The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies

•Quantitative techno-economic comparisons of energy storages are conducted.•Operation characteristics of devices are considered in capacity optimization.•Comprehensive performance metrics of multi-objective algorithms are proposed.•Sensibility analysis of different load profile and resources level a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy conversion and management Ročník 229; s. 113779
Hlavní autori: He, Yi, Guo, Su, Zhou, Jianxu, Wu, Feng, Huang, Jing, Pei, Huanjin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.02.2021
Elsevier Science Ltd
Predmet:
ISSN:0196-8904, 1879-2227
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Quantitative techno-economic comparisons of energy storages are conducted.•Operation characteristics of devices are considered in capacity optimization.•Comprehensive performance metrics of multi-objective algorithms are proposed.•Sensibility analysis of different load profile and resources level are conducted.•Thermal energy storage is the most cost-effective energy storage alternative. To provide investors with a selection method of energy storage technology, this paper proposes a quantitative techno-economic comparison method of battery, thermal energy storage, pumped hydro storage and hydrogen storage in wind-photovoltaic hybrid power system from the perspective of multi-objective capacity optimization. The multi-objective capacity optimization models are developed based on minimizing the levelized cost of energy (economy) and loss of power supply probability (reliability) simultaneously. Comprehensive metrics based on hypervolume are proposed to compare the performance of four multi-objective evolutionary algorithms. Moreover, the operation characteristics of devices is considered in the model to improve the simulation accuracy. The performance comparisons of algorithms show that the average rank of nondominated sorting genetic algorithm, multi-objective evolutionary algorithm based on decomposition, multi-objective particle swarm optimization and strength Pareto evolutionary algorithm are 2.8, 3.6, 1.8 and 1.8 respectively, which demonstrates that multi-objective particle swarm optimization and strength Pareto evolutionary algorithm have relatively better overall performance when applied in capacity optimization problems. The quantitative techno-economic comparisons of energy storage show that the levelized cost of energy of thermal energy storage, battery, hydrogen storage and pumped hydro storage under the same reliability are 0.1224 $/kWh, 0.1812 $/kWh, 0.1863 $/kWh and 0.2225 $/kWh respectively, which demonstrates that thermal energy storage is the most cost-effective alternative. Furthermore, the sensibility analysis demonstrates that thermal energy storage is always the most cost-effective alternative for different load profile, different resources level and different energy storage cost. Finally, the conclusions can help investors to select a cost-effective and reliable energy storage technology.
AbstractList To provide investors with a selection method of energy storage technology, this paper proposes a quantitative techno-economic comparison method of battery, thermal energy storage, pumped hydro storage and hydrogen storage in wind-photovoltaic hybrid power system from the perspective of multi-objective capacity optimization. The multi-objective capacity optimization models are developed based on minimizing the levelized cost of energy (economy) and loss of power supply probability (reliability) simultaneously. Comprehensive metrics based on hypervolume are proposed to compare the performance of four multi-objective evolutionary algorithms. Moreover, the operation characteristics of devices is considered in the model to improve the simulation accuracy. The performance comparisons of algorithms show that the average rank of nondominated sorting genetic algorithm, multi-objective evolutionary algorithm based on decomposition, multi-objective particle swarm optimization and strength Pareto evolutionary algorithm are 2.8, 3.6, 1.8 and 1.8 respectively, which demonstrates that multi-objective particle swarm optimization and strength Pareto evolutionary algorithm have relatively better overall performance when applied in capacity optimization problems. The quantitative techno-economic comparisons of energy storage show that the levelized cost of energy of thermal energy storage, battery, hydrogen storage and pumped hydro storage under the same reliability are 0.1224 $/kWh, 0.1812 $/kWh, 0.1863 $/kWh and 0.2225 $/kWh respectively, which demonstrates that thermal energy storage is the most cost-effective alternative. Furthermore, the sensibility analysis demonstrates that thermal energy storage is always the most cost-effective alternative for different load profile, different resources level and different energy storage cost. Finally, the conclusions can help investors to select a cost-effective and reliable energy storage technology.
•Quantitative techno-economic comparisons of energy storages are conducted.•Operation characteristics of devices are considered in capacity optimization.•Comprehensive performance metrics of multi-objective algorithms are proposed.•Sensibility analysis of different load profile and resources level are conducted.•Thermal energy storage is the most cost-effective energy storage alternative. To provide investors with a selection method of energy storage technology, this paper proposes a quantitative techno-economic comparison method of battery, thermal energy storage, pumped hydro storage and hydrogen storage in wind-photovoltaic hybrid power system from the perspective of multi-objective capacity optimization. The multi-objective capacity optimization models are developed based on minimizing the levelized cost of energy (economy) and loss of power supply probability (reliability) simultaneously. Comprehensive metrics based on hypervolume are proposed to compare the performance of four multi-objective evolutionary algorithms. Moreover, the operation characteristics of devices is considered in the model to improve the simulation accuracy. The performance comparisons of algorithms show that the average rank of nondominated sorting genetic algorithm, multi-objective evolutionary algorithm based on decomposition, multi-objective particle swarm optimization and strength Pareto evolutionary algorithm are 2.8, 3.6, 1.8 and 1.8 respectively, which demonstrates that multi-objective particle swarm optimization and strength Pareto evolutionary algorithm have relatively better overall performance when applied in capacity optimization problems. The quantitative techno-economic comparisons of energy storage show that the levelized cost of energy of thermal energy storage, battery, hydrogen storage and pumped hydro storage under the same reliability are 0.1224 $/kWh, 0.1812 $/kWh, 0.1863 $/kWh and 0.2225 $/kWh respectively, which demonstrates that thermal energy storage is the most cost-effective alternative. Furthermore, the sensibility analysis demonstrates that thermal energy storage is always the most cost-effective alternative for different load profile, different resources level and different energy storage cost. Finally, the conclusions can help investors to select a cost-effective and reliable energy storage technology.
ArticleNumber 113779
Author He, Yi
Wu, Feng
Zhou, Jianxu
Guo, Su
Pei, Huanjin
Huang, Jing
Author_xml – sequence: 1
  givenname: Yi
  surname: He
  fullname: He, Yi
  email: 1334159303@qq.com
– sequence: 2
  givenname: Su
  surname: Guo
  fullname: Guo, Su
  email: guosu81@126.com
– sequence: 3
  givenname: Jianxu
  surname: Zhou
  fullname: Zhou, Jianxu
– sequence: 4
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
– sequence: 5
  givenname: Jing
  surname: Huang
  fullname: Huang, Jing
– sequence: 6
  givenname: Huanjin
  surname: Pei
  fullname: Pei, Huanjin
BookMark eNqFkcFq3DAQhk1JoZu0r1AEvfTirSR7LRt6aAltUgj0kp6FLI93x9gaR5I3OG_VN6ySbS655CQYff_HMP95dubIQZZ9FHwruKi-DFtwltxk3FZymYaiUKp5k21ErZpcSqnOsg0XTZXXDS_fZechDJzzYserTfb39gDsbjEuYjQRj8Ai2IOjHJKSJrTM0jQbj4FcYMZ1bFrGiDm1A9gn3prZWIwroznihA_JQo5Rz-7Rdfl8oEhHGqNJqsPaeuzYTPfgWVhDhCnpXcAOPLo967DvwYOLDBz4_cpCJG_2zzuNtEcI77O3vRkDfPj_XmR_fv64vbzOb35f_br8fpPbsmhiXtZQFi1AUba2bxSotqiVEMLWlVLA267ohCrKnTRC8fQn2r5S6SaNBGXbxhQX2eeTd_Z0t0CIesJgYRyNA1qClrtkU7WUdUI_vUAHWrxL22lZNlLxqmpkor6eKOspBA-9tk83Jxe9wVELrh_71IN-7lM_9qlPfaZ49SI-e5yMX18PfjsFIV3riOB1sJhI6NCnDnVH-JriH8cAxpQ
CitedBy_id crossref_primary_10_1088_1742_6596_2614_1_012009
crossref_primary_10_1016_j_renene_2024_121052
crossref_primary_10_1016_j_energy_2025_137647
crossref_primary_10_1051_rees_2022016
crossref_primary_10_1016_j_est_2024_110539
crossref_primary_10_1016_j_energy_2025_135224
crossref_primary_10_1016_j_est_2022_105063
crossref_primary_10_1016_j_enconman_2021_114847
crossref_primary_10_1016_j_rser_2023_113476
crossref_primary_10_1016_j_renene_2023_05_094
crossref_primary_10_1016_j_est_2024_113363
crossref_primary_10_1016_j_est_2023_109420
crossref_primary_10_1016_j_energy_2025_136442
crossref_primary_10_3390_en17112653
crossref_primary_10_1016_j_est_2022_103972
crossref_primary_10_1016_j_apenergy_2025_126073
crossref_primary_10_1016_j_est_2025_117741
crossref_primary_10_1016_j_seta_2024_103924
crossref_primary_10_1016_j_enconman_2025_119734
crossref_primary_10_1016_j_renene_2021_11_116
crossref_primary_10_32604_ee_2023_025335
crossref_primary_10_1016_j_renene_2024_120131
crossref_primary_10_1080_14786451_2024_2355645
crossref_primary_10_1016_j_energy_2022_123248
crossref_primary_10_1016_j_est_2023_108206
crossref_primary_10_1016_j_est_2024_113090
crossref_primary_10_1016_j_esr_2024_101440
crossref_primary_10_3390_en15062199
crossref_primary_10_1016_j_enconman_2022_116177
crossref_primary_10_1016_j_enconman_2023_117860
crossref_primary_10_1016_j_energy_2023_129445
crossref_primary_10_1016_j_energy_2022_125163
crossref_primary_10_3390_en16196787
crossref_primary_10_1016_j_enconman_2024_118798
crossref_primary_10_1016_j_egyr_2022_03_201
crossref_primary_10_3390_electronics12041062
crossref_primary_10_1016_j_renene_2024_122286
crossref_primary_10_1016_j_apenergy_2022_120095
crossref_primary_10_1016_j_est_2024_112299
crossref_primary_10_1016_j_apenergy_2023_122289
crossref_primary_10_1016_j_apenergy_2023_121113
crossref_primary_10_1016_j_est_2023_109440
crossref_primary_10_3390_su16093753
crossref_primary_10_1007_s40710_022_00575_x
crossref_primary_10_1016_j_ijhydene_2022_05_263
crossref_primary_10_1016_j_enconman_2025_119711
crossref_primary_10_1016_j_est_2025_117360
crossref_primary_10_1016_j_jclepro_2023_139383
crossref_primary_10_1016_j_enconman_2022_116583
crossref_primary_10_1016_j_enconman_2022_116067
crossref_primary_10_3390_en16135002
crossref_primary_10_1016_j_rser_2022_112356
crossref_primary_10_1016_j_jclepro_2024_144577
crossref_primary_10_1016_j_energy_2024_132603
crossref_primary_10_1016_j_est_2024_113436
crossref_primary_10_1109_ACCESS_2024_3476959
crossref_primary_10_1016_j_jclepro_2022_133139
crossref_primary_10_1016_j_seta_2022_102724
crossref_primary_10_1016_j_ijepes_2025_110631
crossref_primary_10_1016_j_apenergy_2025_125921
crossref_primary_10_1016_j_enconman_2022_115770
crossref_primary_10_1016_j_jclepro_2022_134583
crossref_primary_10_1016_j_joei_2024_101680
crossref_primary_10_1016_j_seta_2024_104026
crossref_primary_10_1016_j_jclepro_2024_142143
crossref_primary_10_1016_j_enconman_2022_116037
crossref_primary_10_1016_j_egyr_2022_08_160
crossref_primary_10_1016_j_renene_2024_120041
crossref_primary_10_1016_j_apenergy_2023_122340
crossref_primary_10_3390_en18092189
crossref_primary_10_1016_j_est_2024_111143
crossref_primary_10_1016_j_resconrec_2022_106608
crossref_primary_10_1007_s11581_025_06110_w
crossref_primary_10_2478_amns_2023_2_01288
crossref_primary_10_1002_ese3_1727
crossref_primary_10_1016_j_apenergy_2024_124646
crossref_primary_10_1016_j_energy_2022_125454
crossref_primary_10_1016_j_ijepes_2021_107262
crossref_primary_10_1016_j_nucengdes_2025_114138
crossref_primary_10_1016_j_energy_2023_126829
crossref_primary_10_1016_j_est_2022_105307
crossref_primary_10_1016_j_est_2023_108408
crossref_primary_10_1038_s41598_025_92893_x
crossref_primary_10_1016_j_ecmx_2025_101083
crossref_primary_10_1007_s10479_024_05922_9
crossref_primary_10_1016_j_enconman_2023_117232
crossref_primary_10_1016_j_ijhydene_2023_02_031
crossref_primary_10_1016_j_renene_2023_119280
crossref_primary_10_1016_j_enconman_2025_119772
crossref_primary_10_1016_j_enconman_2021_114519
crossref_primary_10_1016_j_enconman_2023_117878
crossref_primary_10_1016_j_est_2024_110983
crossref_primary_10_1016_j_est_2024_112800
crossref_primary_10_1016_j_energy_2021_121244
crossref_primary_10_3390_en18061320
crossref_primary_10_1016_j_scs_2023_104428
crossref_primary_10_1016_j_enconman_2025_120357
crossref_primary_10_1016_j_ijhydene_2023_08_029
crossref_primary_10_1016_j_enconman_2024_118635
crossref_primary_10_3390_wevj16060332
crossref_primary_10_1016_j_est_2024_110873
crossref_primary_10_1016_j_enconman_2024_118638
crossref_primary_10_1016_j_egyr_2023_05_202
crossref_primary_10_1016_j_applthermaleng_2024_123365
crossref_primary_10_1002_adsu_202100025
crossref_primary_10_1016_j_seta_2022_102538
crossref_primary_10_1016_j_nexres_2025_100658
crossref_primary_10_1016_j_est_2024_112490
crossref_primary_10_1016_j_egyr_2022_11_195
crossref_primary_10_1016_j_seta_2023_103485
crossref_primary_10_1016_j_enconman_2025_119594
crossref_primary_10_1016_j_energy_2024_133694
crossref_primary_10_1016_j_apenergy_2022_120225
crossref_primary_10_1016_j_est_2025_116870
crossref_primary_10_1016_j_est_2025_118414
crossref_primary_10_1016_j_rser_2023_113267
crossref_primary_10_1016_j_egyr_2023_03_037
crossref_primary_10_1016_j_segan_2025_101667
crossref_primary_10_1016_j_est_2024_114320
crossref_primary_10_1016_j_renene_2025_123879
crossref_primary_10_1016_j_est_2023_109511
crossref_primary_10_1093_ijlct_ctad039
crossref_primary_10_1109_ACCESS_2024_3393420
crossref_primary_10_3390_en18184859
Cites_doi 10.1109/4235.996017
10.1109/TEVC.2007.892759
10.1016/j.apenergy.2014.11.026
10.1109/CEC.2002.1004388
10.1016/j.solener.2019.11.063
10.1016/j.apenergy.2020.115058
10.1016/j.energy.2017.02.050
10.1016/j.energy.2011.06.017
10.1016/j.energy.2017.11.085
10.1016/j.energy.2017.12.057
10.1016/j.enconman.2018.08.102
10.1016/j.enconman.2020.113199
10.1016/j.apenergy.2017.12.040
10.1016/j.energy.2019.07.136
10.1109/4235.797969
10.1016/j.apenergy.2014.08.111
10.1109/TSTE.2012.2184840
10.1016/j.energy.2020.118472
10.1109/CEC.2001.934438
10.1016/j.renene.2019.11.015
10.1016/j.ijepes.2015.07.007
10.1016/j.renene.2018.02.021
10.1016/j.energy.2019.03.046
10.1016/j.rser.2014.05.079
10.1016/j.solener.2016.08.027
10.1016/j.renene.2019.09.099
10.1016/j.epsr.2020.106497
10.1016/j.energy.2019.03.131
10.1016/j.energy.2017.11.053
10.1016/j.enconman.2019.04.064
10.1162/EVCO_a_00009
10.1016/j.energy.2019.116754
10.1016/j.energy.2018.09.087
10.1016/j.energy.2016.09.007
10.1016/j.ijhydene.2016.06.243
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 1, 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2020.113779
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2020_113779
S0196890420313029
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c439t-48e43bee34bcf97e7b387111c8677e0bd3d173452a170b381bf6735092e7cb9a3
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614050500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Thu Oct 02 10:26:52 EDT 2025
Sat Nov 01 14:31:22 EDT 2025
Sat Nov 29 07:22:47 EST 2025
Tue Nov 18 22:14:58 EST 2025
Fri Feb 23 02:48:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Capacity optimization
Operation characteristics
Quantitative techno-economic comparison
Multi-objective evolutionary algorithm
Energy storage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-48e43bee34bcf97e7b387111c8677e0bd3d173452a170b381bf6735092e7cb9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2492706692
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2511178228
proquest_journals_2492706692
crossref_citationtrail_10_1016_j_enconman_2020_113779
crossref_primary_10_1016_j_enconman_2020_113779
elsevier_sciencedirect_doi_10_1016_j_enconman_2020_113779
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Ciupageanu, Barelli, Lazaroiu (b0020) 2020; 187
Ghaffari, Askarzadeh (b0195) 2020; 193
Sanajaoba Singh, Fernandez (b0120) 2018; 143
Bleuler S, Brack M, Thiele L, Zitzler E. Multiobjective genetic programming: reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1;2001. p. 536–543.
JA Solar Energy Co., Ltd., JAP60S01-(260-280) SC series technical parameters.
Muhsen, Nabil, Haider, Khatib (b0025) 2019; 174
Kaabeche, Bakelli (b0075) 2019; 193
Ghorbani, Kasaeian, Toopshekan (b0100) 2018; 154
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97.
Wang R, Xiong J, He Mf, et al. Multi-objective optimal design of hybrid renewable energy system under multiple scenarios. Renewable Energy 2020;151:226–237.
Kamjoo, Maheri, Dizqah, Putrus (b0085) 2016; 74
Rhodes, Cole, Upshaw (b0180) 2014; 135
Guo, He, Pei (b0030) 2020; 195
Katsigiannis, Georgilakis, Karapidakis (b0115) 2012; 3
Lin, Ma, Shahzad Javed (b0130) 2020; 222
Lamedica, Santini, Ruvio (b0090) 2018; 165
Coello Coello CA, Lechuga MS. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2; 2002. p. 1051–1056.
Ma, Yang, Lu (b0035) 2015; 160
Ould Amrouche, Rekioua, Rekioua (b0055) 2016; 41
Javed, Song, Ma (b0040) 2019; 176
Rajkumar, Ramachandaramurthy, Yong (b0095) 2011; 36
Wang, Li, Ming (b0065) 2017; 141
Ermolenko, Ermolenko, Fetisova (b0005) 2017; 137
Xinjiang Goldwind Sci & Tech Co., Ltd., GW82-1500kW wind turbine technical parameters.
Chauhan, Saini (b0050) 2014; 38
Ciupăgeanu, Lăzăroiu, Barelli (b0125) 2019; 185
Zhang, Maleki, Rosen (b0110) 2019; 180
Mayer, Szilágyi, Gróf (b0080) 2020; 269
Baghaee, Mirsalim, Gharehpetian (b0045) 2016; 115
Xu, Hu, Cao (b0145) 2020; 147
Jacob, Banerjee, Ghosh (b0010) 2018; 212
Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 1999;3(4):257–71.
Barelli, Ciupageanu, Ottaviano (b0015) 2020; 31
Bader, Zitzler (b0175) 2011; 19
Zhang, Hui (b0155) 2007; 11
National Renewable Energy Laboratory, System Advisor Model (SAM 2020.2.29).
Li, Guo, Yang (b0060) 2020; 209
Guangqian, Bekhrad, Azarikhah (b0105) 2018; 122
Petrollese, Cocco (b0135) 2016; 137
Rhodes (10.1016/j.enconman.2020.113779_b0180) 2014; 135
Bader (10.1016/j.enconman.2020.113779_b0175) 2011; 19
Kaabeche (10.1016/j.enconman.2020.113779_b0075) 2019; 193
Ghaffari (10.1016/j.enconman.2020.113779_b0195) 2020; 193
Katsigiannis (10.1016/j.enconman.2020.113779_b0115) 2012; 3
Wang (10.1016/j.enconman.2020.113779_b0065) 2017; 141
Barelli (10.1016/j.enconman.2020.113779_b0015) 2020; 31
Ghorbani (10.1016/j.enconman.2020.113779_b0100) 2018; 154
Guangqian (10.1016/j.enconman.2020.113779_b0105) 2018; 122
10.1016/j.enconman.2020.113779_b0170
10.1016/j.enconman.2020.113779_b0150
Chauhan (10.1016/j.enconman.2020.113779_b0050) 2014; 38
Xu (10.1016/j.enconman.2020.113779_b0145) 2020; 147
Kamjoo (10.1016/j.enconman.2020.113779_b0085) 2016; 74
Ermolenko (10.1016/j.enconman.2020.113779_b0005) 2017; 137
Ma (10.1016/j.enconman.2020.113779_b0035) 2015; 160
Javed (10.1016/j.enconman.2020.113779_b0040) 2019; 176
Ciupăgeanu (10.1016/j.enconman.2020.113779_b0125) 2019; 185
Li (10.1016/j.enconman.2020.113779_b0060) 2020; 209
Mayer (10.1016/j.enconman.2020.113779_b0080) 2020; 269
Sanajaoba Singh (10.1016/j.enconman.2020.113779_b0120) 2018; 143
10.1016/j.enconman.2020.113779_b0190
10.1016/j.enconman.2020.113779_b0070
Lamedica (10.1016/j.enconman.2020.113779_b0090) 2018; 165
Lin (10.1016/j.enconman.2020.113779_b0130) 2020; 222
Baghaee (10.1016/j.enconman.2020.113779_b0045) 2016; 115
Jacob (10.1016/j.enconman.2020.113779_b0010) 2018; 212
Ould Amrouche (10.1016/j.enconman.2020.113779_b0055) 2016; 41
Zhang (10.1016/j.enconman.2020.113779_b0110) 2019; 180
Ciupageanu (10.1016/j.enconman.2020.113779_b0020) 2020; 187
Rajkumar (10.1016/j.enconman.2020.113779_b0095) 2011; 36
10.1016/j.enconman.2020.113779_b0160
Muhsen (10.1016/j.enconman.2020.113779_b0025) 2019; 174
10.1016/j.enconman.2020.113779_b0140
Guo (10.1016/j.enconman.2020.113779_b0030) 2020; 195
10.1016/j.enconman.2020.113779_b0185
10.1016/j.enconman.2020.113779_b0165
Petrollese (10.1016/j.enconman.2020.113779_b0135) 2016; 137
Zhang (10.1016/j.enconman.2020.113779_b0155) 2007; 11
References_xml – volume: 176
  start-page: 704
  year: 2019
  end-page: 717
  ident: b0040
  article-title: Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm
  publication-title: Energy
– volume: 185
  start-page: 1183
  year: 2019
  end-page: 1196
  ident: b0125
  article-title: Wind energy integration: Variability analysis and power system impact assessment
  publication-title: Energy
– volume: 74
  start-page: 187
  year: 2016
  end-page: 194
  ident: b0085
  article-title: Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming
  publication-title: Int J Electr Power Energy Syst
– volume: 115
  start-page: 1022
  year: 2016
  end-page: 1041
  ident: b0045
  article-title: Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system
  publication-title: Energy
– volume: 137
  start-page: 477
  year: 2016
  end-page: 489
  ident: b0135
  article-title: Optimal design of a hybrid CSP-PV plant for achieving the full dispatchability of solar energy power plants
  publication-title: Sol Energy
– reference: Coello Coello CA, Lechuga MS. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2; 2002. p. 1051–1056.
– volume: 212
  start-page: 640
  year: 2018
  end-page: 653
  ident: b0010
  article-title: Sizing of hybrid energy storage system for a PV based microgrid through design space approach
  publication-title: Appl Energy
– reference: Wang R, Xiong J, He Mf, et al. Multi-objective optimal design of hybrid renewable energy system under multiple scenarios. Renewable Energy 2020;151:226–237.
– volume: 122
  start-page: 551
  year: 2018
  end-page: 560
  ident: b0105
  article-title: A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems
  publication-title: Renewable Energy
– volume: 36
  start-page: 5148
  year: 2011
  end-page: 5153
  ident: b0095
  article-title: Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy
  publication-title: Energy
– volume: 3
  start-page: 330
  year: 2012
  end-page: 338
  ident: b0115
  article-title: Hybrid simulated annealing–Tabu search method for optimal sizing of autonomous power systems with renewables
  publication-title: IEEE Trans Sustain Energy
– volume: 135
  start-page: 461
  year: 2014
  end-page: 471
  ident: b0180
  article-title: Clustering analysis of residential electricity demand profiles
  publication-title: Appl Energy
– reference: Bleuler S, Brack M, Thiele L, Zitzler E. Multiobjective genetic programming: reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1;2001. p. 536–543.
– volume: 195
  start-page: 138
  year: 2020
  end-page: 149
  ident: b0030
  article-title: The multi-objective capacity optimization of wind-photovoltaic-thermal energy storage hybrid power system with electric heater
  publication-title: Sol Energy
– volume: 141
  start-page: 2288
  year: 2017
  end-page: 2299
  ident: b0065
  article-title: An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system
  publication-title: Energy
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b0175
  article-title: HypE: an algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol Comput
– volume: 147
  start-page: 1418
  year: 2020
  end-page: 1431
  ident: b0145
  article-title: Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system
  publication-title: Renewable Energy
– volume: 193
  start-page: 116754
  year: 2020
  ident: b0195
  article-title: Design optimization of a hybrid system subject to reliability level and renewable energy penetration
  publication-title: Energy
– volume: 222
  start-page: 113199
  year: 2020
  ident: b0130
  article-title: Prefeasibility study of a distributed photovoltaic system with pumped hydro storage for residential buildings
  publication-title: Energy Convers Manage
– reference: Xinjiang Goldwind Sci & Tech Co., Ltd., GW82-1500kW wind turbine technical parameters.
– volume: 187
  start-page: 106497
  year: 2020
  ident: b0020
  article-title: Real-time stochastic power management strategies in hybrid renewable energy systems: A review of key applications and perspectives
  publication-title: Electr Power Syst Res
– volume: 41
  start-page: 20914
  year: 2016
  end-page: 20927
  ident: b0055
  article-title: Overview of energy storage in renewable energy systems
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 99
  year: 2014
  end-page: 120
  ident: b0050
  article-title: A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control
  publication-title: Renew Sustain Energy Rev
– volume: 154
  start-page: 581
  year: 2018
  end-page: 591
  ident: b0100
  article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability
  publication-title: Energy
– reference: Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 1999;3(4):257–71.
– reference: Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97.
– volume: 269
  start-page: 115058
  year: 2020
  ident: b0080
  article-title: Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm
  publication-title: Appl Energy
– volume: 160
  start-page: 728
  year: 2015
  end-page: 736
  ident: b0035
  article-title: Optimal design of an autonomous solar–wind-pumped storage power supply system
  publication-title: Appl Energy
– volume: 174
  start-page: 1158
  year: 2019
  end-page: 1175
  ident: b0025
  article-title: A novel method for sizing of standalone photovoltaic system using multi-objective differential evolution algorithm and hybrid multi-criteria decision making methods
  publication-title: Energy
– volume: 143
  start-page: 719
  year: 2018
  end-page: 731
  ident: b0120
  article-title: Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system
  publication-title: Energy
– reference: National Renewable Energy Laboratory, System Advisor Model (SAM 2020.2.29).
– volume: 31
  start-page: 101650
  year: 2020
  ident: b0015
  article-title: Stochastic power management strategy for hybrid energy storage systems to enhance large scale wind energy integration
  publication-title: J Storage Mater
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0155
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
– volume: 209
  start-page: 118472
  year: 2020
  ident: b0060
  article-title: Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming
  publication-title: Energy
– volume: 193
  start-page: 162
  year: 2019
  end-page: 175
  ident: b0075
  article-title: Renewable hybrid system size optimization considering various electrochemical energy storage technologies
  publication-title: Energy Convers Manage
– volume: 180
  start-page: 609
  year: 2019
  end-page: 621
  ident: b0110
  article-title: Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm
  publication-title: Energy Convers Manage
– volume: 137
  start-page: 1001
  year: 2017
  end-page: 1012
  ident: b0005
  article-title: Wind and solar PV technical potentials: Measurement methodology and assessments for Russia
  publication-title: Energy
– volume: 165
  start-page: 385
  year: 2018
  end-page: 398
  ident: b0090
  article-title: A MILP methodology to optimize sizing of PV - Wind renewable energy systems
  publication-title: Energy
– reference: JA Solar Energy Co., Ltd., JAP60S01-(260-280) SC series technical parameters.
– ident: 10.1016/j.enconman.2020.113779_b0150
  doi: 10.1109/4235.996017
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.enconman.2020.113779_b0155
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 160
  start-page: 728
  year: 2015
  ident: 10.1016/j.enconman.2020.113779_b0035
  article-title: Optimal design of an autonomous solar–wind-pumped storage power supply system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.11.026
– ident: 10.1016/j.enconman.2020.113779_b0160
  doi: 10.1109/CEC.2002.1004388
– volume: 195
  start-page: 138
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0030
  article-title: The multi-objective capacity optimization of wind-photovoltaic-thermal energy storage hybrid power system with electric heater
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.11.063
– volume: 269
  start-page: 115058
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0080
  article-title: Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115058
– volume: 31
  start-page: 101650
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0015
  article-title: Stochastic power management strategy for hybrid energy storage systems to enhance large scale wind energy integration
  publication-title: J Storage Mater
– ident: 10.1016/j.enconman.2020.113779_b0185
– volume: 137
  start-page: 1001
  year: 2017
  ident: 10.1016/j.enconman.2020.113779_b0005
  article-title: Wind and solar PV technical potentials: Measurement methodology and assessments for Russia
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.050
– volume: 36
  start-page: 5148
  issue: 8
  year: 2011
  ident: 10.1016/j.enconman.2020.113779_b0095
  article-title: Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy
  publication-title: Energy
  doi: 10.1016/j.energy.2011.06.017
– volume: 141
  start-page: 2288
  year: 2017
  ident: 10.1016/j.enconman.2020.113779_b0065
  article-title: An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.085
– volume: 154
  start-page: 581
  year: 2018
  ident: 10.1016/j.enconman.2020.113779_b0100
  article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.057
– volume: 180
  start-page: 609
  year: 2019
  ident: 10.1016/j.enconman.2020.113779_b0110
  article-title: Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.08.102
– volume: 222
  start-page: 113199
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0130
  article-title: Prefeasibility study of a distributed photovoltaic system with pumped hydro storage for residential buildings
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.113199
– volume: 212
  start-page: 640
  year: 2018
  ident: 10.1016/j.enconman.2020.113779_b0010
  article-title: Sizing of hybrid energy storage system for a PV based microgrid through design space approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.040
– volume: 185
  start-page: 1183
  year: 2019
  ident: 10.1016/j.enconman.2020.113779_b0125
  article-title: Wind energy integration: Variability analysis and power system impact assessment
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.136
– ident: 10.1016/j.enconman.2020.113779_b0165
  doi: 10.1109/4235.797969
– volume: 135
  start-page: 461
  year: 2014
  ident: 10.1016/j.enconman.2020.113779_b0180
  article-title: Clustering analysis of residential electricity demand profiles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.111
– volume: 3
  start-page: 330
  issue: 3
  year: 2012
  ident: 10.1016/j.enconman.2020.113779_b0115
  article-title: Hybrid simulated annealing–Tabu search method for optimal sizing of autonomous power systems with renewables
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2012.2184840
– volume: 209
  start-page: 118472
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0060
  article-title: Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118472
– ident: 10.1016/j.enconman.2020.113779_b0170
  doi: 10.1109/CEC.2001.934438
– ident: 10.1016/j.enconman.2020.113779_b0070
  doi: 10.1016/j.renene.2019.11.015
– volume: 74
  start-page: 187
  year: 2016
  ident: 10.1016/j.enconman.2020.113779_b0085
  article-title: Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.07.007
– volume: 122
  start-page: 551
  year: 2018
  ident: 10.1016/j.enconman.2020.113779_b0105
  article-title: A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.02.021
– ident: 10.1016/j.enconman.2020.113779_b0140
– volume: 174
  start-page: 1158
  year: 2019
  ident: 10.1016/j.enconman.2020.113779_b0025
  article-title: A novel method for sizing of standalone photovoltaic system using multi-objective differential evolution algorithm and hybrid multi-criteria decision making methods
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.046
– volume: 38
  start-page: 99
  year: 2014
  ident: 10.1016/j.enconman.2020.113779_b0050
  article-title: A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.079
– volume: 137
  start-page: 477
  year: 2016
  ident: 10.1016/j.enconman.2020.113779_b0135
  article-title: Optimal design of a hybrid CSP-PV plant for achieving the full dispatchability of solar energy power plants
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.08.027
– volume: 147
  start-page: 1418
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0145
  article-title: Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.09.099
– ident: 10.1016/j.enconman.2020.113779_b0190
– volume: 187
  start-page: 106497
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0020
  article-title: Real-time stochastic power management strategies in hybrid renewable energy systems: A review of key applications and perspectives
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2020.106497
– volume: 176
  start-page: 704
  year: 2019
  ident: 10.1016/j.enconman.2020.113779_b0040
  article-title: Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.131
– volume: 143
  start-page: 719
  year: 2018
  ident: 10.1016/j.enconman.2020.113779_b0120
  article-title: Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.053
– volume: 193
  start-page: 162
  year: 2019
  ident: 10.1016/j.enconman.2020.113779_b0075
  article-title: Renewable hybrid system size optimization considering various electrochemical energy storage technologies
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.04.064
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.enconman.2020.113779_b0175
  article-title: HypE: an algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol Comput
  doi: 10.1162/EVCO_a_00009
– volume: 193
  start-page: 116754
  year: 2020
  ident: 10.1016/j.enconman.2020.113779_b0195
  article-title: Design optimization of a hybrid system subject to reliability level and renewable energy penetration
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116754
– volume: 165
  start-page: 385
  year: 2018
  ident: 10.1016/j.enconman.2020.113779_b0090
  article-title: A MILP methodology to optimize sizing of PV - Wind renewable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.087
– volume: 115
  start-page: 1022
  year: 2016
  ident: 10.1016/j.enconman.2020.113779_b0045
  article-title: Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.007
– volume: 41
  start-page: 20914
  year: 2016
  ident: 10.1016/j.enconman.2020.113779_b0055
  article-title: Overview of energy storage in renewable energy systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.06.243
SSID ssj0003506
Score 2.6360009
Snippet •Quantitative techno-economic comparisons of energy storages are conducted.•Operation characteristics of devices are considered in capacity...
To provide investors with a selection method of energy storage technology, this paper proposes a quantitative techno-economic comparison method of battery,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113779
SubjectTerms accuracy
administrative management
Algorithms
batteries
Capacity optimization
Cost analysis
cost effectiveness
degradation
Economics
energy conversion
Energy management
Energy storage
Evolutionary algorithms
Genetic algorithms
Hybrid systems
hybrids
hydrogen
Hydrogen storage
Hydrogen-based energy
Model accuracy
Multi-objective evolutionary algorithm
Multiple objective analysis
Operation characteristics
Optimization
Particle swarm optimization
Performance assessment
Photovoltaics
probability
Quantitative techno-economic comparison
Reliability
sorting
Sorting algorithms
storage
supply
Thermal energy
Wind
Title The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies
URI https://dx.doi.org/10.1016/j.enconman.2020.113779
https://www.proquest.com/docview/2492706692
https://www.proquest.com/docview/2511178228
Volume 229
WOSCitedRecordID wos000614050500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgk4ICggAgUtEuISbfB7vccKpSqoChxSEU4re7MpjYrtNnYJP4tfxF9h9uWYtFA4cLGi9TP6Ps_Ojr-ZQeglpbknAymJhNeJRIkvSQYTPQkjLxIxEMQL5rrZBB2P0-mUfej1frhcmItTWhTpasWq_wo1jAHYKnX2H-BuLwoD8BtAhy3ADtu_Bv6syQqdPaZ0QbpMa0mkTUG2snOlIjL1mbWmkJT5wti-gYD5U2ilBpiTLzZPUzmVX2H9TqrPZV2CTaszVR37m0r4GlSq1ZotCq107LoFqIpBuPYr9UCaHEOlxVQqodpF9J2G0X0cMIdpLbwO5JknvKTROdBx2E8nrXyoKY3GaB0ILxvNUKD_qh39qMcAruNutCPwnUDaheBcGo6zfGvtk46OsoSkzPQzHkpj0VPKiEr47Zr8wEZZjNH2r5xKTFRjMVT1RAv4n0N4HN0Ch5ruN7_W7h6_5_tHh4d8MppOXlVnRLU1U5__bY-XG2g7oDEDs7u993Y0fdc6C2Gs27-2T95JYr_61r_znzY8Ce0eTe6hu3Zdg_cMH--jnix20C2X9r7cQXc6lS8foO_AUtxlKd5gKe6wFAMH8AZLsWMp7rIUl3N8iaXYsBRrlmLDUtxhKW5Zig1LsWUp7rL0ITraH03eHBDbPYQIcLJrEqUyCnMpwygXc0YlzcOUwswuVAVH6eWzcObTMIqDzKce7PPzeUIBDhZIKnKWhY_QVlEW8jHCiZjDyjpgcejlUQQwwqQczhIpwFcWQsR9FDtMuLCl9VWHl1PuNJQL7rDkCktusOyj1-15lSkuc-0ZzEHOrYtsXF8OtL323F3HEW7t1ZKrgqEUlh0s6KMX7W6YYtR3w6yQZQPHwKLMVyuJ9MmfL_EU3V6_s7toqz5v5DN0U1zUJ8vz55b6PwEz6v_V
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+quantitative+techno-economic+comparisons+and+multi-objective+capacity+optimization+of+wind-photovoltaic+hybrid+power+system+considering+different+energy+storage+technologies&rft.jtitle=Energy+conversion+and+management&rft.au=He%2C+Yi&rft.au=Guo%2C+Su&rft.au=Zhou%2C+Jianxu&rft.au=Wu%2C+Feng&rft.date=2021-02-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=229&rft.spage=1&rft_id=info:doi/10.1016%2Fj.enconman.2020.113779&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon