Response of rice yield and yield components to elevated [CO2]: A synthesis of updated data from FACE experiments

Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect contributed to higher benefit of grain yield for indica and hybrid cultivars. [Display omitted] •Indica and hybrid cultivars received higher benefit th...

Full description

Saved in:
Bibliographic Details
Published in:European journal of agronomy Vol. 112; p. 125961
Main Authors: Lv, Chunhua, Huang, Yao, Sun, Wenjuan, Yu, Lingfei, Zhu, Jianguo
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2020
Subjects:
ISSN:1161-0301, 1873-7331
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect contributed to higher benefit of grain yield for indica and hybrid cultivars. [Display omitted] •Indica and hybrid cultivars received higher benefit than japonica from elevated [CO2].•Post-heading elevated [CO2] contributed to yield is higher for indica and hybrid than for japonica cultivars.•Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature.•It is urgent for crop modelers to incorporate the knowledge from FACE studies into models. Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to improve crop yields in the future. Rice responds to elevated [CO2] through photosynthesis improving yield components. This response depends on rice types, climate and fertilizers. However, the determinants of rice yield and the contribution of yield components at elevated [CO2] are far from certain. We extracted data from articles published before the end of 2018. These articles reported the responses of rice yield and yield components to elevated [CO2] at FACE conditions across four locations in China and Japan. Using CART (Classification and regression tree, a nonparametric modeling approach to recursively partition predictor variables) and regression models, we identified the principal determinants and the contribution of yield components to yield at elevated [CO2]. Elevated [CO2] (∼200 μmol mol−1 above ambient) increased rice yields by 13.5% (n = 93), 22.6% (n = 10) and 32.8% (n = 17) for japonica, indica and hybrid cultivars. The type of rice cultivars dominantly determined the response of spikelets per panicle, while temperature is of greatest importance in determining the response of filled spikelets percentage to elevated [CO2]. Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature. The contribution of post-heading elevated [CO2] to yield is higher for indica and hybrid (24%) than for japonica cultivars (13%). Lower benefit of japonica cultivars from post-heading elevated [CO2] is likely attributed to an intensive photosynthetic acclimation. Our findings highlight the importance of pre- and post-heading CO2 fertilization effect and nitrogen management in yield benefits from elevated [CO2], and the necessity for crop modelers to incorporate the knowledge from FACE studies into models so that models become more accurate, rigorous and robust.
AbstractList Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to improve crop yields in the future. Rice responds to elevated [CO2] through photosynthesis improving yield components. This response depends on rice types, climate and fertilizers. However, the determinants of rice yield and the contribution of yield components at elevated [CO2] are far from certain. We extracted data from articles published before the end of 2018. These articles reported the responses of rice yield and yield components to elevated [CO2] at FACE conditions across four locations in China and Japan. Using CART (Classification and regression tree, a nonparametric modeling approach to recursively partition predictor variables) and regression models, we identified the principal determinants and the contribution of yield components to yield at elevated [CO2]. Elevated [CO2] (∼200 µmol mol-1 above ambient) increased rice yields by 13.5% (n = 93), 22.6% (n = 10) and 32.8% (n = 17) for japonica, indica and hybrid cultivars. The type of rice cultivars dominantly determined the response of spikelets per panicle, while temperature is of greatest importance in determining the response of filled spikelets percentage to elevated [CO2]. Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature. The contribution of post-heading elevated [CO2] to yield is higher for indica and hybrid (24%) than for japonica cultivars (13%). Lower benefit of japonica cultivars from post-heading elevated [CO2] is likely attributed to an intensive photosynthetic acclimation. Our findings highlight the importance of pre- and post-heading CO2 fertilization effect and nitrogen management in yield benefits from elevated [CO2], and the necessity for crop modelers to incorporate the knowledge from FACE studies into models so that models become more accurate, rigorous and robust.
Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect contributed to higher benefit of grain yield for indica and hybrid cultivars. [Display omitted] •Indica and hybrid cultivars received higher benefit than japonica from elevated [CO2].•Post-heading elevated [CO2] contributed to yield is higher for indica and hybrid than for japonica cultivars.•Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature.•It is urgent for crop modelers to incorporate the knowledge from FACE studies into models. Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to improve crop yields in the future. Rice responds to elevated [CO2] through photosynthesis improving yield components. This response depends on rice types, climate and fertilizers. However, the determinants of rice yield and the contribution of yield components at elevated [CO2] are far from certain. We extracted data from articles published before the end of 2018. These articles reported the responses of rice yield and yield components to elevated [CO2] at FACE conditions across four locations in China and Japan. Using CART (Classification and regression tree, a nonparametric modeling approach to recursively partition predictor variables) and regression models, we identified the principal determinants and the contribution of yield components to yield at elevated [CO2]. Elevated [CO2] (∼200 μmol mol−1 above ambient) increased rice yields by 13.5% (n = 93), 22.6% (n = 10) and 32.8% (n = 17) for japonica, indica and hybrid cultivars. The type of rice cultivars dominantly determined the response of spikelets per panicle, while temperature is of greatest importance in determining the response of filled spikelets percentage to elevated [CO2]. Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature. The contribution of post-heading elevated [CO2] to yield is higher for indica and hybrid (24%) than for japonica cultivars (13%). Lower benefit of japonica cultivars from post-heading elevated [CO2] is likely attributed to an intensive photosynthetic acclimation. Our findings highlight the importance of pre- and post-heading CO2 fertilization effect and nitrogen management in yield benefits from elevated [CO2], and the necessity for crop modelers to incorporate the knowledge from FACE studies into models so that models become more accurate, rigorous and robust.
ArticleNumber 125961
Author Zhu, Jianguo
Huang, Yao
Yu, Lingfei
Sun, Wenjuan
Lv, Chunhua
Author_xml – sequence: 1
  givenname: Chunhua
  surname: Lv
  fullname: Lv, Chunhua
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Yao
  orcidid: 0000-0002-0192-1421
  surname: Huang
  fullname: Huang, Yao
  email: huangyao@ibcas.ac.cn, huangy@mail.iap.ac.cn
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Wenjuan
  surname: Sun
  fullname: Sun, Wenjuan
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Lingfei
  surname: Yu
  fullname: Yu, Lingfei
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Jianguo
  surname: Zhu
  fullname: Zhu, Jianguo
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
BookMark eNp9kE9rGzEQxUVJoUnaD9Cbjrmsq9Gf1W5yMiZOAoFAaU-lCFk7ojJraSPJIf72Xdc59ZDLzMC834P3LshZTBEJ-QpsAQzab9sFbu2CM-gXwFXfwgdyDp0WjRYCzuYbWmiYYPCJXJSyZYx1XMlzMn3HMqVYkCZPc3BIDwHHgdo4vF0u7WYBxlpoTRRHfLEVB_pr9cR_X9MlLYdY_2AJ5eiwn4Z_33la6nPa0fVydUvxdcIcdkeTz-Sjt2PBL2_7kvxc3_5Y3TePT3cPq-Vj46ToayM33tpOOwDZbbxoPdNKS6m5Fo5LuwG24YP1ukWtpO1U3yneDQK9azWXqheX5OrkO-X0vMdSzS4Uh-NoI6Z9MVwp6IXoWjZL9UnqciolozcuVFtDijXbMBpg5tix2Zq5Y3Ps2Jw6nkn4j5zmmDYf3mVuTgzO6V8CZlNcwOhwCBldNUMK79B_AfGalZc
CitedBy_id crossref_primary_10_1007_s40502_022_00670_z
crossref_primary_10_1007_s00704_025_05599_5
crossref_primary_10_1007_s42106_025_00327_5
crossref_primary_10_1016_j_agrformet_2023_109737
crossref_primary_10_1016_j_scitotenv_2021_152363
crossref_primary_10_1186_s13717_020_00238_5
crossref_primary_10_3389_fsufs_2022_873957
crossref_primary_10_1038_s41467_024_55809_3
crossref_primary_10_1016_j_scitotenv_2022_155475
crossref_primary_10_3390_plants12173133
crossref_primary_10_1111_ppl_13757
crossref_primary_10_3390_agriculture11060569
crossref_primary_10_3390_plants10051027
crossref_primary_10_1111_pbr_13000
crossref_primary_10_1111_gcb_15410
crossref_primary_10_1016_j_apsoil_2021_104063
crossref_primary_10_15835_nbha50312388
crossref_primary_10_1016_j_heliyon_2023_e20208
crossref_primary_10_1111_ppl_70470
crossref_primary_10_1007_s10705_024_10366_5
crossref_primary_10_3390_agronomy12122927
crossref_primary_10_1007_s00344_022_10897_7
crossref_primary_10_1111_jac_70092
crossref_primary_10_1007_s10343_024_01037_0
crossref_primary_10_1016_j_agsy_2022_103581
crossref_primary_10_1016_j_scitotenv_2020_142797
crossref_primary_10_1016_j_scitotenv_2023_167658
crossref_primary_10_1007_s10705_023_10299_5
crossref_primary_10_1007_s10098_024_02909_9
crossref_primary_10_1111_gcb_15001
crossref_primary_10_3390_agronomy13061550
crossref_primary_10_1016_j_envpol_2021_117558
crossref_primary_10_1002_csc2_21036
crossref_primary_10_2166_wcc_2021_030
crossref_primary_10_3390_agronomy13061448
crossref_primary_10_1093_plphys_kiab470
crossref_primary_10_1016_j_envpol_2022_119480
crossref_primary_10_1038_s43016_024_01021_x
crossref_primary_10_1007_s10681_024_03353_y
crossref_primary_10_1016_j_soilbio_2023_108993
crossref_primary_10_1029_2024JG008438
crossref_primary_10_3389_fpls_2024_1450893
crossref_primary_10_3390_agriculture10100436
crossref_primary_10_1007_s11103_022_01294_5
crossref_primary_10_1016_j_pbi_2020_05_012
crossref_primary_10_1111_gcb_70299
crossref_primary_10_1007_s00484_022_02366_3
crossref_primary_10_1016_j_eja_2023_126766
crossref_primary_10_1093_jxb_eraa087
crossref_primary_10_3390_agriculture12111828
crossref_primary_10_1016_j_envexpbot_2024_105888
crossref_primary_10_1007_s11356_022_21656_2
crossref_primary_10_1007_s42729_024_01890_y
crossref_primary_10_32615_ps_2020_066
crossref_primary_10_1007_s10705_022_10197_2
crossref_primary_10_1016_j_scitotenv_2023_161843
crossref_primary_10_1016_j_envpol_2023_121396
crossref_primary_10_1080_01904167_2024_2316004
crossref_primary_10_1016_j_ecoenv_2020_111605
crossref_primary_10_1007_s11368_024_03863_1
crossref_primary_10_1016_j_scitotenv_2022_156284
crossref_primary_10_1002_csc2_20642
crossref_primary_10_1093_jxb_erac109
crossref_primary_10_1016_j_scitotenv_2021_151017
crossref_primary_10_1007_s11104_024_06974_3
Cites_doi 10.1093/pcp/pcu009
10.1038/s41598-017-01690-8
10.1016/j.pbi.2016.03.006
10.1111/gcb.13961
10.1093/pcp/pci113
10.1007/s11284-017-1450-7
10.1038/srep12719
10.1186/s12284-014-0006-5
10.1016/j.fcr.2011.07.001
10.1093/jxb/eru344
10.1016/j.eja.2018.06.005
10.1111/j.1365-2486.2008.01594.x
10.1016/j.fcr.2012.10.011
10.1007/s10584-015-1374-6
10.1111/j.1365-3040.2007.01641.x
10.1111/gcb.13065
10.1111/nph.12104
10.1016/j.fcr.2015.04.006
10.1111/j.1469-8137.2006.01688.x
10.1007/s11099-007-0013-5
10.1016/j.agrformet.2010.05.001
10.2134/agronj2003.9130
10.1046/j.1365-2486.2003.00641.x
10.1038/nclimate1152
10.1016/j.fcr.2005.12.014
10.1016/S1161-0301(02)00097-7
10.1016/j.agee.2016.01.028
10.1016/S0378-4290(01)00179-4
10.1007/s10705-015-9741-2
10.1111/j.1399-3054.2012.01581.x
10.1111/pce.12119
10.1111/j.1365-2486.2007.01476.x
10.1071/FP12357
10.1126/science.1114722
10.1016/j.fcr.2015.03.023
10.1111/gcb.13600
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright_xml – notice: 2019 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.eja.2019.125961
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-7331
ExternalDocumentID 10_1016_j_eja_2019_125961
S1161030119300991
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
UHS
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c439t-4bfaa87c1148bf36f0757447273c24ab10b2daf76e754a8598528d3efc6724593
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498749800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1161-0301
IngestDate Sun Sep 28 01:52:32 EDT 2025
Tue Nov 18 21:59:30 EST 2025
Sat Nov 29 07:02:38 EST 2025
Fri Feb 23 02:28:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Free-air CO2 enrichment
Pre- and post-heading
Temperature
Cultivar type
Rice yield components
Nitrogen management
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-4bfaa87c1148bf36f0757447273c24ab10b2daf76e754a8598528d3efc6724593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0192-1421
OpenAccessLink https://dx.doi.org/10.1016/j.eja.2019.125961
PQID 2551933860
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551933860
crossref_citationtrail_10_1016_j_eja_2019_125961
crossref_primary_10_1016_j_eja_2019_125961
elsevier_sciencedirect_doi_10_1016_j_eja_2019_125961
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle European journal of agronomy
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Sakai, Tokida, Usui, Nakamura, Hasegawa (bib0045) 2014; 55
Sakai, Hasegawa, Kobayashi (bib0155) 2006; 170
Chen, Yong, Liao, Zhang, Chen, Zhang, Chen, Zhu, Xu (bib0050) 2005; 46
Zhang, Sakai, Usui, Tokida, Nakamura, Zhu, Fukuoka, Kobayashi, Hasegawa (bib0215) 2015; 179
Nie, Peng (bib0135) 2017
IPCC (bib0085) 2013
Roy, Bhattacharyya, Neogi, Rao, Adhya (bib0140) 2012; 139
White, Hoogenboom, Kimball, Wall (bib0190) 2011; 124
Wang, Wang, Chen, Xiong, Wolfe, Zou (bib0180) 2015; 130
Chen, Jiang, Ziska, Zhu, Liu, Zhang, Ni, Seneweera, Zhu (bib0040) 2015; 178
Vanuytrecht, Thorburn (bib0170) 2017; 23
Müller, Bondeau, Popp, Waha, Fader (bib0125) 2010
Dobermann, Witt, Abdulrachman, Gines, Nagarajan, Son, Tan, Wang, Chien, Thoa, Phung, Stalin, Muthukrishnan, Ravi, Babu, Simbahan, Adviento (bib0060) 2003; 95
Zhu, Xu, Wang, Zhu, Liu (bib0220) 2015; 5
Fischer (bib0070) 2009
Cai, Yin, He, Jiang, Si, Struik, Luo, Li, Xie, Xiong, Pan (bib0035) 2016; 22
Cai, Li, Yang, Yang, Liu, Struik, Luo, Yin, Di, Guo, Jiang, Si, Pan, Zhu (bib0030) 2018; 24
Cheng, Sakai, Yagi, Hasegawa (bib0055) 2010; 150
WMO (bib0195) 2017
Long, Ainsworth, Leakey, Nosberger, Ort (bib0120) 2006; 312
Rötter, Carter, Olesen, Porter (bib0150) 2011; 1
Nakano, Yoshinaga, Takai, Arai-Sanoh, Kondo, Yamamoto, Sakai, Tokida, Usui, Nakamura, Hasegawa, Kondo (bib0130) 2017; 7
Yang, Huang, Yang, Zhu, Liu, Dong, Liu, Han, Wang (bib0200) 2006; 98
Boote, Jones, White, Asseng, Lizaso (bib0020) 2013; 36
Tubiello, Ewert (bib0160) 2002; 18
Wang, Liu, Zhang, Smith, Li, Filley, Cheng, Shen, He, Pan (bib0175) 2016; 221
Li, Zhu, Sha, Zhang, Zeng, Liu (bib0110) 2017; 32
Zhu, Zhu, Cao, Jiang, Liu, Ziska (bib0225) 2014; 65
Franks, Adams, Amthor, Barbour, Berry, Ellsworth, Farquhar, Ghannoum, Lloyd, McDowell, Norby, Tissue, von Caemmerer (bib0075) 2013; 197
Kobayashi, Okada, Kim, Lieffering, Miura, Hasegawa (bib0100) 2006
Lobell, Field (bib0115) 2008; 14
Ainsworth (bib0005) 2008; 14
Breiman, Friedman, Olshen, Stone (bib0025) 1984
Wang, Cai, Lam, Liu, Zhu (bib0185) 2018; 99
Lai, Zhou, Gu, Zhuang, Zhou, Zhu, Yang, Wang (bib0105) 2014; 33
Amthor (bib0015) 2001; 73
Hasegawa, Sakai, Tokida, Nakamura, Zhu, Usui, Yoshimoto, Fukuoka, Wakatsuki, Katayanagi, Matsunami, Kaneta, Sato, Takakai, Sameshima, Okada, Mae, Makino (bib0080) 2013; 40
Ainsworth, Rogers (bib0010) 2007; 30
Zhu, Ziska, Zhu, Zeng, Xie, Tang, Jia, Hasegawa (bib0230) 2012; 145
Kim, Lieffering, Kobayashi, Okada, Miura (bib0090) 2003; 9
Yong, Chen, Zhang, Chen, Chen, Zhu, Xu (bib0205) 2007; 45
FAO (bib0065) 2016
Kimball (bib0095) 2016; 31
Usui, Sakai, Tokida, Nakamura, Nakagawa, Hasegawa (bib0165) 2014; 7
Roy, Bhattacharyya, Nayak, Sharma, Uprety (bib0145) 2015; 103
Yoshida (bib0210) 1981
Roy (10.1016/j.eja.2019.125961_bib0140) 2012; 139
Roy (10.1016/j.eja.2019.125961_bib0145) 2015; 103
Wang (10.1016/j.eja.2019.125961_bib0180) 2015; 130
Hasegawa (10.1016/j.eja.2019.125961_bib0080) 2013; 40
White (10.1016/j.eja.2019.125961_bib0190) 2011; 124
Ainsworth (10.1016/j.eja.2019.125961_bib0005) 2008; 14
Chen (10.1016/j.eja.2019.125961_bib0045) 2014; 55
Franks (10.1016/j.eja.2019.125961_bib0075) 2013; 197
Müller (10.1016/j.eja.2019.125961_bib0125) 2010
Rötter (10.1016/j.eja.2019.125961_bib0150) 2011; 1
Zhang (10.1016/j.eja.2019.125961_bib0215) 2015; 179
Sakai (10.1016/j.eja.2019.125961_bib0155) 2006; 170
Tubiello (10.1016/j.eja.2019.125961_bib0160) 2002; 18
WMO (10.1016/j.eja.2019.125961_bib0195) 2017
Wang (10.1016/j.eja.2019.125961_bib0185) 2018; 99
Wang (10.1016/j.eja.2019.125961_bib0175) 2016; 221
Breiman (10.1016/j.eja.2019.125961_bib0025) 1984
Kimball (10.1016/j.eja.2019.125961_bib0095) 2016; 31
Fischer (10.1016/j.eja.2019.125961_bib0070) 2009
Chen (10.1016/j.eja.2019.125961_bib0040) 2015; 178
Chen (10.1016/j.eja.2019.125961_bib0050) 2005; 46
IPCC (10.1016/j.eja.2019.125961_bib0085) 2013
Usui (10.1016/j.eja.2019.125961_bib0165) 2014; 7
Boote (10.1016/j.eja.2019.125961_bib0020) 2013; 36
FAO (10.1016/j.eja.2019.125961_bib0065) 2016
Nie (10.1016/j.eja.2019.125961_bib0135) 2017
Kobayashi (10.1016/j.eja.2019.125961_bib0100) 2006
Ainsworth (10.1016/j.eja.2019.125961_bib0010) 2007; 30
Amthor (10.1016/j.eja.2019.125961_bib0015) 2001; 73
Cai (10.1016/j.eja.2019.125961_bib0030) 2018; 24
Yoshida (10.1016/j.eja.2019.125961_bib0210) 1981
Cheng (10.1016/j.eja.2019.125961_bib0055) 2010; 150
Long (10.1016/j.eja.2019.125961_bib0120) 2006; 312
Vanuytrecht (10.1016/j.eja.2019.125961_bib0170) 2017; 23
Dobermann (10.1016/j.eja.2019.125961_bib0060) 2003; 95
Kim (10.1016/j.eja.2019.125961_bib0090) 2003; 9
Yong (10.1016/j.eja.2019.125961_bib0205) 2007; 45
Zhu (10.1016/j.eja.2019.125961_bib0230) 2012; 145
Cai (10.1016/j.eja.2019.125961_bib0035) 2016; 22
Zhu (10.1016/j.eja.2019.125961_bib0225) 2014; 65
Li (10.1016/j.eja.2019.125961_bib0110) 2017; 32
Zhu (10.1016/j.eja.2019.125961_bib0220) 2015; 5
Lai (10.1016/j.eja.2019.125961_bib0105) 2014; 33
Yang (10.1016/j.eja.2019.125961_bib0200) 2006; 98
Nakano (10.1016/j.eja.2019.125961_bib0130) 2017; 7
Lobell (10.1016/j.eja.2019.125961_bib0115) 2008; 14
References_xml – volume: 95
  start-page: 913
  year: 2003
  end-page: 923
  ident: bib0060
  article-title: Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia
  publication-title: Agron. J.
– volume: 32
  start-page: 405
  year: 2017
  end-page: 411
  ident: bib0110
  article-title: Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO
  publication-title: Ecol. Res.
– volume: 130
  start-page: 529
  year: 2015
  end-page: 543
  ident: bib0180
  article-title: Response of rice production to elevated CO
  publication-title: Clim. Change
– volume: 103
  start-page: 293
  year: 2015
  end-page: 309
  ident: bib0145
  article-title: Growth and nitrogen allocation of dry season tropical rice as a result of carbon dioxide fertilization and elevated night time temperature
  publication-title: Nutr. Cycl. Agroecosyst.
– start-page: 13
  year: 2017
  ident: bib0195
  article-title: WMO Greenhouse Gas Bulletin. The State of Greenhouse in the Atmosphere Based on Global Observations Through 2016
– volume: 55
  start-page: 381
  year: 2014
  end-page: 391
  ident: bib0045
  article-title: Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO
  publication-title: Plant Cell Physiol.
– start-page: 33
  year: 2017
  end-page: 52
  ident: bib0135
  article-title: Rice production in China
  publication-title: Rice Production Worldwide
– volume: 46
  start-page: 1036
  year: 2005
  end-page: 1045
  ident: bib0050
  article-title: Photosynthetic acclimation in rice leaves to free-air CO
  publication-title: Plant Cell Physiol.
– volume: 99
  start-page: 21
  year: 2018
  end-page: 29
  ident: bib0185
  article-title: Elevated CO
  publication-title: Eur. J. Agron.
– volume: 197
  start-page: 1077
  year: 2013
  end-page: 1094
  ident: bib0075
  article-title: Sensitivity of plants to changing atmospheric CO
  publication-title: New Phytol.
– volume: 98
  start-page: 141
  year: 2006
  end-page: 150
  ident: bib0200
  article-title: The impact of free-air CO
  publication-title: Field Crops Res.
– start-page: 254
  year: 1984
  ident: bib0025
  article-title: Classification and Regression Trees
– volume: 73
  start-page: 1
  year: 2001
  end-page: 34
  ident: bib0015
  article-title: Effects of atmospheric CO
  publication-title: Field Crops Res.
– volume: 312
  start-page: 1918
  year: 2006
  end-page: 1921
  ident: bib0120
  article-title: Food for thought: lower-than-expected crop yield stimulation with rising CO
  publication-title: Science
– volume: 24
  start-page: 1685
  year: 2018
  end-page: 1707
  ident: bib0030
  article-title: Do all leaf photosynthesis parameters of rice acclimate to elevated CO
  publication-title: Glob. Change Biol.
– volume: 14
  start-page: 1642
  year: 2008
  end-page: 1650
  ident: bib0005
  article-title: Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration
  publication-title: Glob. Change Biol.
– volume: 145
  start-page: 395
  year: 2012
  end-page: 405
  ident: bib0230
  article-title: The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide
  publication-title: Physiol. Plant.
– volume: 178
  start-page: 63
  year: 2015
  end-page: 68
  ident: bib0040
  article-title: Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide
  publication-title: Field Crops Res.
– volume: 14
  start-page: 39
  year: 2008
  end-page: 45
  ident: bib0115
  article-title: Estimation of the carbon dioxide (CO
  publication-title: Glob. Change Biol.
– volume: 179
  start-page: 72
  year: 2015
  end-page: 80
  ident: bib0215
  article-title: Grain growth of different rice cultivars under elevated CO
  publication-title: Field Crops Res.
– volume: 139
  start-page: 71
  year: 2012
  end-page: 79
  ident: bib0140
  article-title: Combined effect of elevated CO
  publication-title: Field Crops Res.
– volume: 33
  start-page: 836
  year: 2014
  end-page: 843
  ident: bib0105
  article-title: Effects of CO
  publication-title: J. Agro-Environ. Sci.
– volume: 170
  start-page: 321
  year: 2006
  end-page: 332
  ident: bib0155
  article-title: Enhancement of rice canopy carbon gain by elevated CO
  publication-title: New Phytol.
– start-page: 178
  year: 1981
  ident: bib0210
  article-title: Fundamentals of Rice Crop Science
– volume: 65
  start-page: 6049
  year: 2014
  end-page: 6056
  ident: bib0225
  article-title: Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO
  publication-title: J. Exp. Bot.
– volume: 1
  start-page: 175
  year: 2011
  end-page: 177
  ident: bib0150
  article-title: Crop-climate models need an overhaul
  publication-title: Nat. Clim. Change
– volume: 18
  start-page: 57
  year: 2002
  end-page: 74
  ident: bib0160
  article-title: Simulating the effects of elevated CO
  publication-title: Eur. J. Agron.
– volume: 23
  start-page: 1806
  year: 2017
  end-page: 1820
  ident: bib0170
  article-title: Responses to atmospheric CO
  publication-title: Glob. Change Biol.
– volume: 7
  year: 2014
  ident: bib0165
  article-title: Heat-tolerant rice cultivars retain grain appearance quality under free-air CO
  publication-title: Rice
– volume: 36
  start-page: 1658
  year: 2013
  end-page: 1672
  ident: bib0020
  article-title: Putting mechanisms into crop production models
  publication-title: Plant Cell Environ.
– year: 2016
  ident: bib0065
  article-title: The State of Food and Agriculture: Climate Change, Agriculture and Food Security
– start-page: 1
  year: 2010
  end-page: 11
  ident: bib0125
  article-title: Climate Change Impacts on Agricultural Yields. (Background note to the World Development Report 2010)
– volume: 40
  start-page: 148
  year: 2013
  end-page: 159
  ident: bib0080
  article-title: Rice cultivar responses to elevated CO
  publication-title: Funct. Plant Biol.
– volume: 221
  start-page: 40
  year: 2016
  end-page: 49
  ident: bib0175
  article-title: Size and variability of crop productivity both impacted by CO
  publication-title: Agric. Ecosyst. Environ.
– volume: 150
  start-page: 1174
  year: 2010
  end-page: 1181
  ident: bib0055
  article-title: Combined effects of elevated [CO
  publication-title: Agric. For, Meteorol.
– volume: 7
  start-page: 1827
  year: 2017
  ident: bib0130
  article-title: Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO
  publication-title: Sci. Rep.
– start-page: 87
  year: 2006
  end-page: 104
  ident: bib0100
  article-title: Paddy rice responses to free-air [CO
  publication-title: Managed Ecosystems and CO
– volume: 30
  start-page: 258
  year: 2007
  end-page: 270
  ident: bib0010
  article-title: The response of photosynthesis and stomatal conductance to rising [CO
  publication-title: Plant Cell Environ.
– start-page: 1
  year: 2009
  end-page: 49
  ident: bib0070
  article-title: World food and agriculture to 2030/50: how do climate change and bioenergy alter the long-term outlook for food, agriculture and resource availability?
  publication-title: Proceedings of the Expert Meeting on How to Feed the World in 2050
– volume: 22
  start-page: 856
  year: 2016
  end-page: 874
  ident: bib0035
  article-title: Responses of wheat and rice to factorial combinations of ambient and elevated CO
  publication-title: Glob. Change Biol.
– year: 2013
  ident: bib0085
  publication-title: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 124
  start-page: 357
  year: 2011
  end-page: 368
  ident: bib0190
  article-title: Methodologies for simulating impacts of climate change on crop production
  publication-title: Field Crops Res.
– volume: 9
  start-page: 826
  year: 2003
  end-page: 837
  ident: bib0090
  article-title: Seasonal changes in the effects of elevated CO
  publication-title: Glob. Change Biol.
– volume: 45
  start-page: 85
  year: 2007
  end-page: 91
  ident: bib0205
  article-title: Is photosynthetic acclimation to free-air CO
  publication-title: Photosynthetica
– volume: 5
  start-page: 12719
  year: 2015
  ident: bib0220
  article-title: An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment
  publication-title: Sci. Rep.
– volume: 31
  start-page: 36
  year: 2016
  end-page: 43
  ident: bib0095
  article-title: Crop responses to elevated CO
  publication-title: Curr. Opin. Plant Biol.
– start-page: 1
  year: 2010
  ident: 10.1016/j.eja.2019.125961_bib0125
– volume: 55
  start-page: 381
  year: 2014
  ident: 10.1016/j.eja.2019.125961_bib0045
  article-title: Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu009
– start-page: 33
  year: 2017
  ident: 10.1016/j.eja.2019.125961_bib0135
  article-title: Rice production in China
– volume: 7
  start-page: 1827
  year: 2017
  ident: 10.1016/j.eja.2019.125961_bib0130
  article-title: Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01690-8
– volume: 31
  start-page: 36
  year: 2016
  ident: 10.1016/j.eja.2019.125961_bib0095
  article-title: Crop responses to elevated CO2 and interactions with H2O, N, and temperature
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2016.03.006
– start-page: 1
  year: 2009
  ident: 10.1016/j.eja.2019.125961_bib0070
  article-title: World food and agriculture to 2030/50: how do climate change and bioenergy alter the long-term outlook for food, agriculture and resource availability?
– volume: 24
  start-page: 1685
  year: 2018
  ident: 10.1016/j.eja.2019.125961_bib0030
  article-title: Do all leaf photosynthesis parameters of rice acclimate to elevated CO2, elevated temperature, and their combination, in FACE environments?
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13961
– volume: 46
  start-page: 1036
  year: 2005
  ident: 10.1016/j.eja.2019.125961_bib0050
  article-title: Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci113
– year: 2013
  ident: 10.1016/j.eja.2019.125961_bib0085
– start-page: 87
  year: 2006
  ident: 10.1016/j.eja.2019.125961_bib0100
  article-title: Paddy rice responses to free-air [CO2] enrichment
– volume: 32
  start-page: 405
  year: 2017
  ident: 10.1016/j.eja.2019.125961_bib0110
  article-title: Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO2 concentration and air temperature
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-017-1450-7
– volume: 5
  start-page: 12719
  year: 2015
  ident: 10.1016/j.eja.2019.125961_bib0220
  article-title: An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment
  publication-title: Sci. Rep.
  doi: 10.1038/srep12719
– volume: 7
  year: 2014
  ident: 10.1016/j.eja.2019.125961_bib0165
  article-title: Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment
  publication-title: Rice
  doi: 10.1186/s12284-014-0006-5
– start-page: 13
  year: 2017
  ident: 10.1016/j.eja.2019.125961_bib0195
– volume: 124
  start-page: 357
  year: 2011
  ident: 10.1016/j.eja.2019.125961_bib0190
  article-title: Methodologies for simulating impacts of climate change on crop production
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.07.001
– volume: 65
  start-page: 6049
  year: 2014
  ident: 10.1016/j.eja.2019.125961_bib0225
  article-title: Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2]
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru344
– volume: 99
  start-page: 21
  year: 2018
  ident: 10.1016/j.eja.2019.125961_bib0185
  article-title: Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.06.005
– volume: 33
  start-page: 836
  year: 2014
  ident: 10.1016/j.eja.2019.125961_bib0105
  article-title: Effects of CO2 concentration, nitrogen supply and transplanting density on yield formation of hybrid rice shanyou 63: a FACE study
  publication-title: J. Agro-Environ. Sci.
– volume: 14
  start-page: 1642
  year: 2008
  ident: 10.1016/j.eja.2019.125961_bib0005
  article-title: Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2008.01594.x
– volume: 139
  start-page: 71
  year: 2012
  ident: 10.1016/j.eja.2019.125961_bib0140
  article-title: Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L.)
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.10.011
– volume: 130
  start-page: 529
  year: 2015
  ident: 10.1016/j.eja.2019.125961_bib0180
  article-title: Response of rice production to elevated CO2 and its interaction with rising temperature or nitrogen supply: a meta-analysis
  publication-title: Clim. Change
  doi: 10.1007/s10584-015-1374-6
– volume: 30
  start-page: 258
  year: 2007
  ident: 10.1016/j.eja.2019.125961_bib0010
  article-title: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01641.x
– volume: 22
  start-page: 856
  year: 2016
  ident: 10.1016/j.eja.2019.125961_bib0035
  article-title: Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13065
– volume: 197
  start-page: 1077
  year: 2013
  ident: 10.1016/j.eja.2019.125961_bib0075
  article-title: Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century
  publication-title: New Phytol.
  doi: 10.1111/nph.12104
– volume: 179
  start-page: 72
  year: 2015
  ident: 10.1016/j.eja.2019.125961_bib0215
  article-title: Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.04.006
– volume: 170
  start-page: 321
  year: 2006
  ident: 10.1016/j.eja.2019.125961_bib0155
  article-title: Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01688.x
– volume: 45
  start-page: 85
  year: 2007
  ident: 10.1016/j.eja.2019.125961_bib0205
  article-title: Is photosynthetic acclimation to free-air CO2 enrichment (FACE) related to a strong competition for the assimilatory power between carbon assimilation and nitrogen assimilation in rice leaf?
  publication-title: Photosynthetica
  doi: 10.1007/s11099-007-0013-5
– start-page: 254
  year: 1984
  ident: 10.1016/j.eja.2019.125961_bib0025
– volume: 150
  start-page: 1174
  year: 2010
  ident: 10.1016/j.eja.2019.125961_bib0055
  article-title: Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.)
  publication-title: Agric. For, Meteorol.
  doi: 10.1016/j.agrformet.2010.05.001
– volume: 95
  start-page: 913
  year: 2003
  ident: 10.1016/j.eja.2019.125961_bib0060
  article-title: Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.9130
– volume: 9
  start-page: 826
  year: 2003
  ident: 10.1016/j.eja.2019.125961_bib0090
  article-title: Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1365-2486.2003.00641.x
– start-page: 178
  year: 1981
  ident: 10.1016/j.eja.2019.125961_bib0210
– volume: 1
  start-page: 175
  year: 2011
  ident: 10.1016/j.eja.2019.125961_bib0150
  article-title: Crop-climate models need an overhaul
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1152
– volume: 98
  start-page: 141
  year: 2006
  ident: 10.1016/j.eja.2019.125961_bib0200
  article-title: The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2005.12.014
– volume: 18
  start-page: 57
  year: 2002
  ident: 10.1016/j.eja.2019.125961_bib0160
  article-title: Simulating the effects of elevated CO2 on crops: approaches and applications for climate change
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00097-7
– volume: 221
  start-page: 40
  year: 2016
  ident: 10.1016/j.eja.2019.125961_bib0175
  article-title: Size and variability of crop productivity both impacted by CO2 enrichment and warming-a case study of 4 year field experiment in a Chinese paddy
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.01.028
– volume: 73
  start-page: 1
  year: 2001
  ident: 10.1016/j.eja.2019.125961_bib0015
  article-title: Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(01)00179-4
– volume: 103
  start-page: 293
  year: 2015
  ident: 10.1016/j.eja.2019.125961_bib0145
  article-title: Growth and nitrogen allocation of dry season tropical rice as a result of carbon dioxide fertilization and elevated night time temperature
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-015-9741-2
– volume: 145
  start-page: 395
  year: 2012
  ident: 10.1016/j.eja.2019.125961_bib0230
  article-title: The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2012.01581.x
– volume: 36
  start-page: 1658
  year: 2013
  ident: 10.1016/j.eja.2019.125961_bib0020
  article-title: Putting mechanisms into crop production models
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12119
– volume: 14
  start-page: 39
  year: 2008
  ident: 10.1016/j.eja.2019.125961_bib0115
  article-title: Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2007.01476.x
– volume: 40
  start-page: 148
  year: 2013
  ident: 10.1016/j.eja.2019.125961_bib0080
  article-title: Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12357
– year: 2016
  ident: 10.1016/j.eja.2019.125961_bib0065
– volume: 312
  start-page: 1918
  year: 2006
  ident: 10.1016/j.eja.2019.125961_bib0120
  article-title: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations
  publication-title: Science
  doi: 10.1126/science.1114722
– volume: 178
  start-page: 63
  year: 2015
  ident: 10.1016/j.eja.2019.125961_bib0040
  article-title: Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.03.023
– volume: 23
  start-page: 1806
  year: 2017
  ident: 10.1016/j.eja.2019.125961_bib0170
  article-title: Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13600
SSID ssj0008254
Score 2.5181086
Snippet Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect...
Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125961
SubjectTerms acclimation
agronomy
carbon dioxide
China
climate
Cultivar type
cultivars
face
Free-air CO2 enrichment
hybrids
Japan
nitrogen
Nitrogen management
panicles
photosynthesis
Pre- and post-heading
regression analysis
rice
Rice yield components
soil fertility
spikelets
staple foods
Temperature
Title Response of rice yield and yield components to elevated [CO2]: A synthesis of updated data from FACE experiments
URI https://dx.doi.org/10.1016/j.eja.2019.125961
https://www.proquest.com/docview/2551933860
Volume 112
WOSCitedRecordID wos000498749800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7331
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008254
  issn: 1161-0301
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8ID7FYENGYi-gTPl2vLesdAI0DYSG6IRQ5CROWTUlVdtU2__AH82d7SRtUSf2wEtkRY5l5X4-_-58dybkDctBslnoWKEnA8v3otCKooBbQBW4kwvuFrm6teSEnZ5GwyH_0uv9bnJhFpesLKOrKz75r6KGdyBsTJ29hbjbQeEFtEHo8ASxw_OfBP9VR70qXwBWDHp3jUFq6pBAtzCKvCpVZhsQT8wvF0g794Oj_md3P3ivk9Vn1yVwQ1OupJ7kqg_Gk-qMlOO4P1i6HmC20cNv2K4YTVfSJ04W-rC_Ln_VosOW8V6fi6o7rVJ68bssx3WH5PPaOBRGhbxY9ly49pLnQitbYJsWmmQr2thEVWt9CvSL62Ltf6l67XUYH8gxlo9y-EHXd7Ws9tp21wYhNvFt4wSGSHCIRA9xh2y7LOCgI7fjj4Php3ZnR2taXdZj5t2ckqt4wbV5bOI5azu-ojFnD8kDY3_QWOPmEenJ8jG5H4-mpgaLfEImDYJoVVBEEFW4oYAg0-oQROcVbRBEfwB-fh7SmLbYwREMdihihyJ2KGKHLmHnKfl2PDjrf7DMxRxWBvx1bvlpIUTEMrSl08ILC-CdzPeRCmeuL1LHTt1cFCyULPAFLP0ocKPck0UWMtcPuPeMbJUwzeeEBqF07IgJzoEJ2-gvsX0muQQrO3VAUewQu_mNSWaq1uPlKZfJRvHtkLftJxNdsuWmzn4jm8RwTs0lE8DZTZ-9buSYgD7GQzZRyqqeJWCig00EOs9-cZt5vCT3uiWyS7bm01rukbvZYn4xm74yQPwDiT6pvQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+rice+yield+and+yield+components+to+elevated+%5BCO2%5D%3A+A+synthesis+of+updated+data+from+FACE+experiments&rft.jtitle=European+journal+of+agronomy&rft.au=Lv%2C+Chunhua&rft.au=Huang%2C+Yao&rft.au=Sun%2C+Wenjuan&rft.au=Yu%2C+Lingfei&rft.date=2020-01-01&rft.issn=1161-0301&rft.volume=112&rft.spage=125961&rft_id=info:doi/10.1016%2Fj.eja.2019.125961&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eja_2019_125961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1161-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1161-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1161-0301&client=summon