
crossref_primary_10_1016_j_ijbiomac_2024_130155
crossref_primary_10_3390_polym16111592
crossref_primary_10_1002_pat_6284
crossref_primary_10_1016_j_arabjc_2021_103294
crossref_primary_10_1007_s10904_022_02283_3
crossref_primary_10_1007_s42114_024_00932_4
crossref_primary_10_1016_j_ijbiomac_2025_141006
crossref_primary_10_3390_polym15183822
crossref_primary_10_1016_j_mtcomm_2023_107039
crossref_primary_10_1088_1748_605X_ac58d6
crossref_primary_10_1016_j_ijbiomac_2023_123777
crossref_primary_10_1016_j_ijbiomac_2022_09_153
crossref_primary_10_1016_j_arabjc_2020_102924
Cites_doi 10.1016/j.colsurfb.2011.08.026
10.1016/j.carbpol.2017.06.101
10.1002/jbm.820270813
10.1089/ten.tea.2013.0597
10.1002/term.3115
10.1016/j.ijbiomac.2017.01.034
10.1021/acsami.6b15032
10.1016/j.colsurfb.2016.08.055
10.1007/s12274-014-0408-0
10.1007/s10853-020-04957-0
10.1016/j.actbio.2011.01.012
10.2174/156802608783790901
10.1016/j.biomaterials.2009.11.083
10.1007/s11434-012-5336-3
10.1016/j.jcis.2011.04.093
10.1016/j.carbpol.2013.12.012
10.3390/polym12061238
10.3390/molecules23061439
10.1016/j.matchemphys.2019.122515
10.1126/scirobotics.aat8829
10.1016/j.biomaterials.2008.02.021
10.1002/jbm.a.30682
10.1016/j.biomaterials.2009.02.006
10.1016/j.ijbiomac.2014.11.040
10.3390/polym8070248
10.1016/j.ijbiomac.2020.02.142
10.1016/j.jconrel.2013.10.017
10.1016/j.biomaterials.2012.05.069
10.1016/S0142-9612(02)00270-3
10.1016/j.mser.2014.04.001
10.1016/j.memsci.2016.10.048
10.1016/j.actbio.2008.04.004
10.1021/acsami.5b08534
10.1016/j.biomaterials.2009.09.063
10.1038/nprot.2008.75
10.1109/TASC.2013.2286493
10.1073/pnas.0407356102
10.1088/1757-899X/79/1/012020
10.1016/j.carbon.2010.10.024
10.1016/j.jmapro.2017.07.027
10.1016/j.ijbiomac.2011.09.016
10.17221/6758-VETMED
10.1371/journal.pone.0043328
10.1016/j.saa.2010.08.053
10.1016/S0254-0584(02)00466-2
10.3390/ma13040971
10.1016/j.ceramint.2016.04.038
10.1039/C4RA12980F
10.1016/j.actbio.2009.08.041
10.1016/j.ijbiomac.2018.02.125
10.1038/boneres.2015.29
10.1016/j.carbpol.2018.06.086
10.1002/adma.201403354
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/D0RA07446B
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 40542
ExternalDocumentID PMC9057573
35520852
10_1039_D0RA07446B
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 4C146; 04G53
GroupedDBID 0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AFVBQ
AGMRB
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CITATION
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
ZCN
AGEGJ
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c439t-4eba3d97c5eb9216aafc312ef703112c4e74971d1e255c19c575c6872d3889763
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587926200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-2069
IngestDate Tue Nov 04 02:01:01 EST 2025
Thu Sep 04 17:19:49 EDT 2025
Thu Sep 04 16:24:49 EDT 2025
Sun Sep 07 03:36:37 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
Tue Nov 18 22:36:33 EST 2025
Sat Nov 29 06:12:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 66
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-4eba3d97c5eb9216aafc312ef703112c4e74971d1e255c19c575c6872d3889763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4627-7147
OpenAccessLink http://dx.doi.org/10.1039/d0ra07446b
PMID 35520852
PQID 2458733538
PQPubID 2047525
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9057573
proquest_miscellaneous_2661080913
proquest_miscellaneous_2524319858
proquest_journals_2458733538
pubmed_primary_35520852
crossref_primary_10_1039_D0RA07446B
crossref_citationtrail_10_1039_D0RA07446B
PublicationCentury 2000
PublicationDate 2020-11-06
PublicationDateYYYYMMDD 2020-11-06
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Saravanan (D0RA07446B-(cit31)/*[position()=1]) 2017; 104
Nawaz (D0RA07446B-(cit8)/*[position()=1]) 2018; 113
Necas (D0RA07446B-(cit7)/*[position()=1]) 2013; 58
Liu (D0RA07446B-(cit14)/*[position()=1]) 2016; 42
Wang (D0RA07446B-(cit15)/*[position()=1]) 2011; 360
Xu (D0RA07446B-(cit38)/*[position()=1]) 2018; 23
Rouahi (D0RA07446B-(cit23)/*[position()=1]) 2006; 78
Karvandian (D0RA07446B-(cit43)/*[position()=1]) 2020; 242
Keselowsky (D0RA07446B-(cit52)/*[position()=1]) 2005; 102
Mandal (D0RA07446B-(cit28)/*[position()=1]) 2009; 30
Pina (D0RA07446B-(cit30)/*[position()=1]) 2015; 27
Kumar (D0RA07446B-(cit25)/*[position()=1]) 2017; 2
Bet (D0RA07446B-(cit48)/*[position()=1]) 2003; 24
Shah (D0RA07446B-(cit11)/*[position()=1]) 2016; 148
Goenka (D0RA07446B-(cit12)/*[position()=1]) 2014; 173
Tang (D0RA07446B-(cit34)/*[position()=1]) 2013; 24
Justin (D0RA07446B-(cit46)/*[position()=1]) 2014; 103
Dadsetan (D0RA07446B-(cit49)/*[position()=1]) 2011; 7
Wu (D0RA07446B-(cit13)/*[position()=1]) 2014; 80
Tang (D0RA07446B-(cit51)/*[position()=1]) 2008; 8
Ng (D0RA07446B-(cit33)/*[position()=1]) 2015; 79
Murphy (D0RA07446B-(cit27)/*[position()=1]) 2010; 31
Aslam Khan (D0RA07446B-(cit5)/*[position()=1]) 2020; 12
Lopez-Heredia (D0RA07446B-(cit29)/*[position()=1]) 2008; 29
Fouda (D0RA07446B-(cit9)/*[position()=1]) 2015; 74
Sossa (D0RA07446B-(cit32)/*[position()=1]) 2018; 23
Makohliso (D0RA07446B-(cit50)/*[position()=1]) 1993; 27
Ayyaru (D0RA07446B-(cit39)/*[position()=1]) 2017; 525
Wohlrab (D0RA07446B-(cit47)/*[position()=1]) 2012; 33
Wu (D0RA07446B-(cit55)/*[position()=1]) 2015; 21
Jiang (D0RA07446B-(cit17)/*[position()=1]) 2017; 9
Destainville (D0RA07446B-(cit24)/*[position()=1]) 2003; 80
Hu (D0RA07446B-(cit40)/*[position()=1]) 2014; 7
Gong (D0RA07446B-(cit1)/*[position()=1]) 2015; 3
Wojtoniszak (D0RA07446B-(cit22)/*[position()=1]) 2012; 89
Paluszkiewicz (D0RA07446B-(cit20)/*[position()=1]) 2011; 79
Khan (D0RA07446B-(cit21)/*[position()=1]) 2020; 14
Xiao (D0RA07446B-(cit53)/*[position()=1]) 2020; 55
Yi (D0RA07446B-(cit35)/*[position()=1]) 2017; 29
Li (D0RA07446B-(cit26)/*[position()=1]) 2012; 7
Zhang (D0RA07446B-(cit44)/*[position()=1]) 2011; 49
Bauer (D0RA07446B-(cit41)/*[position()=1]) 2008; 4
Yegappan (D0RA07446B-(cit10)/*[position()=1]) 2018; 198
Khan (D0RA07446B-(cit3)/*[position()=1]) 2020; 13
Król (D0RA07446B-(cit36)/*[position()=1]) 2016; 8
Pattnaik (D0RA07446B-(cit45)/*[position()=1]) 2011; 49
Yin (D0RA07446B-(cit2)/*[position()=1]) 2010; 31
Khan (D0RA07446B-(cit4)/*[position()=1]) 2020; 151
Repetto (D0RA07446B-(cit19)/*[position()=1]) 2008; 3
Li (D0RA07446B-(cit54)/*[position()=1]) 2018; 3
Wu (D0RA07446B-(cit16)/*[position()=1]) 2010; 6
Kim (D0RA07446B-(cit37)/*[position()=1]) 2015; 5
Wang (D0RA07446B-(cit18)/*[position()=1]) 2015; 7
Ma (D0RA07446B-(cit6)/*[position()=1]) 2012; 57
Wu (D0RA07446B-(cit42)/*[position()=1]) 2017; 174
35481984 - RSC Adv. 2021 May 24;11(30):18615-18616. doi: 10.1039/d1ra90119b
References_xml – volume: 89
  start-page: 79
  year: 2012
  ident: D0RA07446B-(cit22)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2011.08.026
– volume: 174
  start-page: 830
  year: 2017
  ident: D0RA07446B-(cit42)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.101
– volume: 27
  start-page: 1075
  year: 1993
  ident: D0RA07446B-(cit50)/*[position()=1]
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820270813
– volume: 21
  start-page: 53
  year: 2015
  ident: D0RA07446B-(cit55)/*[position()=1]
  publication-title: Tissue Eng., Part A
  doi: 10.1089/ten.tea.2013.0597
– volume: 14
  start-page: 1488
  year: 2020
  ident: D0RA07446B-(cit21)/*[position()=1]
  publication-title: J. Tissue Eng. Regener. Med.
  doi: 10.1002/term.3115
– volume: 104
  start-page: 1975
  year: 2017
  ident: D0RA07446B-(cit31)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.01.034
– volume: 9
  start-page: 4890
  year: 2017
  ident: D0RA07446B-(cit17)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15032
– volume: 148
  start-page: 157
  year: 2016
  ident: D0RA07446B-(cit11)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2016.08.055
– volume: 7
  start-page: 418
  year: 2014
  ident: D0RA07446B-(cit40)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0408-0
– volume: 55
  start-page: 14008
  year: 2020
  ident: D0RA07446B-(cit53)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-04957-0
– volume: 2
  start-page: 493
  year: 2017
  ident: D0RA07446B-(cit25)/*[position()=1]
  publication-title: J. Sci.
– volume: 7
  start-page: 2080
  year: 2011
  ident: D0RA07446B-(cit49)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.01.012
– volume: 8
  start-page: 270
  year: 2008
  ident: D0RA07446B-(cit51)/*[position()=1]
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802608783790901
– volume: 31
  start-page: 2163
  year: 2010
  ident: D0RA07446B-(cit2)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.083
– volume: 23
  start-page: e12217
  year: 2018
  ident: D0RA07446B-(cit32)/*[position()=1]
  publication-title: Matéria
– volume: 57
  start-page: 3051
  year: 2012
  ident: D0RA07446B-(cit6)/*[position()=1]
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-012-5336-3
– volume: 360
  start-page: 415
  year: 2011
  ident: D0RA07446B-(cit15)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.04.093
– volume: 103
  start-page: 70
  year: 2014
  ident: D0RA07446B-(cit46)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.12.012
– volume: 12
  start-page: 1238
  year: 2020
  ident: D0RA07446B-(cit5)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym12061238
– volume: 23
  start-page: 1439
  year: 2018
  ident: D0RA07446B-(cit38)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules23061439
– volume: 242
  start-page: 122515
  year: 2020
  ident: D0RA07446B-(cit43)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.122515
– volume: 3
  start-page: eaat8829
  year: 2018
  ident: D0RA07446B-(cit54)/*[position()=1]
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aat8829
– volume: 29
  start-page: 2608
  year: 2008
  ident: D0RA07446B-(cit29)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.02.021
– volume: 78
  start-page: 222
  year: 2006
  ident: D0RA07446B-(cit23)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.30682
– volume: 30
  start-page: 2956
  year: 2009
  ident: D0RA07446B-(cit28)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.02.006
– volume: 74
  start-page: 179
  year: 2015
  ident: D0RA07446B-(cit9)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.11.040
– volume: 8
  start-page: 248
  year: 2016
  ident: D0RA07446B-(cit36)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym8070248
– volume: 151
  start-page: 584
  year: 2020
  ident: D0RA07446B-(cit4)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.02.142
– volume: 173
  start-page: 75
  year: 2014
  ident: D0RA07446B-(cit12)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2013.10.017
– volume: 33
  start-page: 6650
  year: 2012
  ident: D0RA07446B-(cit47)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.05.069
– volume: 24
  start-page: 131
  year: 2003
  ident: D0RA07446B-(cit48)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00270-3
– volume: 80
  start-page: 1
  year: 2014
  ident: D0RA07446B-(cit13)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2014.04.001
– volume: 525
  start-page: 210
  year: 2017
  ident: D0RA07446B-(cit39)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.10.048
– volume: 4
  start-page: 1576
  year: 2008
  ident: D0RA07446B-(cit41)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.04.004
– volume: 7
  start-page: 26244
  year: 2015
  ident: D0RA07446B-(cit18)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08534
– volume: 31
  start-page: 461
  year: 2010
  ident: D0RA07446B-(cit27)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.063
– volume: 3
  start-page: 1125
  year: 2008
  ident: D0RA07446B-(cit19)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.75
– volume: 24
  start-page: 74
  year: 2013
  ident: D0RA07446B-(cit34)/*[position()=1]
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2013.2286493
– volume: 102
  start-page: 5953
  year: 2005
  ident: D0RA07446B-(cit52)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0407356102
– volume: 79
  start-page: 012020
  year: 2015
  ident: D0RA07446B-(cit33)/*[position()=1]
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/79/1/012020
– volume: 49
  start-page: 827
  year: 2011
  ident: D0RA07446B-(cit44)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.10.024
– volume: 29
  start-page: 182
  year: 2017
  ident: D0RA07446B-(cit35)/*[position()=1]
  publication-title: J. Manuf. Process
  doi: 10.1016/j.jmapro.2017.07.027
– volume: 49
  start-page: 1167
  year: 2011
  ident: D0RA07446B-(cit45)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2011.09.016
– volume: 58
  start-page: 187
  year: 2013
  ident: D0RA07446B-(cit7)/*[position()=1]
  publication-title: Vet. Med.
  doi: 10.17221/6758-VETMED
– volume: 7
  start-page: e43328
  year: 2012
  ident: D0RA07446B-(cit26)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043328
– volume: 79
  start-page: 784
  year: 2011
  ident: D0RA07446B-(cit20)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2010.08.053
– volume: 80
  start-page: 269
  year: 2003
  ident: D0RA07446B-(cit24)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(02)00466-2
– volume: 13
  start-page: 971
  year: 2020
  ident: D0RA07446B-(cit3)/*[position()=1]
  publication-title: Materials
  doi: 10.3390/ma13040971
– volume: 42
  start-page: 11248
  year: 2016
  ident: D0RA07446B-(cit14)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.04.038
– volume: 5
  start-page: 9904
  year: 2015
  ident: D0RA07446B-(cit37)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12980F
– volume: 6
  start-page: 1167
  year: 2010
  ident: D0RA07446B-(cit16)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.08.041
– volume: 113
  start-page: 219
  year: 2018
  ident: D0RA07446B-(cit8)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.02.125
– volume: 3
  start-page: 15029
  year: 2015
  ident: D0RA07446B-(cit1)/*[position()=1]
  publication-title: Bone Res.
  doi: 10.1038/boneres.2015.29
– volume: 198
  start-page: 385
  year: 2018
  ident: D0RA07446B-(cit10)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.06.086
– volume: 27
  start-page: 1143
  year: 2015
  ident: D0RA07446B-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403354
– reference: 35481984 - RSC Adv. 2021 May 24;11(30):18615-18616. doi: 10.1039/d1ra90119b
SSID ssj0000651261
Score 2.5265384
Snippet The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 40529
SubjectTerms absorbance
Biocompatibility
Biodegradation
Biomedical materials
bone formation
bones
Carrageenan
Cell adhesion
cell culture
cell viability
Chemical composition
Chemistry
compression strength
Compressive strength
Contact angle
dyes
Fourier transform infrared spectroscopy
Fourier transforms
Free radical polymerization
freeze drying
Functional groups
Graphene
hydrophilicity
Hydroxyapatite
Mechanical properties
mice
Modulus of elasticity
Morphology
Nanocomposites
Optical density
polymerization
polymers
Pore size
Porosity
Regeneration (physiology)
Scaffolds
Scanning electron microscopy
Swelling
Tissue engineering
Title Development and in vitro evaluation of κ-carrageenan based polymeric hybrid nanocomposite scaffolds for bone tissue engineering
URI https://www.ncbi.nlm.nih.gov/pubmed/35520852
https://www.proquest.com/docview/2458733538
https://www.proquest.com/docview/2524319858
https://www.proquest.com/docview/2661080913
https://pubmed.ncbi.nlm.nih.gov/PMC9057573
Volume 10
WOSCitedRecordID wos000587926200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals - May need to register for free articles
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lBQkuiGcJlGoRFAlZLrHXrz2moVWlPkAhlXKzNrtrJVJip3mp5YD4XfwIDvwiZvwOrVA5cLGi3VXs5Pu88814PEPIW3SNJVDHjECLmljy3Awi1zeFy3jgSLDZIms24Z-dBf0-_9xo_CrehVmN_TgOLi_59L9CDWMANr46-w9wl18KA_AZQIcjwA7HWwFfSwPKSysZq9FiltQKe6NC3O0c7O63TSlmM9hSdAz3OVo0hW0brrIE--EVvs5lwFSCmeeY3qWNuRRRlIzVPEv0TECkLlLwDF2VNqxL3u6XTpFpUOr3NhLROB5m0dfT5VBMJkIZ5xNR5gp3xddU154mwznGZMajkht6CK5B-hzpCKR_RW9YinF4ZXRFNLow2gO1HBvHAqx2PbYBjizGa71qC7TBewdws2Yue_qGsWIPb9W46nnGdM_BR5jgHbtZ8a58f05Ha8a-nL9mSVoMC7Gq1kyAyHK8QWUvixyBs0_h4fnJSdg76PfeTS9M7GSGQORtXTbIHdt3Oe60p9-quB9IPstOy_iWP6Somsv4h-p86zrpmvPzZw5vTRT1HpIHuTdD2xkLH5GGjh-Te52iieAT8r3GRgpspKOYpmykFRtpEtGfP-pMpCkTaclEmjGRrjGRlkykwESKTKQZE2mNiU_J-eFBr3Nk5k0_TAnaeGE6eiCY4r509YDblidEJJll6wgbLVi2dLTvcN9SlgZnWFpcgr8hvcC3FQsC0NbsGdmM4YzPCeWMeWighMe1w5QUQoGDM2hJaSnladEk74u_OJR5RXxszDIO08wMxsOPrW47hWO_Sd6Ua6dZHZgbV20XSIX5ljAPbccNfMZAWTTJ63IacMBHcyLWyRLWuDYoeR64f1sDUhr8O26xJtnKwC8vBbwGbLZrN4m_RotyAVaRX5-JR8O0mjxHj81nL25xbS_J_eou3Sabi9lSvyJ35QrQne2QDb8f7KRBrZ2U878Bv4TuLw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+in+vitro+evaluation+of+%CE%BA-carrageenan+based+polymeric+hybrid+nanocomposite+scaffolds+for+bone+tissue+engineering&rft.jtitle=RSC+advances&rft.au=Aslam+Khan%2C+Muhammad+Umar&rft.au=Raza%2C+Mohsin+Ali&rft.au=Mehboob%2C+Hassan&rft.au=Mohammed+Rafiq+Abdul+Kadir&rft.date=2020-11-06&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=10&rft.issue=66+p.40529-40542&rft.spage=40529&rft.epage=40542&rft_id=info:doi/10.1039%2Fd0ra07446b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon