Development and in vitro evaluation of κ-carrageenan based polymeric hybrid nanocomposite scaffolds for bone tissue engineering
The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposi...
Gespeichert in:
| Veröffentlicht in: | RSC advances Jg. 10; H. 66; S. 40529 - 40542 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Royal Society of Chemistry
06.11.2020
The Royal Society of Chemistry |
| Schlagworte: | |
| ISSN: | 2046-2069, 2046-2069 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites
via
free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (
MC3T3-E1
) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10
3
μm
2
), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-
g
-AAc-3 with a high optical density and better cell viability. Hence, CG-
g
-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. |
|---|---|
| AbstractList | The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites
free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (
) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10
μm
), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-
-AAc-3 with a high optical density and better cell viability. Hence, CG-
-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast ( MC3T3-E1 ) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10 3 μm 2 ), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG- g -AAc-3 with a high optical density and better cell viability. Hence, CG- g -AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration.The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 103 μm2), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized polymeric hybrid nanocomposites via free-radical polymerization from carrageenan/acrylic-acid/graphene/hydroxyapatite. Porous hybrid nanocomposite scaffolds were fabricated through a freeze-drying method to mimic the structural and chemical composition of natural bone. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact-angle studies were carried-out for functional groups, surface morphology and hydrophilicity of the materials, followed by biodegradation and swelling analysis. The cell viability, cell culture and proliferation were evaluated against mouse pre-osteoblast (MC3T3-E1) cell lines using neutral red dye assay. The cell adherence and proliferation studies were determined by SEM. Physical characterization including optimum porosity and pore size (49.75% and 0.41 × 10³ μm²), mechanical properties (compression strength 8.87 MPa and elastic modulus 442.63 MPa), swelling (70.20% at 27 °C and 77.21% at 37 °C) and biodegradation (23.8%) were performed. The results indicated CG-g-AAc-3 with a high optical density and better cell viability. Hence, CG-g-AAc-3 was found to be more efficient for bone regeneration with potential applications in fractured bone regeneration. |
| Author | Iqbal, Muhammad Zahir Abdul Kadir, Mohammed Rafiq Abd Razak, Saiful Izwan Amin, Rashid Shah, Saqlain A. Aslam Khan, Muhammad Umar Raza, Mohsin Ali Mehboob, Hassan |
| Author_xml | – sequence: 1 givenname: Muhammad Umar surname: Aslam Khan fullname: Aslam Khan, Muhammad Umar organization: Department of Polymer Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan, School of Biomedical Engineering and Health Sciences – sequence: 2 givenname: Mohsin Ali surname: Raza fullname: Raza, Mohsin Ali organization: Department of Metallurgy and Materials Engineering, CEET, University of the Punjab, Lahore, Pakistan – sequence: 3 givenname: Hassan surname: Mehboob fullname: Mehboob, Hassan organization: Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia – sequence: 4 givenname: Mohammed Rafiq surname: Abdul Kadir fullname: Abdul Kadir, Mohammed Rafiq organization: School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Malaysia – sequence: 5 givenname: Saiful Izwan surname: Abd Razak fullname: Abd Razak, Saiful Izwan organization: School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Malaysia – sequence: 6 givenname: Saqlain A. surname: Shah fullname: Shah, Saqlain A. organization: Materials Science Lab, Department of Physics, Forman Christian College (University), Lahore, Pakistan – sequence: 7 givenname: Muhammad Zahir surname: Iqbal fullname: Iqbal, Muhammad Zahir organization: Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Pakistan – sequence: 8 givenname: Rashid orcidid: 0000-0003-4627-7147 surname: Amin fullname: Amin, Rashid organization: Department of Biology, College of Sciences, University of Hafr Al Batin, 39524 Hafar Al-batin, Saudi Arabia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35520852$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkt1qFjEQhoNUbK098QIk4IkIq_nP5kSorX9QEESPQzY7-zVlN1mT3Q--M6_Li_CaTG2ttXhgThKYZ955JzMP0V5MERB6TMkLSrh5eUo-HRMthHp9Dx0wIlTDiDJ7t9776KiUC1KPkpQp-gDtcykZaSU7QN9OYQtjmieIC3axxyHibVhywrB14-qWkCJOA_7xvfEuZ7cBiC7izhXo8ZzG3QQ5eHy-63LocQ0ln6Y5lbAALt4NQxr7goeUcVd94yWUsgKGuAkRambcPEL3BzcWOLq-D9GXt28-n7xvzj6--3ByfNZ4wc3SCOgc7432EjrDqHJu8JwyGDThlDIvQAujaU-BSemp8VJLr1rNet62Rit-iF5d6c5rN0Hva7_ZjXbOYXJ5Z5ML9u9IDOd2k7bWkCqleRV4di2Q09cVymKnUDyMo4uQ1mKZUpS0xND_QCUTnJpWthV9ege9SGuO9ScsE7KtdSW_pJ7cNn_j-vccK_D8CvA5lZJhuEEosZd7Yv_sSYXJHdiH5deka-Nh_FfKTzrewR8 |
| CitedBy_id | crossref_primary_10_1007_s10924_022_02726_5 crossref_primary_10_1016_j_ijbiomac_2023_128503 crossref_primary_10_1002_agt2_731 crossref_primary_10_1002_adsu_202200279 crossref_primary_10_1002_slct_202103234 crossref_primary_10_1080_09205063_2022_2054544 crossref_primary_10_3390_pharmaceutics13121994 crossref_primary_10_1016_j_carbpol_2025_124308 crossref_primary_10_3390_polym14163268 crossref_primary_10_3390_coatings10111120 crossref_primary_10_3390_nano13222920 crossref_primary_10_3390_polym13213611 crossref_primary_10_3390_polym13183124 crossref_primary_10_1016_j_bioactmat_2021_01_007 crossref_primary_10_1016_j_mtcomm_2024_109646 crossref_primary_10_1016_j_mtchem_2023_101818 crossref_primary_10_3390_ijms23169493 crossref_primary_10_1016_j_bioadv_2022_212733 crossref_primary_10_1016_j_ijbiomac_2025_146667 crossref_primary_10_1002_term_3168 crossref_primary_10_1016_j_carbpol_2022_119126 crossref_primary_10_1016_j_arabjc_2024_105968 crossref_primary_10_1016_j_ijbiomac_2023_127882 crossref_primary_10_1016_j_ijbiomac_2023_127169 crossref_primary_10_1002_pc_27428 crossref_primary_10_1007_s13205_022_03210_6 crossref_primary_10_1016_j_heliyon_2025_e43429 crossref_primary_10_3390_nano11051319 crossref_primary_10_3390_polym13213703 crossref_primary_10_3390_polym16162345 crossref_primary_10_1088_1748_605X_ad6b8a crossref_primary_10_1007_s10904_024_03539_w crossref_primary_10_1088_1748_605X_ad6070 crossref_primary_10_1016_j_carbpol_2022_119142 crossref_primary_10_3390_molecules26030619 crossref_primary_10_1016_j_ijbiomac_2024_130155 crossref_primary_10_3390_polym16111592 crossref_primary_10_1002_pat_6284 crossref_primary_10_1016_j_arabjc_2021_103294 crossref_primary_10_1007_s10904_022_02283_3 crossref_primary_10_1007_s42114_024_00932_4 crossref_primary_10_1016_j_ijbiomac_2025_141006 crossref_primary_10_3390_polym15183822 crossref_primary_10_1016_j_mtcomm_2023_107039 crossref_primary_10_1088_1748_605X_ac58d6 crossref_primary_10_1016_j_ijbiomac_2023_123777 crossref_primary_10_1016_j_ijbiomac_2022_09_153 crossref_primary_10_1016_j_arabjc_2020_102924 |
| Cites_doi | 10.1016/j.colsurfb.2011.08.026 10.1016/j.carbpol.2017.06.101 10.1002/jbm.820270813 10.1089/ten.tea.2013.0597 10.1002/term.3115 10.1016/j.ijbiomac.2017.01.034 10.1021/acsami.6b15032 10.1016/j.colsurfb.2016.08.055 10.1007/s12274-014-0408-0 10.1007/s10853-020-04957-0 10.1016/j.actbio.2011.01.012 10.2174/156802608783790901 10.1016/j.biomaterials.2009.11.083 10.1007/s11434-012-5336-3 10.1016/j.jcis.2011.04.093 10.1016/j.carbpol.2013.12.012 10.3390/polym12061238 10.3390/molecules23061439 10.1016/j.matchemphys.2019.122515 10.1126/scirobotics.aat8829 10.1016/j.biomaterials.2008.02.021 10.1002/jbm.a.30682 10.1016/j.biomaterials.2009.02.006 10.1016/j.ijbiomac.2014.11.040 10.3390/polym8070248 10.1016/j.ijbiomac.2020.02.142 10.1016/j.jconrel.2013.10.017 10.1016/j.biomaterials.2012.05.069 10.1016/S0142-9612(02)00270-3 10.1016/j.mser.2014.04.001 10.1016/j.memsci.2016.10.048 10.1016/j.actbio.2008.04.004 10.1021/acsami.5b08534 10.1016/j.biomaterials.2009.09.063 10.1038/nprot.2008.75 10.1109/TASC.2013.2286493 10.1073/pnas.0407356102 10.1088/1757-899X/79/1/012020 10.1016/j.carbon.2010.10.024 10.1016/j.jmapro.2017.07.027 10.1016/j.ijbiomac.2011.09.016 10.17221/6758-VETMED 10.1371/journal.pone.0043328 10.1016/j.saa.2010.08.053 10.1016/S0254-0584(02)00466-2 10.3390/ma13040971 10.1016/j.ceramint.2016.04.038 10.1039/C4RA12980F 10.1016/j.actbio.2009.08.041 10.1016/j.ijbiomac.2018.02.125 10.1038/boneres.2015.29 10.1016/j.carbpol.2018.06.086 10.1002/adma.201403354 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
| DOI | 10.1039/D0RA07446B |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2046-2069 |
| EndPage | 40542 |
| ExternalDocumentID | PMC9057573 35520852 10_1039_D0RA07446B |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; grantid: 4C146; 04G53 |
| GroupedDBID | 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AFVBQ AGMRB AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K CITATION EBS EE0 EF- GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH ZCN AGEGJ NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c439t-4eba3d97c5eb9216aafc312ef703112c4e74971d1e255c19c575c6872d3889763 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587926200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2046-2069 |
| IngestDate | Tue Nov 04 02:01:01 EST 2025 Thu Sep 04 17:19:49 EDT 2025 Thu Sep 04 16:24:49 EDT 2025 Sun Sep 07 03:36:37 EDT 2025 Mon Jul 21 06:03:50 EDT 2025 Tue Nov 18 22:36:33 EST 2025 Sat Nov 29 06:12:13 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 66 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c439t-4eba3d97c5eb9216aafc312ef703112c4e74971d1e255c19c575c6872d3889763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4627-7147 |
| OpenAccessLink | http://dx.doi.org/10.1039/d0ra07446b |
| PMID | 35520852 |
| PQID | 2458733538 |
| PQPubID | 2047525 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9057573 proquest_miscellaneous_2661080913 proquest_miscellaneous_2524319858 proquest_journals_2458733538 pubmed_primary_35520852 crossref_primary_10_1039_D0RA07446B crossref_citationtrail_10_1039_D0RA07446B |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-06 |
| PublicationDateYYYYMMDD | 2020-11-06 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | RSC advances |
| PublicationTitleAlternate | RSC Adv |
| PublicationYear | 2020 |
| Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
| References | Saravanan (D0RA07446B-(cit31)/*[position()=1]) 2017; 104 Nawaz (D0RA07446B-(cit8)/*[position()=1]) 2018; 113 Necas (D0RA07446B-(cit7)/*[position()=1]) 2013; 58 Liu (D0RA07446B-(cit14)/*[position()=1]) 2016; 42 Wang (D0RA07446B-(cit15)/*[position()=1]) 2011; 360 Xu (D0RA07446B-(cit38)/*[position()=1]) 2018; 23 Rouahi (D0RA07446B-(cit23)/*[position()=1]) 2006; 78 Karvandian (D0RA07446B-(cit43)/*[position()=1]) 2020; 242 Keselowsky (D0RA07446B-(cit52)/*[position()=1]) 2005; 102 Mandal (D0RA07446B-(cit28)/*[position()=1]) 2009; 30 Pina (D0RA07446B-(cit30)/*[position()=1]) 2015; 27 Kumar (D0RA07446B-(cit25)/*[position()=1]) 2017; 2 Bet (D0RA07446B-(cit48)/*[position()=1]) 2003; 24 Shah (D0RA07446B-(cit11)/*[position()=1]) 2016; 148 Goenka (D0RA07446B-(cit12)/*[position()=1]) 2014; 173 Tang (D0RA07446B-(cit34)/*[position()=1]) 2013; 24 Justin (D0RA07446B-(cit46)/*[position()=1]) 2014; 103 Dadsetan (D0RA07446B-(cit49)/*[position()=1]) 2011; 7 Wu (D0RA07446B-(cit13)/*[position()=1]) 2014; 80 Tang (D0RA07446B-(cit51)/*[position()=1]) 2008; 8 Ng (D0RA07446B-(cit33)/*[position()=1]) 2015; 79 Murphy (D0RA07446B-(cit27)/*[position()=1]) 2010; 31 Aslam Khan (D0RA07446B-(cit5)/*[position()=1]) 2020; 12 Lopez-Heredia (D0RA07446B-(cit29)/*[position()=1]) 2008; 29 Fouda (D0RA07446B-(cit9)/*[position()=1]) 2015; 74 Sossa (D0RA07446B-(cit32)/*[position()=1]) 2018; 23 Makohliso (D0RA07446B-(cit50)/*[position()=1]) 1993; 27 Ayyaru (D0RA07446B-(cit39)/*[position()=1]) 2017; 525 Wohlrab (D0RA07446B-(cit47)/*[position()=1]) 2012; 33 Wu (D0RA07446B-(cit55)/*[position()=1]) 2015; 21 Jiang (D0RA07446B-(cit17)/*[position()=1]) 2017; 9 Destainville (D0RA07446B-(cit24)/*[position()=1]) 2003; 80 Hu (D0RA07446B-(cit40)/*[position()=1]) 2014; 7 Gong (D0RA07446B-(cit1)/*[position()=1]) 2015; 3 Wojtoniszak (D0RA07446B-(cit22)/*[position()=1]) 2012; 89 Paluszkiewicz (D0RA07446B-(cit20)/*[position()=1]) 2011; 79 Khan (D0RA07446B-(cit21)/*[position()=1]) 2020; 14 Xiao (D0RA07446B-(cit53)/*[position()=1]) 2020; 55 Yi (D0RA07446B-(cit35)/*[position()=1]) 2017; 29 Li (D0RA07446B-(cit26)/*[position()=1]) 2012; 7 Zhang (D0RA07446B-(cit44)/*[position()=1]) 2011; 49 Bauer (D0RA07446B-(cit41)/*[position()=1]) 2008; 4 Yegappan (D0RA07446B-(cit10)/*[position()=1]) 2018; 198 Khan (D0RA07446B-(cit3)/*[position()=1]) 2020; 13 Król (D0RA07446B-(cit36)/*[position()=1]) 2016; 8 Pattnaik (D0RA07446B-(cit45)/*[position()=1]) 2011; 49 Yin (D0RA07446B-(cit2)/*[position()=1]) 2010; 31 Khan (D0RA07446B-(cit4)/*[position()=1]) 2020; 151 Repetto (D0RA07446B-(cit19)/*[position()=1]) 2008; 3 Li (D0RA07446B-(cit54)/*[position()=1]) 2018; 3 Wu (D0RA07446B-(cit16)/*[position()=1]) 2010; 6 Kim (D0RA07446B-(cit37)/*[position()=1]) 2015; 5 Wang (D0RA07446B-(cit18)/*[position()=1]) 2015; 7 Ma (D0RA07446B-(cit6)/*[position()=1]) 2012; 57 Wu (D0RA07446B-(cit42)/*[position()=1]) 2017; 174 35481984 - RSC Adv. 2021 May 24;11(30):18615-18616. doi: 10.1039/d1ra90119b |
| References_xml | – volume: 89 start-page: 79 year: 2012 ident: D0RA07446B-(cit22)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2011.08.026 – volume: 174 start-page: 830 year: 2017 ident: D0RA07446B-(cit42)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.101 – volume: 27 start-page: 1075 year: 1993 ident: D0RA07446B-(cit50)/*[position()=1] publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820270813 – volume: 21 start-page: 53 year: 2015 ident: D0RA07446B-(cit55)/*[position()=1] publication-title: Tissue Eng., Part A doi: 10.1089/ten.tea.2013.0597 – volume: 14 start-page: 1488 year: 2020 ident: D0RA07446B-(cit21)/*[position()=1] publication-title: J. Tissue Eng. Regener. Med. doi: 10.1002/term.3115 – volume: 104 start-page: 1975 year: 2017 ident: D0RA07446B-(cit31)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.01.034 – volume: 9 start-page: 4890 year: 2017 ident: D0RA07446B-(cit17)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15032 – volume: 148 start-page: 157 year: 2016 ident: D0RA07446B-(cit11)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2016.08.055 – volume: 7 start-page: 418 year: 2014 ident: D0RA07446B-(cit40)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-014-0408-0 – volume: 55 start-page: 14008 year: 2020 ident: D0RA07446B-(cit53)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04957-0 – volume: 2 start-page: 493 year: 2017 ident: D0RA07446B-(cit25)/*[position()=1] publication-title: J. Sci. – volume: 7 start-page: 2080 year: 2011 ident: D0RA07446B-(cit49)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.01.012 – volume: 8 start-page: 270 year: 2008 ident: D0RA07446B-(cit51)/*[position()=1] publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802608783790901 – volume: 31 start-page: 2163 year: 2010 ident: D0RA07446B-(cit2)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.083 – volume: 23 start-page: e12217 year: 2018 ident: D0RA07446B-(cit32)/*[position()=1] publication-title: Matéria – volume: 57 start-page: 3051 year: 2012 ident: D0RA07446B-(cit6)/*[position()=1] publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-012-5336-3 – volume: 360 start-page: 415 year: 2011 ident: D0RA07446B-(cit15)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.04.093 – volume: 103 start-page: 70 year: 2014 ident: D0RA07446B-(cit46)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.12.012 – volume: 12 start-page: 1238 year: 2020 ident: D0RA07446B-(cit5)/*[position()=1] publication-title: Polymers doi: 10.3390/polym12061238 – volume: 23 start-page: 1439 year: 2018 ident: D0RA07446B-(cit38)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules23061439 – volume: 242 start-page: 122515 year: 2020 ident: D0RA07446B-(cit43)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122515 – volume: 3 start-page: eaat8829 year: 2018 ident: D0RA07446B-(cit54)/*[position()=1] publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat8829 – volume: 29 start-page: 2608 year: 2008 ident: D0RA07446B-(cit29)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.02.021 – volume: 78 start-page: 222 year: 2006 ident: D0RA07446B-(cit23)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.30682 – volume: 30 start-page: 2956 year: 2009 ident: D0RA07446B-(cit28)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.006 – volume: 74 start-page: 179 year: 2015 ident: D0RA07446B-(cit9)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.11.040 – volume: 8 start-page: 248 year: 2016 ident: D0RA07446B-(cit36)/*[position()=1] publication-title: Polymers doi: 10.3390/polym8070248 – volume: 151 start-page: 584 year: 2020 ident: D0RA07446B-(cit4)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.02.142 – volume: 173 start-page: 75 year: 2014 ident: D0RA07446B-(cit12)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2013.10.017 – volume: 33 start-page: 6650 year: 2012 ident: D0RA07446B-(cit47)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.05.069 – volume: 24 start-page: 131 year: 2003 ident: D0RA07446B-(cit48)/*[position()=1] publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00270-3 – volume: 80 start-page: 1 year: 2014 ident: D0RA07446B-(cit13)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2014.04.001 – volume: 525 start-page: 210 year: 2017 ident: D0RA07446B-(cit39)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.10.048 – volume: 4 start-page: 1576 year: 2008 ident: D0RA07446B-(cit41)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.04.004 – volume: 7 start-page: 26244 year: 2015 ident: D0RA07446B-(cit18)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08534 – volume: 31 start-page: 461 year: 2010 ident: D0RA07446B-(cit27)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.063 – volume: 3 start-page: 1125 year: 2008 ident: D0RA07446B-(cit19)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.75 – volume: 24 start-page: 74 year: 2013 ident: D0RA07446B-(cit34)/*[position()=1] publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2013.2286493 – volume: 102 start-page: 5953 year: 2005 ident: D0RA07446B-(cit52)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0407356102 – volume: 79 start-page: 012020 year: 2015 ident: D0RA07446B-(cit33)/*[position()=1] publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/79/1/012020 – volume: 49 start-page: 827 year: 2011 ident: D0RA07446B-(cit44)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2010.10.024 – volume: 29 start-page: 182 year: 2017 ident: D0RA07446B-(cit35)/*[position()=1] publication-title: J. Manuf. Process doi: 10.1016/j.jmapro.2017.07.027 – volume: 49 start-page: 1167 year: 2011 ident: D0RA07446B-(cit45)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2011.09.016 – volume: 58 start-page: 187 year: 2013 ident: D0RA07446B-(cit7)/*[position()=1] publication-title: Vet. Med. doi: 10.17221/6758-VETMED – volume: 7 start-page: e43328 year: 2012 ident: D0RA07446B-(cit26)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0043328 – volume: 79 start-page: 784 year: 2011 ident: D0RA07446B-(cit20)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2010.08.053 – volume: 80 start-page: 269 year: 2003 ident: D0RA07446B-(cit24)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(02)00466-2 – volume: 13 start-page: 971 year: 2020 ident: D0RA07446B-(cit3)/*[position()=1] publication-title: Materials doi: 10.3390/ma13040971 – volume: 42 start-page: 11248 year: 2016 ident: D0RA07446B-(cit14)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.04.038 – volume: 5 start-page: 9904 year: 2015 ident: D0RA07446B-(cit37)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA12980F – volume: 6 start-page: 1167 year: 2010 ident: D0RA07446B-(cit16)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.08.041 – volume: 113 start-page: 219 year: 2018 ident: D0RA07446B-(cit8)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.02.125 – volume: 3 start-page: 15029 year: 2015 ident: D0RA07446B-(cit1)/*[position()=1] publication-title: Bone Res. doi: 10.1038/boneres.2015.29 – volume: 198 start-page: 385 year: 2018 ident: D0RA07446B-(cit10)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.06.086 – volume: 27 start-page: 1143 year: 2015 ident: D0RA07446B-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201403354 – reference: 35481984 - RSC Adv. 2021 May 24;11(30):18615-18616. doi: 10.1039/d1ra90119b |
| SSID | ssj0000651261 |
| Score | 2.5265384 |
| Snippet | The excellent biocompatible and osteogenesis characteristics of porous scaffolds play a vital role in bone regeneration. In this study, we have synthesized... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 40529 |
| SubjectTerms | absorbance Biocompatibility Biodegradation Biomedical materials bone formation bones Carrageenan Cell adhesion cell culture cell viability Chemical composition Chemistry compression strength Compressive strength Contact angle dyes Fourier transform infrared spectroscopy Fourier transforms Free radical polymerization freeze drying Functional groups Graphene hydrophilicity Hydroxyapatite Mechanical properties mice Modulus of elasticity Morphology Nanocomposites Optical density polymerization polymers Pore size Porosity Regeneration (physiology) Scaffolds Scanning electron microscopy Swelling Tissue engineering |
| Title | Development and in vitro evaluation of κ-carrageenan based polymeric hybrid nanocomposite scaffolds for bone tissue engineering |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35520852 https://www.proquest.com/docview/2458733538 https://www.proquest.com/docview/2524319858 https://www.proquest.com/docview/2661080913 https://pubmed.ncbi.nlm.nih.gov/PMC9057573 |
| Volume | 10 |
| WOSCitedRecordID | wos000587926200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals - May need to register for free articles customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lBQkuiGcJlGoRFAlZLrHXrz2moVWlPkAhlXKzNrtrJVJip3mp5YD4XfwIDvwiZvwOrVA5cLGi3VXs5Pu88814PEPIW3SNJVDHjECLmljy3Awi1zeFy3jgSLDZIms24Z-dBf0-_9xo_CrehVmN_TgOLi_59L9CDWMANr46-w9wl18KA_AZQIcjwA7HWwFfSwPKSysZq9FiltQKe6NC3O0c7O63TSlmM9hSdAz3OVo0hW0brrIE--EVvs5lwFSCmeeY3qWNuRRRlIzVPEv0TECkLlLwDF2VNqxL3u6XTpFpUOr3NhLROB5m0dfT5VBMJkIZ5xNR5gp3xddU154mwznGZMajkht6CK5B-hzpCKR_RW9YinF4ZXRFNLow2gO1HBvHAqx2PbYBjizGa71qC7TBewdws2Yue_qGsWIPb9W46nnGdM_BR5jgHbtZ8a58f05Ha8a-nL9mSVoMC7Gq1kyAyHK8QWUvixyBs0_h4fnJSdg76PfeTS9M7GSGQORtXTbIHdt3Oe60p9-quB9IPstOy_iWP6Somsv4h-p86zrpmvPzZw5vTRT1HpIHuTdD2xkLH5GGjh-Te52iieAT8r3GRgpspKOYpmykFRtpEtGfP-pMpCkTaclEmjGRrjGRlkykwESKTKQZE2mNiU_J-eFBr3Nk5k0_TAnaeGE6eiCY4r509YDblidEJJll6wgbLVi2dLTvcN9SlgZnWFpcgr8hvcC3FQsC0NbsGdmM4YzPCeWMeWighMe1w5QUQoGDM2hJaSnladEk74u_OJR5RXxszDIO08wMxsOPrW47hWO_Sd6Ua6dZHZgbV20XSIX5ljAPbccNfMZAWTTJ63IacMBHcyLWyRLWuDYoeR64f1sDUhr8O26xJtnKwC8vBbwGbLZrN4m_RotyAVaRX5-JR8O0mjxHj81nL25xbS_J_eou3Sabi9lSvyJ35QrQne2QDb8f7KRBrZ2U878Bv4TuLw |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+in+vitro+evaluation+of+%CE%BA-carrageenan+based+polymeric+hybrid+nanocomposite+scaffolds+for+bone+tissue+engineering&rft.jtitle=RSC+advances&rft.au=Aslam+Khan%2C+Muhammad+Umar&rft.au=Raza%2C+Mohsin+Ali&rft.au=Mehboob%2C+Hassan&rft.au=Mohammed+Rafiq+Abdul+Kadir&rft.date=2020-11-06&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=10&rft.issue=66+p.40529-40542&rft.spage=40529&rft.epage=40542&rft_id=info:doi/10.1039%2Fd0ra07446b&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |