Response of rice yield and yield components to elevated [CO2]: A synthesis of updated data from FACE experiments
Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect contributed to higher benefit of grain yield for indica and hybrid cultivars. [Display omitted] •Indica and hybrid cultivars received higher benefit th...
Saved in:
| Published in: | European journal of agronomy Vol. 112; p. 125961 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2020
|
| Subjects: | |
| ISSN: | 1161-0301, 1873-7331 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect contributed to higher benefit of grain yield for indica and hybrid cultivars.
[Display omitted]
•Indica and hybrid cultivars received higher benefit than japonica from elevated [CO2].•Post-heading elevated [CO2] contributed to yield is higher for indica and hybrid than for japonica cultivars.•Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature.•It is urgent for crop modelers to incorporate the knowledge from FACE studies into models.
Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to improve crop yields in the future. Rice responds to elevated [CO2] through photosynthesis improving yield components. This response depends on rice types, climate and fertilizers. However, the determinants of rice yield and the contribution of yield components at elevated [CO2] are far from certain. We extracted data from articles published before the end of 2018. These articles reported the responses of rice yield and yield components to elevated [CO2] at FACE conditions across four locations in China and Japan. Using CART (Classification and regression tree, a nonparametric modeling approach to recursively partition predictor variables) and regression models, we identified the principal determinants and the contribution of yield components to yield at elevated [CO2]. Elevated [CO2] (∼200 μmol mol−1 above ambient) increased rice yields by 13.5% (n = 93), 22.6% (n = 10) and 32.8% (n = 17) for japonica, indica and hybrid cultivars. The type of rice cultivars dominantly determined the response of spikelets per panicle, while temperature is of greatest importance in determining the response of filled spikelets percentage to elevated [CO2]. Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature. The contribution of post-heading elevated [CO2] to yield is higher for indica and hybrid (24%) than for japonica cultivars (13%). Lower benefit of japonica cultivars from post-heading elevated [CO2] is likely attributed to an intensive photosynthetic acclimation. Our findings highlight the importance of pre- and post-heading CO2 fertilization effect and nitrogen management in yield benefits from elevated [CO2], and the necessity for crop modelers to incorporate the knowledge from FACE studies into models so that models become more accurate, rigorous and robust. |
|---|---|
| AbstractList | Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to improve crop yields in the future. Rice responds to elevated [CO2] through photosynthesis improving yield components. This response depends on rice types, climate and fertilizers. However, the determinants of rice yield and the contribution of yield components at elevated [CO2] are far from certain. We extracted data from articles published before the end of 2018. These articles reported the responses of rice yield and yield components to elevated [CO2] at FACE conditions across four locations in China and Japan. Using CART (Classification and regression tree, a nonparametric modeling approach to recursively partition predictor variables) and regression models, we identified the principal determinants and the contribution of yield components to yield at elevated [CO2]. Elevated [CO2] (∼200 µmol mol-1 above ambient) increased rice yields by 13.5% (n = 93), 22.6% (n = 10) and 32.8% (n = 17) for japonica, indica and hybrid cultivars. The type of rice cultivars dominantly determined the response of spikelets per panicle, while temperature is of greatest importance in determining the response of filled spikelets percentage to elevated [CO2]. Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature. The contribution of post-heading elevated [CO2] to yield is higher for indica and hybrid (24%) than for japonica cultivars (13%). Lower benefit of japonica cultivars from post-heading elevated [CO2] is likely attributed to an intensive photosynthetic acclimation. Our findings highlight the importance of pre- and post-heading CO2 fertilization effect and nitrogen management in yield benefits from elevated [CO2], and the necessity for crop modelers to incorporate the knowledge from FACE studies into models so that models become more accurate, rigorous and robust. Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect contributed to higher benefit of grain yield for indica and hybrid cultivars. [Display omitted] •Indica and hybrid cultivars received higher benefit than japonica from elevated [CO2].•Post-heading elevated [CO2] contributed to yield is higher for indica and hybrid than for japonica cultivars.•Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature.•It is urgent for crop modelers to incorporate the knowledge from FACE studies into models. Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to improve crop yields in the future. Rice responds to elevated [CO2] through photosynthesis improving yield components. This response depends on rice types, climate and fertilizers. However, the determinants of rice yield and the contribution of yield components at elevated [CO2] are far from certain. We extracted data from articles published before the end of 2018. These articles reported the responses of rice yield and yield components to elevated [CO2] at FACE conditions across four locations in China and Japan. Using CART (Classification and regression tree, a nonparametric modeling approach to recursively partition predictor variables) and regression models, we identified the principal determinants and the contribution of yield components to yield at elevated [CO2]. Elevated [CO2] (∼200 μmol mol−1 above ambient) increased rice yields by 13.5% (n = 93), 22.6% (n = 10) and 32.8% (n = 17) for japonica, indica and hybrid cultivars. The type of rice cultivars dominantly determined the response of spikelets per panicle, while temperature is of greatest importance in determining the response of filled spikelets percentage to elevated [CO2]. Optimal nitrogen rates at elevated [CO2] are site-specific, depending on local soil fertility and temperature. The contribution of post-heading elevated [CO2] to yield is higher for indica and hybrid (24%) than for japonica cultivars (13%). Lower benefit of japonica cultivars from post-heading elevated [CO2] is likely attributed to an intensive photosynthetic acclimation. Our findings highlight the importance of pre- and post-heading CO2 fertilization effect and nitrogen management in yield benefits from elevated [CO2], and the necessity for crop modelers to incorporate the knowledge from FACE studies into models so that models become more accurate, rigorous and robust. |
| ArticleNumber | 125961 |
| Author | Zhu, Jianguo Huang, Yao Yu, Lingfei Sun, Wenjuan Lv, Chunhua |
| Author_xml | – sequence: 1 givenname: Chunhua surname: Lv fullname: Lv, Chunhua organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Yao orcidid: 0000-0002-0192-1421 surname: Huang fullname: Huang, Yao email: huangyao@ibcas.ac.cn, huangy@mail.iap.ac.cn organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Wenjuan surname: Sun fullname: Sun, Wenjuan organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Lingfei surname: Yu fullname: Yu, Lingfei organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Jianguo surname: Zhu fullname: Zhu, Jianguo organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China |
| BookMark | eNp9kE9rGzEQxUVJoUnaD9Cbjrmsq9Gf1W5yMiZOAoFAaU-lCFk7ojJraSPJIf72Xdc59ZDLzMC834P3LshZTBEJ-QpsAQzab9sFbu2CM-gXwFXfwgdyDp0WjRYCzuYbWmiYYPCJXJSyZYx1XMlzMn3HMqVYkCZPc3BIDwHHgdo4vF0u7WYBxlpoTRRHfLEVB_pr9cR_X9MlLYdY_2AJ5eiwn4Z_33la6nPa0fVydUvxdcIcdkeTz-Sjt2PBL2_7kvxc3_5Y3TePT3cPq-Vj46ToayM33tpOOwDZbbxoPdNKS6m5Fo5LuwG24YP1ukWtpO1U3yneDQK9azWXqheX5OrkO-X0vMdSzS4Uh-NoI6Z9MVwp6IXoWjZL9UnqciolozcuVFtDijXbMBpg5tix2Zq5Y3Ps2Jw6nkn4j5zmmDYf3mVuTgzO6V8CZlNcwOhwCBldNUMK79B_AfGalZc |
| CitedBy_id | crossref_primary_10_1007_s40502_022_00670_z crossref_primary_10_1007_s00704_025_05599_5 crossref_primary_10_1007_s42106_025_00327_5 crossref_primary_10_1016_j_agrformet_2023_109737 crossref_primary_10_1016_j_scitotenv_2021_152363 crossref_primary_10_1186_s13717_020_00238_5 crossref_primary_10_3389_fsufs_2022_873957 crossref_primary_10_1038_s41467_024_55809_3 crossref_primary_10_1016_j_scitotenv_2022_155475 crossref_primary_10_3390_plants12173133 crossref_primary_10_1111_ppl_13757 crossref_primary_10_3390_agriculture11060569 crossref_primary_10_3390_plants10051027 crossref_primary_10_1111_pbr_13000 crossref_primary_10_1111_gcb_15410 crossref_primary_10_1016_j_apsoil_2021_104063 crossref_primary_10_15835_nbha50312388 crossref_primary_10_1016_j_heliyon_2023_e20208 crossref_primary_10_1111_ppl_70470 crossref_primary_10_1007_s10705_024_10366_5 crossref_primary_10_3390_agronomy12122927 crossref_primary_10_1007_s00344_022_10897_7 crossref_primary_10_1111_jac_70092 crossref_primary_10_1007_s10343_024_01037_0 crossref_primary_10_1016_j_agsy_2022_103581 crossref_primary_10_1016_j_scitotenv_2020_142797 crossref_primary_10_1016_j_scitotenv_2023_167658 crossref_primary_10_1007_s10705_023_10299_5 crossref_primary_10_1007_s10098_024_02909_9 crossref_primary_10_1111_gcb_15001 crossref_primary_10_3390_agronomy13061550 crossref_primary_10_1016_j_envpol_2021_117558 crossref_primary_10_1002_csc2_21036 crossref_primary_10_2166_wcc_2021_030 crossref_primary_10_3390_agronomy13061448 crossref_primary_10_1093_plphys_kiab470 crossref_primary_10_1016_j_envpol_2022_119480 crossref_primary_10_1038_s43016_024_01021_x crossref_primary_10_1007_s10681_024_03353_y crossref_primary_10_1016_j_soilbio_2023_108993 crossref_primary_10_1029_2024JG008438 crossref_primary_10_3389_fpls_2024_1450893 crossref_primary_10_3390_agriculture10100436 crossref_primary_10_1007_s11103_022_01294_5 crossref_primary_10_1016_j_pbi_2020_05_012 crossref_primary_10_1111_gcb_70299 crossref_primary_10_1007_s00484_022_02366_3 crossref_primary_10_1016_j_eja_2023_126766 crossref_primary_10_1093_jxb_eraa087 crossref_primary_10_3390_agriculture12111828 crossref_primary_10_1016_j_envexpbot_2024_105888 crossref_primary_10_1007_s11356_022_21656_2 crossref_primary_10_1007_s42729_024_01890_y crossref_primary_10_32615_ps_2020_066 crossref_primary_10_1007_s10705_022_10197_2 crossref_primary_10_1016_j_scitotenv_2023_161843 crossref_primary_10_1016_j_envpol_2023_121396 crossref_primary_10_1080_01904167_2024_2316004 crossref_primary_10_1016_j_ecoenv_2020_111605 crossref_primary_10_1007_s11368_024_03863_1 crossref_primary_10_1016_j_scitotenv_2022_156284 crossref_primary_10_1002_csc2_20642 crossref_primary_10_1093_jxb_erac109 crossref_primary_10_1016_j_scitotenv_2021_151017 crossref_primary_10_1007_s11104_024_06974_3 |
| Cites_doi | 10.1093/pcp/pcu009 10.1038/s41598-017-01690-8 10.1016/j.pbi.2016.03.006 10.1111/gcb.13961 10.1093/pcp/pci113 10.1007/s11284-017-1450-7 10.1038/srep12719 10.1186/s12284-014-0006-5 10.1016/j.fcr.2011.07.001 10.1093/jxb/eru344 10.1016/j.eja.2018.06.005 10.1111/j.1365-2486.2008.01594.x 10.1016/j.fcr.2012.10.011 10.1007/s10584-015-1374-6 10.1111/j.1365-3040.2007.01641.x 10.1111/gcb.13065 10.1111/nph.12104 10.1016/j.fcr.2015.04.006 10.1111/j.1469-8137.2006.01688.x 10.1007/s11099-007-0013-5 10.1016/j.agrformet.2010.05.001 10.2134/agronj2003.9130 10.1046/j.1365-2486.2003.00641.x 10.1038/nclimate1152 10.1016/j.fcr.2005.12.014 10.1016/S1161-0301(02)00097-7 10.1016/j.agee.2016.01.028 10.1016/S0378-4290(01)00179-4 10.1007/s10705-015-9741-2 10.1111/j.1399-3054.2012.01581.x 10.1111/pce.12119 10.1111/j.1365-2486.2007.01476.x 10.1071/FP12357 10.1126/science.1114722 10.1016/j.fcr.2015.03.023 10.1111/gcb.13600 |
| ContentType | Journal Article |
| Copyright | 2019 The Author(s) |
| Copyright_xml | – notice: 2019 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.eja.2019.125961 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1873-7331 |
| ExternalDocumentID | 10_1016_j_eja_2019_125961 S1161030119300991 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSZ T5K UHS ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c439t-4bfaa87c1148bf36f0757447273c24ab10b2daf76e754a8598528d3efc6724593 |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498749800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1161-0301 |
| IngestDate | Sun Sep 28 01:52:32 EDT 2025 Tue Nov 18 21:59:30 EST 2025 Sat Nov 29 07:02:38 EST 2025 Fri Feb 23 02:28:04 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Free-air CO2 enrichment Pre- and post-heading Temperature Cultivar type Rice yield components Nitrogen management |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c439t-4bfaa87c1148bf36f0757447273c24ab10b2daf76e754a8598528d3efc6724593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0192-1421 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.eja.2019.125961 |
| PQID | 2551933860 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2551933860 crossref_citationtrail_10_1016_j_eja_2019_125961 crossref_primary_10_1016_j_eja_2019_125961 elsevier_sciencedirect_doi_10_1016_j_eja_2019_125961 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of agronomy |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Sakai, Tokida, Usui, Nakamura, Hasegawa (bib0045) 2014; 55 Sakai, Hasegawa, Kobayashi (bib0155) 2006; 170 Chen, Yong, Liao, Zhang, Chen, Zhang, Chen, Zhu, Xu (bib0050) 2005; 46 Zhang, Sakai, Usui, Tokida, Nakamura, Zhu, Fukuoka, Kobayashi, Hasegawa (bib0215) 2015; 179 Nie, Peng (bib0135) 2017 IPCC (bib0085) 2013 Roy, Bhattacharyya, Neogi, Rao, Adhya (bib0140) 2012; 139 White, Hoogenboom, Kimball, Wall (bib0190) 2011; 124 Wang, Wang, Chen, Xiong, Wolfe, Zou (bib0180) 2015; 130 Chen, Jiang, Ziska, Zhu, Liu, Zhang, Ni, Seneweera, Zhu (bib0040) 2015; 178 Vanuytrecht, Thorburn (bib0170) 2017; 23 Müller, Bondeau, Popp, Waha, Fader (bib0125) 2010 Dobermann, Witt, Abdulrachman, Gines, Nagarajan, Son, Tan, Wang, Chien, Thoa, Phung, Stalin, Muthukrishnan, Ravi, Babu, Simbahan, Adviento (bib0060) 2003; 95 Zhu, Xu, Wang, Zhu, Liu (bib0220) 2015; 5 Fischer (bib0070) 2009 Cai, Yin, He, Jiang, Si, Struik, Luo, Li, Xie, Xiong, Pan (bib0035) 2016; 22 Cai, Li, Yang, Yang, Liu, Struik, Luo, Yin, Di, Guo, Jiang, Si, Pan, Zhu (bib0030) 2018; 24 Cheng, Sakai, Yagi, Hasegawa (bib0055) 2010; 150 WMO (bib0195) 2017 Long, Ainsworth, Leakey, Nosberger, Ort (bib0120) 2006; 312 Rötter, Carter, Olesen, Porter (bib0150) 2011; 1 Nakano, Yoshinaga, Takai, Arai-Sanoh, Kondo, Yamamoto, Sakai, Tokida, Usui, Nakamura, Hasegawa, Kondo (bib0130) 2017; 7 Yang, Huang, Yang, Zhu, Liu, Dong, Liu, Han, Wang (bib0200) 2006; 98 Boote, Jones, White, Asseng, Lizaso (bib0020) 2013; 36 Tubiello, Ewert (bib0160) 2002; 18 Wang, Liu, Zhang, Smith, Li, Filley, Cheng, Shen, He, Pan (bib0175) 2016; 221 Li, Zhu, Sha, Zhang, Zeng, Liu (bib0110) 2017; 32 Zhu, Zhu, Cao, Jiang, Liu, Ziska (bib0225) 2014; 65 Franks, Adams, Amthor, Barbour, Berry, Ellsworth, Farquhar, Ghannoum, Lloyd, McDowell, Norby, Tissue, von Caemmerer (bib0075) 2013; 197 Kobayashi, Okada, Kim, Lieffering, Miura, Hasegawa (bib0100) 2006 Lobell, Field (bib0115) 2008; 14 Ainsworth (bib0005) 2008; 14 Breiman, Friedman, Olshen, Stone (bib0025) 1984 Wang, Cai, Lam, Liu, Zhu (bib0185) 2018; 99 Lai, Zhou, Gu, Zhuang, Zhou, Zhu, Yang, Wang (bib0105) 2014; 33 Amthor (bib0015) 2001; 73 Hasegawa, Sakai, Tokida, Nakamura, Zhu, Usui, Yoshimoto, Fukuoka, Wakatsuki, Katayanagi, Matsunami, Kaneta, Sato, Takakai, Sameshima, Okada, Mae, Makino (bib0080) 2013; 40 Ainsworth, Rogers (bib0010) 2007; 30 Zhu, Ziska, Zhu, Zeng, Xie, Tang, Jia, Hasegawa (bib0230) 2012; 145 Kim, Lieffering, Kobayashi, Okada, Miura (bib0090) 2003; 9 Yong, Chen, Zhang, Chen, Chen, Zhu, Xu (bib0205) 2007; 45 FAO (bib0065) 2016 Kimball (bib0095) 2016; 31 Usui, Sakai, Tokida, Nakamura, Nakagawa, Hasegawa (bib0165) 2014; 7 Roy, Bhattacharyya, Nayak, Sharma, Uprety (bib0145) 2015; 103 Yoshida (bib0210) 1981 Roy (10.1016/j.eja.2019.125961_bib0140) 2012; 139 Roy (10.1016/j.eja.2019.125961_bib0145) 2015; 103 Wang (10.1016/j.eja.2019.125961_bib0180) 2015; 130 Hasegawa (10.1016/j.eja.2019.125961_bib0080) 2013; 40 White (10.1016/j.eja.2019.125961_bib0190) 2011; 124 Ainsworth (10.1016/j.eja.2019.125961_bib0005) 2008; 14 Chen (10.1016/j.eja.2019.125961_bib0045) 2014; 55 Franks (10.1016/j.eja.2019.125961_bib0075) 2013; 197 Müller (10.1016/j.eja.2019.125961_bib0125) 2010 Rötter (10.1016/j.eja.2019.125961_bib0150) 2011; 1 Zhang (10.1016/j.eja.2019.125961_bib0215) 2015; 179 Sakai (10.1016/j.eja.2019.125961_bib0155) 2006; 170 Tubiello (10.1016/j.eja.2019.125961_bib0160) 2002; 18 WMO (10.1016/j.eja.2019.125961_bib0195) 2017 Wang (10.1016/j.eja.2019.125961_bib0185) 2018; 99 Wang (10.1016/j.eja.2019.125961_bib0175) 2016; 221 Breiman (10.1016/j.eja.2019.125961_bib0025) 1984 Kimball (10.1016/j.eja.2019.125961_bib0095) 2016; 31 Fischer (10.1016/j.eja.2019.125961_bib0070) 2009 Chen (10.1016/j.eja.2019.125961_bib0040) 2015; 178 Chen (10.1016/j.eja.2019.125961_bib0050) 2005; 46 IPCC (10.1016/j.eja.2019.125961_bib0085) 2013 Usui (10.1016/j.eja.2019.125961_bib0165) 2014; 7 Boote (10.1016/j.eja.2019.125961_bib0020) 2013; 36 FAO (10.1016/j.eja.2019.125961_bib0065) 2016 Nie (10.1016/j.eja.2019.125961_bib0135) 2017 Kobayashi (10.1016/j.eja.2019.125961_bib0100) 2006 Ainsworth (10.1016/j.eja.2019.125961_bib0010) 2007; 30 Amthor (10.1016/j.eja.2019.125961_bib0015) 2001; 73 Cai (10.1016/j.eja.2019.125961_bib0030) 2018; 24 Yoshida (10.1016/j.eja.2019.125961_bib0210) 1981 Cheng (10.1016/j.eja.2019.125961_bib0055) 2010; 150 Long (10.1016/j.eja.2019.125961_bib0120) 2006; 312 Vanuytrecht (10.1016/j.eja.2019.125961_bib0170) 2017; 23 Dobermann (10.1016/j.eja.2019.125961_bib0060) 2003; 95 Kim (10.1016/j.eja.2019.125961_bib0090) 2003; 9 Yong (10.1016/j.eja.2019.125961_bib0205) 2007; 45 Zhu (10.1016/j.eja.2019.125961_bib0230) 2012; 145 Cai (10.1016/j.eja.2019.125961_bib0035) 2016; 22 Zhu (10.1016/j.eja.2019.125961_bib0225) 2014; 65 Li (10.1016/j.eja.2019.125961_bib0110) 2017; 32 Zhu (10.1016/j.eja.2019.125961_bib0220) 2015; 5 Lai (10.1016/j.eja.2019.125961_bib0105) 2014; 33 Yang (10.1016/j.eja.2019.125961_bib0200) 2006; 98 Nakano (10.1016/j.eja.2019.125961_bib0130) 2017; 7 Lobell (10.1016/j.eja.2019.125961_bib0115) 2008; 14 |
| References_xml | – volume: 95 start-page: 913 year: 2003 end-page: 923 ident: bib0060 article-title: Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia publication-title: Agron. J. – volume: 32 start-page: 405 year: 2017 end-page: 411 ident: bib0110 article-title: Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO publication-title: Ecol. Res. – volume: 130 start-page: 529 year: 2015 end-page: 543 ident: bib0180 article-title: Response of rice production to elevated CO publication-title: Clim. Change – volume: 103 start-page: 293 year: 2015 end-page: 309 ident: bib0145 article-title: Growth and nitrogen allocation of dry season tropical rice as a result of carbon dioxide fertilization and elevated night time temperature publication-title: Nutr. Cycl. Agroecosyst. – start-page: 13 year: 2017 ident: bib0195 article-title: WMO Greenhouse Gas Bulletin. The State of Greenhouse in the Atmosphere Based on Global Observations Through 2016 – volume: 55 start-page: 381 year: 2014 end-page: 391 ident: bib0045 article-title: Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO publication-title: Plant Cell Physiol. – start-page: 33 year: 2017 end-page: 52 ident: bib0135 article-title: Rice production in China publication-title: Rice Production Worldwide – volume: 46 start-page: 1036 year: 2005 end-page: 1045 ident: bib0050 article-title: Photosynthetic acclimation in rice leaves to free-air CO publication-title: Plant Cell Physiol. – volume: 99 start-page: 21 year: 2018 end-page: 29 ident: bib0185 article-title: Elevated CO publication-title: Eur. J. Agron. – volume: 197 start-page: 1077 year: 2013 end-page: 1094 ident: bib0075 article-title: Sensitivity of plants to changing atmospheric CO publication-title: New Phytol. – volume: 98 start-page: 141 year: 2006 end-page: 150 ident: bib0200 article-title: The impact of free-air CO publication-title: Field Crops Res. – start-page: 254 year: 1984 ident: bib0025 article-title: Classification and Regression Trees – volume: 73 start-page: 1 year: 2001 end-page: 34 ident: bib0015 article-title: Effects of atmospheric CO publication-title: Field Crops Res. – volume: 312 start-page: 1918 year: 2006 end-page: 1921 ident: bib0120 article-title: Food for thought: lower-than-expected crop yield stimulation with rising CO publication-title: Science – volume: 24 start-page: 1685 year: 2018 end-page: 1707 ident: bib0030 article-title: Do all leaf photosynthesis parameters of rice acclimate to elevated CO publication-title: Glob. Change Biol. – volume: 14 start-page: 1642 year: 2008 end-page: 1650 ident: bib0005 article-title: Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration publication-title: Glob. Change Biol. – volume: 145 start-page: 395 year: 2012 end-page: 405 ident: bib0230 article-title: The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide publication-title: Physiol. Plant. – volume: 178 start-page: 63 year: 2015 end-page: 68 ident: bib0040 article-title: Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide publication-title: Field Crops Res. – volume: 14 start-page: 39 year: 2008 end-page: 45 ident: bib0115 article-title: Estimation of the carbon dioxide (CO publication-title: Glob. Change Biol. – volume: 179 start-page: 72 year: 2015 end-page: 80 ident: bib0215 article-title: Grain growth of different rice cultivars under elevated CO publication-title: Field Crops Res. – volume: 139 start-page: 71 year: 2012 end-page: 79 ident: bib0140 article-title: Combined effect of elevated CO publication-title: Field Crops Res. – volume: 33 start-page: 836 year: 2014 end-page: 843 ident: bib0105 article-title: Effects of CO publication-title: J. Agro-Environ. Sci. – volume: 170 start-page: 321 year: 2006 end-page: 332 ident: bib0155 article-title: Enhancement of rice canopy carbon gain by elevated CO publication-title: New Phytol. – start-page: 178 year: 1981 ident: bib0210 article-title: Fundamentals of Rice Crop Science – volume: 65 start-page: 6049 year: 2014 end-page: 6056 ident: bib0225 article-title: Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO publication-title: J. Exp. Bot. – volume: 1 start-page: 175 year: 2011 end-page: 177 ident: bib0150 article-title: Crop-climate models need an overhaul publication-title: Nat. Clim. Change – volume: 18 start-page: 57 year: 2002 end-page: 74 ident: bib0160 article-title: Simulating the effects of elevated CO publication-title: Eur. J. Agron. – volume: 23 start-page: 1806 year: 2017 end-page: 1820 ident: bib0170 article-title: Responses to atmospheric CO publication-title: Glob. Change Biol. – volume: 7 year: 2014 ident: bib0165 article-title: Heat-tolerant rice cultivars retain grain appearance quality under free-air CO publication-title: Rice – volume: 36 start-page: 1658 year: 2013 end-page: 1672 ident: bib0020 article-title: Putting mechanisms into crop production models publication-title: Plant Cell Environ. – year: 2016 ident: bib0065 article-title: The State of Food and Agriculture: Climate Change, Agriculture and Food Security – start-page: 1 year: 2010 end-page: 11 ident: bib0125 article-title: Climate Change Impacts on Agricultural Yields. (Background note to the World Development Report 2010) – volume: 40 start-page: 148 year: 2013 end-page: 159 ident: bib0080 article-title: Rice cultivar responses to elevated CO publication-title: Funct. Plant Biol. – volume: 221 start-page: 40 year: 2016 end-page: 49 ident: bib0175 article-title: Size and variability of crop productivity both impacted by CO publication-title: Agric. Ecosyst. Environ. – volume: 150 start-page: 1174 year: 2010 end-page: 1181 ident: bib0055 article-title: Combined effects of elevated [CO publication-title: Agric. For, Meteorol. – volume: 7 start-page: 1827 year: 2017 ident: bib0130 article-title: Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO publication-title: Sci. Rep. – start-page: 87 year: 2006 end-page: 104 ident: bib0100 article-title: Paddy rice responses to free-air [CO publication-title: Managed Ecosystems and CO – volume: 30 start-page: 258 year: 2007 end-page: 270 ident: bib0010 article-title: The response of photosynthesis and stomatal conductance to rising [CO publication-title: Plant Cell Environ. – start-page: 1 year: 2009 end-page: 49 ident: bib0070 article-title: World food and agriculture to 2030/50: how do climate change and bioenergy alter the long-term outlook for food, agriculture and resource availability? publication-title: Proceedings of the Expert Meeting on How to Feed the World in 2050 – volume: 22 start-page: 856 year: 2016 end-page: 874 ident: bib0035 article-title: Responses of wheat and rice to factorial combinations of ambient and elevated CO publication-title: Glob. Change Biol. – year: 2013 ident: bib0085 publication-title: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 124 start-page: 357 year: 2011 end-page: 368 ident: bib0190 article-title: Methodologies for simulating impacts of climate change on crop production publication-title: Field Crops Res. – volume: 9 start-page: 826 year: 2003 end-page: 837 ident: bib0090 article-title: Seasonal changes in the effects of elevated CO publication-title: Glob. Change Biol. – volume: 45 start-page: 85 year: 2007 end-page: 91 ident: bib0205 article-title: Is photosynthetic acclimation to free-air CO publication-title: Photosynthetica – volume: 5 start-page: 12719 year: 2015 ident: bib0220 article-title: An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment publication-title: Sci. Rep. – volume: 31 start-page: 36 year: 2016 end-page: 43 ident: bib0095 article-title: Crop responses to elevated CO publication-title: Curr. Opin. Plant Biol. – start-page: 1 year: 2010 ident: 10.1016/j.eja.2019.125961_bib0125 – volume: 55 start-page: 381 year: 2014 ident: 10.1016/j.eja.2019.125961_bib0045 article-title: Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu009 – start-page: 33 year: 2017 ident: 10.1016/j.eja.2019.125961_bib0135 article-title: Rice production in China – volume: 7 start-page: 1827 year: 2017 ident: 10.1016/j.eja.2019.125961_bib0130 article-title: Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions publication-title: Sci. Rep. doi: 10.1038/s41598-017-01690-8 – volume: 31 start-page: 36 year: 2016 ident: 10.1016/j.eja.2019.125961_bib0095 article-title: Crop responses to elevated CO2 and interactions with H2O, N, and temperature publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2016.03.006 – start-page: 1 year: 2009 ident: 10.1016/j.eja.2019.125961_bib0070 article-title: World food and agriculture to 2030/50: how do climate change and bioenergy alter the long-term outlook for food, agriculture and resource availability? – volume: 24 start-page: 1685 year: 2018 ident: 10.1016/j.eja.2019.125961_bib0030 article-title: Do all leaf photosynthesis parameters of rice acclimate to elevated CO2, elevated temperature, and their combination, in FACE environments? publication-title: Glob. Change Biol. doi: 10.1111/gcb.13961 – volume: 46 start-page: 1036 year: 2005 ident: 10.1016/j.eja.2019.125961_bib0050 article-title: Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci113 – year: 2013 ident: 10.1016/j.eja.2019.125961_bib0085 – start-page: 87 year: 2006 ident: 10.1016/j.eja.2019.125961_bib0100 article-title: Paddy rice responses to free-air [CO2] enrichment – volume: 32 start-page: 405 year: 2017 ident: 10.1016/j.eja.2019.125961_bib0110 article-title: Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO2 concentration and air temperature publication-title: Ecol. Res. doi: 10.1007/s11284-017-1450-7 – volume: 5 start-page: 12719 year: 2015 ident: 10.1016/j.eja.2019.125961_bib0220 article-title: An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment publication-title: Sci. Rep. doi: 10.1038/srep12719 – volume: 7 year: 2014 ident: 10.1016/j.eja.2019.125961_bib0165 article-title: Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment publication-title: Rice doi: 10.1186/s12284-014-0006-5 – start-page: 13 year: 2017 ident: 10.1016/j.eja.2019.125961_bib0195 – volume: 124 start-page: 357 year: 2011 ident: 10.1016/j.eja.2019.125961_bib0190 article-title: Methodologies for simulating impacts of climate change on crop production publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.07.001 – volume: 65 start-page: 6049 year: 2014 ident: 10.1016/j.eja.2019.125961_bib0225 article-title: Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2] publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru344 – volume: 99 start-page: 21 year: 2018 ident: 10.1016/j.eja.2019.125961_bib0185 article-title: Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.06.005 – volume: 33 start-page: 836 year: 2014 ident: 10.1016/j.eja.2019.125961_bib0105 article-title: Effects of CO2 concentration, nitrogen supply and transplanting density on yield formation of hybrid rice shanyou 63: a FACE study publication-title: J. Agro-Environ. Sci. – volume: 14 start-page: 1642 year: 2008 ident: 10.1016/j.eja.2019.125961_bib0005 article-title: Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2008.01594.x – volume: 139 start-page: 71 year: 2012 ident: 10.1016/j.eja.2019.125961_bib0140 article-title: Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L.) publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.10.011 – volume: 130 start-page: 529 year: 2015 ident: 10.1016/j.eja.2019.125961_bib0180 article-title: Response of rice production to elevated CO2 and its interaction with rising temperature or nitrogen supply: a meta-analysis publication-title: Clim. Change doi: 10.1007/s10584-015-1374-6 – volume: 30 start-page: 258 year: 2007 ident: 10.1016/j.eja.2019.125961_bib0010 article-title: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01641.x – volume: 22 start-page: 856 year: 2016 ident: 10.1016/j.eja.2019.125961_bib0035 article-title: Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments publication-title: Glob. Change Biol. doi: 10.1111/gcb.13065 – volume: 197 start-page: 1077 year: 2013 ident: 10.1016/j.eja.2019.125961_bib0075 article-title: Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century publication-title: New Phytol. doi: 10.1111/nph.12104 – volume: 179 start-page: 72 year: 2015 ident: 10.1016/j.eja.2019.125961_bib0215 article-title: Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.04.006 – volume: 170 start-page: 321 year: 2006 ident: 10.1016/j.eja.2019.125961_bib0155 article-title: Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01688.x – volume: 45 start-page: 85 year: 2007 ident: 10.1016/j.eja.2019.125961_bib0205 article-title: Is photosynthetic acclimation to free-air CO2 enrichment (FACE) related to a strong competition for the assimilatory power between carbon assimilation and nitrogen assimilation in rice leaf? publication-title: Photosynthetica doi: 10.1007/s11099-007-0013-5 – start-page: 254 year: 1984 ident: 10.1016/j.eja.2019.125961_bib0025 – volume: 150 start-page: 1174 year: 2010 ident: 10.1016/j.eja.2019.125961_bib0055 article-title: Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.) publication-title: Agric. For, Meteorol. doi: 10.1016/j.agrformet.2010.05.001 – volume: 95 start-page: 913 year: 2003 ident: 10.1016/j.eja.2019.125961_bib0060 article-title: Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia publication-title: Agron. J. doi: 10.2134/agronj2003.9130 – volume: 9 start-page: 826 year: 2003 ident: 10.1016/j.eja.2019.125961_bib0090 article-title: Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment publication-title: Glob. Change Biol. doi: 10.1046/j.1365-2486.2003.00641.x – start-page: 178 year: 1981 ident: 10.1016/j.eja.2019.125961_bib0210 – volume: 1 start-page: 175 year: 2011 ident: 10.1016/j.eja.2019.125961_bib0150 article-title: Crop-climate models need an overhaul publication-title: Nat. Clim. Change doi: 10.1038/nclimate1152 – volume: 98 start-page: 141 year: 2006 ident: 10.1016/j.eja.2019.125961_bib0200 article-title: The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle publication-title: Field Crops Res. doi: 10.1016/j.fcr.2005.12.014 – volume: 18 start-page: 57 year: 2002 ident: 10.1016/j.eja.2019.125961_bib0160 article-title: Simulating the effects of elevated CO2 on crops: approaches and applications for climate change publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00097-7 – volume: 221 start-page: 40 year: 2016 ident: 10.1016/j.eja.2019.125961_bib0175 article-title: Size and variability of crop productivity both impacted by CO2 enrichment and warming-a case study of 4 year field experiment in a Chinese paddy publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.01.028 – volume: 73 start-page: 1 year: 2001 ident: 10.1016/j.eja.2019.125961_bib0015 article-title: Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration publication-title: Field Crops Res. doi: 10.1016/S0378-4290(01)00179-4 – volume: 103 start-page: 293 year: 2015 ident: 10.1016/j.eja.2019.125961_bib0145 article-title: Growth and nitrogen allocation of dry season tropical rice as a result of carbon dioxide fertilization and elevated night time temperature publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-015-9741-2 – volume: 145 start-page: 395 year: 2012 ident: 10.1016/j.eja.2019.125961_bib0230 article-title: The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2012.01581.x – volume: 36 start-page: 1658 year: 2013 ident: 10.1016/j.eja.2019.125961_bib0020 article-title: Putting mechanisms into crop production models publication-title: Plant Cell Environ. doi: 10.1111/pce.12119 – volume: 14 start-page: 39 year: 2008 ident: 10.1016/j.eja.2019.125961_bib0115 article-title: Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01476.x – volume: 40 start-page: 148 year: 2013 ident: 10.1016/j.eja.2019.125961_bib0080 article-title: Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan publication-title: Funct. Plant Biol. doi: 10.1071/FP12357 – year: 2016 ident: 10.1016/j.eja.2019.125961_bib0065 – volume: 312 start-page: 1918 year: 2006 ident: 10.1016/j.eja.2019.125961_bib0120 article-title: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations publication-title: Science doi: 10.1126/science.1114722 – volume: 178 start-page: 63 year: 2015 ident: 10.1016/j.eja.2019.125961_bib0040 article-title: Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.03.023 – volume: 23 start-page: 1806 year: 2017 ident: 10.1016/j.eja.2019.125961_bib0170 article-title: Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development publication-title: Glob. Change Biol. doi: 10.1111/gcb.13600 |
| SSID | ssj0008254 |
| Score | 2.5181086 |
| Snippet | Grain yield of japonica cultivars received lower benefits from elevated [CO2] (∼200 μmol mol−1 above ambient). Post-heading CO2 fertilization effect... Rice is the most widely consumed staple food for more than half of the world’s population. Rising atmospheric carbon dioxide concentration [CO2] is expected to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125961 |
| SubjectTerms | acclimation agronomy carbon dioxide China climate Cultivar type cultivars face Free-air CO2 enrichment hybrids Japan nitrogen Nitrogen management panicles photosynthesis Pre- and post-heading regression analysis rice Rice yield components soil fertility spikelets staple foods Temperature |
| Title | Response of rice yield and yield components to elevated [CO2]: A synthesis of updated data from FACE experiments |
| URI | https://dx.doi.org/10.1016/j.eja.2019.125961 https://www.proquest.com/docview/2551933860 |
| Volume | 112 |
| WOSCitedRecordID | wos000498749800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7331 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008254 issn: 1161-0301 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8ID7FYENGYi-gTPl2vLesdAI0DYSG6IRQ5CROWTUlVdtU2__AH82d7SRtUSf2wEtkRY5l5X4-_-58dybkDctBslnoWKEnA8v3otCKooBbQBW4kwvuFrm6teSEnZ5GwyH_0uv9bnJhFpesLKOrKz75r6KGdyBsTJ29hbjbQeEFtEHo8ASxw_OfBP9VR70qXwBWDHp3jUFq6pBAtzCKvCpVZhsQT8wvF0g794Oj_md3P3ivk9Vn1yVwQ1OupJ7kqg_Gk-qMlOO4P1i6HmC20cNv2K4YTVfSJ04W-rC_Ln_VosOW8V6fi6o7rVJ68bssx3WH5PPaOBRGhbxY9ly49pLnQitbYJsWmmQr2thEVWt9CvSL62Ltf6l67XUYH8gxlo9y-EHXd7Ws9tp21wYhNvFt4wSGSHCIRA9xh2y7LOCgI7fjj4Php3ZnR2taXdZj5t2ckqt4wbV5bOI5azu-ojFnD8kDY3_QWOPmEenJ8jG5H4-mpgaLfEImDYJoVVBEEFW4oYAg0-oQROcVbRBEfwB-fh7SmLbYwREMdihihyJ2KGKHLmHnKfl2PDjrf7DMxRxWBvx1bvlpIUTEMrSl08ILC-CdzPeRCmeuL1LHTt1cFCyULPAFLP0ocKPck0UWMtcPuPeMbJUwzeeEBqF07IgJzoEJ2-gvsX0muQQrO3VAUewQu_mNSWaq1uPlKZfJRvHtkLftJxNdsuWmzn4jm8RwTs0lE8DZTZ-9buSYgD7GQzZRyqqeJWCig00EOs9-cZt5vCT3uiWyS7bm01rukbvZYn4xm74yQPwDiT6pvQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+rice+yield+and+yield+components+to+elevated+%5BCO2%5D%3A+A+synthesis+of+updated+data+from+FACE+experiments&rft.jtitle=European+journal+of+agronomy&rft.au=Lv%2C+Chunhua&rft.au=Huang%2C+Yao&rft.au=Sun%2C+Wenjuan&rft.au=Yu%2C+Lingfei&rft.date=2020-01-01&rft.issn=1161-0301&rft.volume=112&rft.spage=125961&rft_id=info:doi/10.1016%2Fj.eja.2019.125961&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eja_2019_125961 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1161-0301&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1161-0301&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1161-0301&client=summon |