Sparse anchoring guided high-resolution capsule network for geospatial object detection from remote sensing imagery

[Display omitted] •High-resolution capsule network for semantically strong and spatially accurate feature extraction.•Capsule-based efficient self-attention module for feature quality and robustness promotion.•Sparse anchoring network for lightweight, high-quality region proposal generation.•Oriente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied earth observation and geoinformation Jg. 104; S. 102548
Hauptverfasser: Yu, Yongtao, Wang, Jun, Qiang, Hao, Jiang, Mingxin, Tang, E, Yu, Changhui, Zhang, Yongjun, Li, Jonathan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.12.2021
Elsevier
Schlagworte:
ISSN:1569-8432, 1872-826X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •High-resolution capsule network for semantically strong and spatially accurate feature extraction.•Capsule-based efficient self-attention module for feature quality and robustness promotion.•Sparse anchoring network for lightweight, high-quality region proposal generation.•Oriented region proposal generation for arbitrarily-oriented geospatial object detection. As the optical remote sensing techniques keep developing with a rapid pace, remote sensing images are positively considered in many fields. Accordingly, a great number of algorithms have been exploited for remote sensing image interpretation purposes. Thereinto, object recognition acts as an important ingredient to many applications. However, to achieve highly accurate object recognition is still challengeable caused by the orientation and size diversities, spatial distribution and density variations, shape and aspect ratio irregularities, occlusion and shadow impacts, as well as complex texture and surrounding environment changes. In this paper, a sparse anchoring guided high-resolution capsule network (SAHR-CapsNet) is proposed for geospatial object detection based on remote sensing images. First, formulated with the multibranch high-resolution capsule network architecture assisted by multiscale feature propagation and fusion, the SAHR-CapsNet can extract semantically strong and spatially accurate feature semantics at multiple scales. Second, integrated with the efficient capsule-based self-attention module, the SAHR-CapsNet functions promisingly to attend to target-specific spatial features and informative channel features. Finally, adopted with the capsule-based sparse anchoring network, the SAHR-CapsNet performs efficiently in generating a fixed number of lightweight, high-quality sparse region proposals. Quantitative assessments and comparative analyses on two challenging remote sensing image datasets demonstrate the applicability and effectiveness of the developed SAHR-CapsNet for geospatial object detection applications.
AbstractList As the optical remote sensing techniques keep developing with a rapid pace, remote sensing images are positively considered in many fields. Accordingly, a great number of algorithms have been exploited for remote sensing image interpretation purposes. Thereinto, object recognition acts as an important ingredient to many applications. However, to achieve highly accurate object recognition is still challengeable caused by the orientation and size diversities, spatial distribution and density variations, shape and aspect ratio irregularities, occlusion and shadow impacts, as well as complex texture and surrounding environment changes. In this paper, a sparse anchoring guided high-resolution capsule network (SAHR-CapsNet) is proposed for geospatial object detection based on remote sensing images. First, formulated with the multibranch high-resolution capsule network architecture assisted by multiscale feature propagation and fusion, the SAHR-CapsNet can extract semantically strong and spatially accurate feature semantics at multiple scales. Second, integrated with the efficient capsule-based self-attention module, the SAHR-CapsNet functions promisingly to attend to target-specific spatial features and informative channel features. Finally, adopted with the capsule-based sparse anchoring network, the SAHR-CapsNet performs efficiently in generating a fixed number of lightweight, high-quality sparse region proposals. Quantitative assessments and comparative analyses on two challenging remote sensing image datasets demonstrate the applicability and effectiveness of the developed SAHR-CapsNet for geospatial object detection applications.
[Display omitted] •High-resolution capsule network for semantically strong and spatially accurate feature extraction.•Capsule-based efficient self-attention module for feature quality and robustness promotion.•Sparse anchoring network for lightweight, high-quality region proposal generation.•Oriented region proposal generation for arbitrarily-oriented geospatial object detection. As the optical remote sensing techniques keep developing with a rapid pace, remote sensing images are positively considered in many fields. Accordingly, a great number of algorithms have been exploited for remote sensing image interpretation purposes. Thereinto, object recognition acts as an important ingredient to many applications. However, to achieve highly accurate object recognition is still challengeable caused by the orientation and size diversities, spatial distribution and density variations, shape and aspect ratio irregularities, occlusion and shadow impacts, as well as complex texture and surrounding environment changes. In this paper, a sparse anchoring guided high-resolution capsule network (SAHR-CapsNet) is proposed for geospatial object detection based on remote sensing images. First, formulated with the multibranch high-resolution capsule network architecture assisted by multiscale feature propagation and fusion, the SAHR-CapsNet can extract semantically strong and spatially accurate feature semantics at multiple scales. Second, integrated with the efficient capsule-based self-attention module, the SAHR-CapsNet functions promisingly to attend to target-specific spatial features and informative channel features. Finally, adopted with the capsule-based sparse anchoring network, the SAHR-CapsNet performs efficiently in generating a fixed number of lightweight, high-quality sparse region proposals. Quantitative assessments and comparative analyses on two challenging remote sensing image datasets demonstrate the applicability and effectiveness of the developed SAHR-CapsNet for geospatial object detection applications.
ArticleNumber 102548
Author Tang, E
Zhang, Yongjun
Jiang, Mingxin
Yu, Changhui
Wang, Jun
Qiang, Hao
Yu, Yongtao
Li, Jonathan
Author_xml – sequence: 1
  givenname: Yongtao
  orcidid: 0000-0001-7204-9346
  surname: Yu
  fullname: Yu, Yongtao
  email: allennessy@hyit.edu.cn
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, JS 223003, China
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, JS 223003, China
– sequence: 3
  givenname: Hao
  surname: Qiang
  fullname: Qiang, Hao
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, JS 223003, China
– sequence: 4
  givenname: Mingxin
  surname: Jiang
  fullname: Jiang, Mingxin
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, JS 223003, China
– sequence: 5
  givenname: E
  surname: Tang
  fullname: Tang, E
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, JS 223003, China
– sequence: 6
  givenname: Changhui
  surname: Yu
  fullname: Yu, Changhui
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, JS 223003, China
– sequence: 7
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
  organization: Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, JS 223003, China
– sequence: 8
  givenname: Jonathan
  surname: Li
  fullname: Li, Jonathan
  organization: Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L3G1, Canada
BookMark eNp9Uctu1TAUtFCRaAsfwM5LNrnYjmM7YoUqHpUqsShI7KxznZNch9w42A5V_x6HIBYsujkPa2aOPHNFLuYwIyGvOTtwxtXb8TDCcBBM8LKLRppn5JIbLSoj1PeLMjeqrYysxQtyldLIGNdamUuS7heICSnM7hSinwc6rL7Djp78cKoipjCt2YeZOljSOiGdMT-E-IP2IdIBQ1oge5hoOI7oMu0wl7bh-xjONOI5ZKQJ57RJ-zMMGB9fkuc9TAlf_e3X5NvHD19vPld3Xz7d3ry_q5ys21xJI41ALgSDUsApA0LzrpcGUDAUUh5lixygbXmreqgb0ZvWdU2NzbE4UV-T2123CzDaJZbz8dEG8PbPQ4iDhZi9m9CaFnQDioNzKI_Qmdp1mmnWA3eMO1e03uxaSww_V0zZnn1yOE0wY1iTFUo3jamFUgXKd6iLIaWI_b_TnNktLDvaEpbdwrJ7WIWj_-M4n2EzMkfw05PMdzsTi5O_PEabnMfZYedjiaJ81T_B_g2jw7LI
CitedBy_id crossref_primary_10_1007_s11042_024_20499_y
crossref_primary_10_1109_JSTARS_2022_3176141
Cites_doi 10.1016/j.isprsjprs.2018.02.014
10.1109/CVPR.2019.01098
10.3390/rs13010073
10.1109/TGRS.2020.3043252
10.3390/rs12152501
10.1109/LGRS.2019.2936173
10.1016/j.isprsjprs.2021.02.008
10.1109/JSTARS.2019.2919382
10.1109/TGRS.2019.2895362
10.1016/j.isprsjprs.2020.01.025
10.1016/j.isprsjprs.2020.12.015
10.1109/LGRS.2018.2888887
10.1016/j.isprsjprs.2019.04.015
10.1109/TGRS.2020.3002850
10.1109/LGRS.2020.2967819
10.1016/j.isprsjprs.2018.08.014
10.1109/CVPR.2018.00813
10.1109/TGRS.2020.2991407
10.3390/rs12172734
10.1109/TGRS.2020.3042506
10.1016/j.isprsjprs.2020.04.019
10.1016/j.isprsjprs.2019.12.001
10.3390/rs13071318
10.1109/TGRS.2019.2963243
10.1109/LGRS.2019.2935230
10.1109/LGRS.2020.2975541
10.1109/LGRS.2019.2912582
10.1109/CVPR.2018.00418
10.1109/LGRS.2020.3040308
10.3390/rs12193152
10.1016/j.isprsjprs.2021.03.008
10.1016/j.isprsjprs.2016.03.014
10.1109/TGRS.2021.3069056
10.1109/ICCV.2017.324
10.1109/LGRS.2020.2981420
10.1016/j.isprsjprs.2020.11.009
10.3390/rs12193225
10.1109/TGRS.2021.3092433
10.3390/rs12244027
10.1109/TPAMI.2020.2983686
10.1109/LGRS.2020.2991405
10.1109/CVPR.2019.00584
10.1109/LGRS.2020.3022512
10.3390/rs12182866
10.3390/rs12193140
10.1016/j.isprsjprs.2019.11.023
10.1109/ACCESS.2020.3024720
10.1109/ACCESS.2020.2964540
10.1109/TGRS.2020.2968802
10.1109/ICCV.2015.169
10.1109/LGRS.2019.2930462
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2021.102548
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_89a75a61acce4bad83cd7070fa1c01cc
10_1016_j_jag_2021_102548
S0303243421002555
GroupedDBID 4.4
5GY
6I.
AAFTH
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
BKOJK
BLECG
EBS
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
29J
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
AITUG
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFJIC
EFKBS
EJD
R2-
7S9
L.6
ID FETCH-LOGICAL-c439t-48482e1220a122ac68a271df48ae20e244b49e1aa99196fa352f89cd53e5b2023
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704640900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1569-8432
IngestDate Fri Oct 03 12:45:56 EDT 2025
Sun Sep 28 08:50:35 EDT 2025
Tue Nov 18 22:37:01 EST 2025
Sat Nov 29 07:19:17 EST 2025
Fri Feb 23 02:39:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Region proposal
Object recognition
Capsule network
Capsule attention
Sparse anchoring
Remote sensing imagery
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-48482e1220a122ac68a271df48ae20e244b49e1aa99196fa352f89cd53e5b2023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7204-9346
OpenAccessLink https://doaj.org/article/89a75a61acce4bad83cd7070fa1c01cc
PQID 2675583266
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_89a75a61acce4bad83cd7070fa1c01cc
proquest_miscellaneous_2675583266
crossref_primary_10_1016_j_jag_2021_102548
crossref_citationtrail_10_1016_j_jag_2021_102548
elsevier_sciencedirect_doi_10_1016_j_jag_2021_102548
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhang, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B., 2021b. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell., early access, doi: 10.1109/TPAMI.2020.2983686.
Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R., 2019. DeepCaps: Going deeper with capsule networks. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., Long Beach, USA, pp. 10725-10733.
Rezatofighi, Tsoi, Gwak, Sadeghian, Reid, Savarese (b0125) 2019
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proc. IEEE Int. Conf. Comput. Vis., Venice, Italy, pp. 2999-3007.
Nie, Duan, Ding, Hu, Wong (b0105) 2020; 8
Liu, S., Zhang, L., Lu, H., He, Y., 2021b. Center-boundary dual attention for oriented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2021.3069056.
Cheng, Han (b0015) 2016; 117
Fang, Ren, Sun, Marshall, Han, Zhao (b0030) 2020; 12
Yu, Gu, Guan, Li, Jin (b0245) 2019; 16
Girshick, R., 2015. Fast R-CNN. In: Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, pp. 1440-1448.
Ren, Yu, Guan (b0120) 2020; 12
Yang, Y., Tang, X., Cheung, Y.M., Zhang, X., Liu, F., Ma, J., Jiao, L., 2021. AR2Det: An accurate and real-time rotational one-stage ship detector in remote sensing images. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2021.3092433.
Jin, Lin (b0060) 2020; 17
Chen, Wan, Zhu, Xu, Deng (b0010) 2020; 17
Sabour, S., Frosst, N., Hinton, G.E., 2017. Dynamic routing between capsules. In: Proc. Conf. Neural Inform. Process. Syst., Long Beach, USA, pp. 1-11.
Shi, G., Zhang, J., Liu, J., Zhang, C., Zhou, C., Yang, S., 2021. Global context-augmented objection detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2020.3043252.
Xu, Li, Cui, Zhang, Yang (b0215) 2020; 58
Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog., Salt Lake City, USA, pp. 7794-7803.
Shin, Kim, Kim, Kim (b0150) 2020; 12
Chen, Lin, Xiang, Pan (b0005) 2020; 17
Fu, Chang, Zhang, Xu, Zhang, Sun (b0035) 2020; 161
Pham, Courtrai, Friguet, Lefèvre, Baussard (b0110) 2020; 12
Xu, Somers (b0220) 2021; 171
Courtrai, Pham, Lefèvre (b0025) 2020; 12
Hou, Zhu, Yin (b0045) 2021; 13
Li, Mou, Xu, Zhang, Zhu (b0070) 2019; 57
Yao, Hu, Lei (b0235) 2021; 18
Wang, J., Wang, Y., Wu, Y., Zhang, K., Wang, Q., 2021c. FRPNet: A feature-reflowing pyramid network for object detection of remote sensing images. IEEE Geosci. Remote Sens. Lett., early access, doi: 10.1109/LGRS.2020.3040308.
Zhong, Han, Zhang (b0270) 2018; 138
Wang, X., Li, G., Plaza, A., He, Y., 2021a. Ship detection in SAR images via enhanced nonnegative sparse locality-representation of fisher vectors. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2020.3042506.
Xia, G.S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., Salt Lake City, USA, pp. 3974-3983.
Jiang, Liu, Zhang, Liu, Li, Lin (b0055) 2021; 18
Rishikeshan, Ramesh (b0130) 2018; 146
Lu, Zhong, Zheng, Zhang (b0095) 2021; 175
Sun, Wang, Wang, Liu, Fu (b0155) 2021; 173
Zhang, Shao, Huang, Wang, Li (b0260) 2020; 12
Yu, Guan, Li, Gu, Tang, Li (b0250) 2020; 160
Zhang, He, Chen, Jing, Wang (b0255) 2019; 16
Li, Wan, Cheng, Meng, Han (b0075) 2020; 159
Lei, Luo, Fang, Wang, Gu (b0065) 2020; 58
Sagan, Maimaitijiang, Bhadra, Maimaitiyiming, Brown, Sidike, Fritschi (b0140) 2021; 174
Xu, Q., Chen, K., Sun, X., Zhang, Y., Li, H., Xu, G., 2021a. Pseudo-Siamese capsule network for aerial remote sensing images change detection. IEEE Geosci. Remote Sens. Lett., early access, doi: 10.1109/LGRS.2020.3022512.
Wang, Sun, Xu, Ma, Yang, Wang (b0190) 2020; 8
Zheng, Zhong, Ma, Han, Zhao, Liu, Zhang (b0265) 2020; 166
Sun, K., Xiao, B., Liu, D., Wang, J., 2019. Deep high-resolution representation learning for human pose estimation. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog., Long Beach, USA, pp. 5693-5703.
Wang, Shi, Yang, Zhou, Wei, Li, Zhang (b0180) 2019; 12
Cheng, Si, Hong, Yao, Guo (b0020) 2021; 18
Ye, Xiong, Lu, Zhou, Qian (b0240) 2020; 12
Jiang, Yao, Wong, Li, Hong, Kuc, Tong (b0050) 2020; 13
Ma, Liu, Zhang, Ye, Yin, Johnson (b0100) 2019; 152
Xiao, Wang, Wan, Tan, Xu, Xia (b0205) 2021; 13
Liu, Xiang, Yang, Hu, Hong (b0085) 2021; 59
Tian, Kang, Xing, Li, Zhao, Fan, Zhang (b0165) 2021; 18
Yao, Feng, Han, Cheng, Guo (b0230) 2021; 59
Jiang (10.1016/j.jag.2021.102548_b0055) 2021; 18
Wang (10.1016/j.jag.2021.102548_b0180) 2019; 12
Lei (10.1016/j.jag.2021.102548_b0065) 2020; 58
Tian (10.1016/j.jag.2021.102548_b0165) 2021; 18
Chen (10.1016/j.jag.2021.102548_b0010) 2020; 17
Yu (10.1016/j.jag.2021.102548_b0245) 2019; 16
Zheng (10.1016/j.jag.2021.102548_b0265) 2020; 166
Fu (10.1016/j.jag.2021.102548_b0035) 2020; 161
Courtrai (10.1016/j.jag.2021.102548_b0025) 2020; 12
10.1016/j.jag.2021.102548_b0145
10.1016/j.jag.2021.102548_b0185
Lu (10.1016/j.jag.2021.102548_b0095) 2021; 175
10.1016/j.jag.2021.102548_b0225
Xu (10.1016/j.jag.2021.102548_b0220) 2021; 171
Jin (10.1016/j.jag.2021.102548_b0060) 2020; 17
Li (10.1016/j.jag.2021.102548_b0070) 2019; 57
Ren (10.1016/j.jag.2021.102548_b0120) 2020; 12
Chen (10.1016/j.jag.2021.102548_b0005) 2020; 17
Pham (10.1016/j.jag.2021.102548_b0110) 2020; 12
Rishikeshan (10.1016/j.jag.2021.102548_b0130) 2018; 146
Sagan (10.1016/j.jag.2021.102548_b0140) 2021; 174
Yao (10.1016/j.jag.2021.102548_b0230) 2021; 59
10.1016/j.jag.2021.102548_b0195
Li (10.1016/j.jag.2021.102548_b0075) 2020; 159
10.1016/j.jag.2021.102548_b0115
Rezatofighi (10.1016/j.jag.2021.102548_b0125) 2019
Liu (10.1016/j.jag.2021.102548_b0085) 2021; 59
10.1016/j.jag.2021.102548_b0160
10.1016/j.jag.2021.102548_b0080
10.1016/j.jag.2021.102548_b0200
Ye (10.1016/j.jag.2021.102548_b0240) 2020; 12
Jiang (10.1016/j.jag.2021.102548_b0050) 2020; 13
10.1016/j.jag.2021.102548_b0040
Hou (10.1016/j.jag.2021.102548_b0045) 2021; 13
Fang (10.1016/j.jag.2021.102548_b0030) 2020; 12
Zhang (10.1016/j.jag.2021.102548_b0260) 2020; 12
Ma (10.1016/j.jag.2021.102548_b0100) 2019; 152
Nie (10.1016/j.jag.2021.102548_b0105) 2020; 8
Cheng (10.1016/j.jag.2021.102548_b0015) 2016; 117
10.1016/j.jag.2021.102548_b0170
Wang (10.1016/j.jag.2021.102548_b0190) 2020; 8
Sun (10.1016/j.jag.2021.102548_b0155) 2021; 173
Shin (10.1016/j.jag.2021.102548_b0150) 2020; 12
10.1016/j.jag.2021.102548_b0090
Zhong (10.1016/j.jag.2021.102548_b0270) 2018; 138
Xu (10.1016/j.jag.2021.102548_b0215) 2020; 58
10.1016/j.jag.2021.102548_b0135
Xiao (10.1016/j.jag.2021.102548_b0205) 2021; 13
10.1016/j.jag.2021.102548_b0210
Zhang (10.1016/j.jag.2021.102548_b0255) 2019; 16
Yu (10.1016/j.jag.2021.102548_b0250) 2020; 160
10.1016/j.jag.2021.102548_b0175
Yao (10.1016/j.jag.2021.102548_b0235) 2021; 18
Cheng (10.1016/j.jag.2021.102548_b0020) 2021; 18
References_xml – reference: Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog., Salt Lake City, USA, pp. 7794-7803.
– reference: Xia, G.S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., Salt Lake City, USA, pp. 3974-3983.
– volume: 58
  start-page: 4353
  year: 2020
  end-page: 4364
  ident: b0215
  article-title: Hierarchical semantic propagation for object detection in remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 23
  year: 2021
  end-page: 27
  ident: b0235
  article-title: Multiscale convolutional neural networks for geospatial object detection in VHR satellite images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 8
  start-page: 9325
  year: 2020
  end-page: 9334
  ident: b0105
  article-title: Attention mask R-CNN for ship detection and segmentation from remote sensing images
  publication-title: IEEE Access
– reference: Xu, Q., Chen, K., Sun, X., Zhang, Y., Li, H., Xu, G., 2021a. Pseudo-Siamese capsule network for aerial remote sensing images change detection. IEEE Geosci. Remote Sens. Lett., early access, doi: 10.1109/LGRS.2020.3022512.
– volume: 16
  start-page: 864
  year: 2019
  end-page: 868
  ident: b0255
  article-title: Scale adaptive proposal network for object detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 18
  start-page: 602
  year: 2021
  end-page: 606
  ident: b0165
  article-title: Siamese graph embedding network for object detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 17
  start-page: 849
  year: 2020
  end-page: 853
  ident: b0005
  article-title: Detecting maneuvering target accurately based on a two-phase approach from remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 57
  start-page: 5028
  year: 2019
  end-page: 5042
  ident: b0070
  article-title: R
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Wang, J., Wang, Y., Wu, Y., Zhang, K., Wang, Q., 2021c. FRPNet: A feature-reflowing pyramid network for object detection of remote sensing images. IEEE Geosci. Remote Sens. Lett., early access, doi: 10.1109/LGRS.2020.3040308.
– volume: 12
  start-page: 3152
  year: 2020
  ident: b0025
  article-title: Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks
  publication-title: Remote Sens.
– volume: 173
  start-page: 50
  year: 2021
  end-page: 65
  ident: b0155
  article-title: PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Shi, G., Zhang, J., Liu, J., Zhang, C., Zhou, C., Yang, S., 2021. Global context-augmented objection detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2020.3043252.
– volume: 159
  start-page: 296
  year: 2020
  end-page: 307
  ident: b0075
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Wang, X., Li, G., Plaza, A., He, Y., 2021a. Ship detection in SAR images via enhanced nonnegative sparse locality-representation of fisher vectors. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2020.3042506.
– reference: Liu, S., Zhang, L., Lu, H., He, Y., 2021b. Center-boundary dual attention for oriented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2021.3069056.
– volume: 12
  start-page: 2501
  year: 2020
  ident: b0110
  article-title: YOLO-fine: One-stage detector of small objects under various backgrounds in remote sensing images
  publication-title: Remote Sens.
– volume: 58
  start-page: 5693
  year: 2020
  end-page: 5702
  ident: b0065
  article-title: Region-enhanced convolutional neural network for object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Sun, K., Xiao, B., Liu, D., Wang, J., 2019. Deep high-resolution representation learning for human pose estimation. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog., Long Beach, USA, pp. 5693-5703.
– volume: 160
  start-page: 67
  year: 2020
  end-page: 82
  ident: b0250
  article-title: Orientation guided anchoring for geospatial object detection from remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 18
  start-page: 431
  year: 2021
  end-page: 435
  ident: b0020
  article-title: Cross-scale feature fusion for object detection in optical remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 59
  start-page: 1553
  year: 2021
  end-page: 1564
  ident: b0085
  article-title: Arbitrary direction ship detection in remote-sensing images based on multitask learning and multiregion feature fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R., 2019. DeepCaps: Going deeper with capsule networks. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog., Long Beach, USA, pp. 10725-10733.
– volume: 152
  start-page: 166
  year: 2019
  end-page: 177
  ident: b0100
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 2866
  year: 2020
  ident: b0120
  article-title: DA-CapsUNet: A dual-attention capsule U-Net for road extraction from remote sensing imagery
  publication-title: Remote Sens.
– reference: Girshick, R., 2015. Fast R-CNN. In: Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, pp. 1440-1448.
– volume: 8
  start-page: 180370
  year: 2020
  end-page: 180378
  ident: b0190
  article-title: Deep hash assisted network for object detection in remote sensing images
  publication-title: IEEE Access
– volume: 12
  start-page: 2734
  year: 2020
  ident: b0150
  article-title: Hierarchical multi-label object detection framework for remote sensing images
  publication-title: Remote Sens.
– reference: Yang, Y., Tang, X., Cheung, Y.M., Zhang, X., Liu, F., Ma, J., Jiao, L., 2021. AR2Det: An accurate and real-time rotational one-stage ship detector in remote sensing images. IEEE Trans. Geosci. Remote Sens., early access, doi: 10.1109/TGRS.2021.3092433.
– volume: 18
  start-page: 1094
  year: 2021
  end-page: 1098
  ident: b0055
  article-title: Spectral-spatial hyperspectral image classification using dual-channel capsule networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 12
  start-page: 4027
  year: 2020
  ident: b0240
  article-title: F
  publication-title: Remote Sens.
– reference: Sabour, S., Frosst, N., Hinton, G.E., 2017. Dynamic routing between capsules. In: Proc. Conf. Neural Inform. Process. Syst., Long Beach, USA, pp. 1-11.
– volume: 146
  start-page: 11
  year: 2018
  end-page: 21
  ident: b0130
  article-title: An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 13
  start-page: 73
  year: 2021
  ident: b0205
  article-title: A
  publication-title: Remote Sens.
– volume: 161
  start-page: 294
  year: 2020
  end-page: 308
  ident: b0035
  article-title: Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 17
  start-page: 839
  year: 2020
  end-page: 843
  ident: b0060
  article-title: Adaptive anchor for fast object detection in aerial image
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 59
  start-page: 675
  year: 2021
  end-page: 685
  ident: b0230
  article-title: Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 3225
  year: 2020
  ident: b0030
  article-title: SAFDet: A semi-anchor-free detector for effective detection of oriented objects in aerial images
  publication-title: Remote Sens.
– volume: 117
  start-page: 11
  year: 2016
  end-page: 28
  ident: b0015
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 16
  start-page: 1894
  year: 2019
  end-page: 1898
  ident: b0245
  article-title: Vehicle detection from high-resolution remote sensing imagery using convolutional capsule networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 175
  start-page: 340
  year: 2021
  end-page: 352
  ident: b0095
  article-title: GAMSNet: Globally aware road detection network with multi-scale residual learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 3014
  year: 2019
  end-page: 3027
  ident: b0180
  article-title: Geospatial object detection via deconvolutional region proposal network
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
– volume: 138
  start-page: 281
  year: 2018
  end-page: 294
  ident: b0270
  article-title: Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 171
  start-page: 133
  year: 2021
  end-page: 154
  ident: b0220
  article-title: Unmixing-based Sentinel-2 downscaling for urban land cover mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 3140
  year: 2020
  ident: b0260
  article-title: Object detection in UAV images via global density fused convolutional network
  publication-title: Remote Sens.
– volume: 13
  start-page: 1318
  year: 2021
  ident: b0045
  article-title: Self-adaptive aspect ratio anchor for oriented object detection in remote sensing images
  publication-title: Remote Sens.
– volume: 13
  start-page: 1068
  year: 2020
  end-page: 1081
  ident: b0050
  article-title: An optimized deep neural network detecting small and narrow rectangular objects in google earth images. IEEE J
  publication-title: Sel. Topics Appl. Earth Observ. Remote Sens.
– volume: 174
  start-page: 265
  year: 2021
  end-page: 281
  ident: b0140
  article-title: Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 658
  year: 2019
  end-page: 666
  ident: b0125
  article-title: Generalized intersection over union: A metric and a loss for bounding box regression
  publication-title: Proc
– reference: Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhang, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B., 2021b. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell., early access, doi: 10.1109/TPAMI.2020.2983686.
– volume: 17
  start-page: 681
  year: 2020
  end-page: 685
  ident: b0010
  article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 166
  start-page: 1
  year: 2020
  end-page: 14
  ident: b0265
  article-title: HyNet: Hyper-scale object detection network for multiple spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection. In: Proc. IEEE Int. Conf. Comput. Vis., Venice, Italy, pp. 2999-3007.
– volume: 138
  start-page: 281
  year: 2018
  ident: 10.1016/j.jag.2021.102548_b0270
  article-title: Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.014
– volume: 13
  start-page: 1068
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0050
  article-title: An optimized deep neural network detecting small and narrow rectangular objects in google earth images. IEEE J
  publication-title: Sel. Topics Appl. Earth Observ. Remote Sens.
– ident: 10.1016/j.jag.2021.102548_b0115
  doi: 10.1109/CVPR.2019.01098
– volume: 13
  start-page: 73
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0205
  article-title: A2S-Det: Efficiency anchor matching in aerial image oriented object detection
  publication-title: Remote Sens.
  doi: 10.3390/rs13010073
– ident: 10.1016/j.jag.2021.102548_b0145
  doi: 10.1109/TGRS.2020.3043252
– volume: 12
  start-page: 2501
  issue: 15
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0110
  article-title: YOLO-fine: One-stage detector of small objects under various backgrounds in remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12152501
– volume: 17
  start-page: 839
  issue: 5
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0060
  article-title: Adaptive anchor for fast object detection in aerial image
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2936173
– volume: 174
  start-page: 265
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0140
  article-title: Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.008
– volume: 12
  start-page: 3014
  issue: 8
  year: 2019
  ident: 10.1016/j.jag.2021.102548_b0180
  article-title: Geospatial object detection via deconvolutional region proposal network
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2919382
– volume: 57
  start-page: 5028
  issue: 7
  year: 2019
  ident: 10.1016/j.jag.2021.102548_b0070
  article-title: R3-Net: A deep network for multioriented vehicle detection in aerial images and videos
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2895362
– volume: 161
  start-page: 294
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0035
  article-title: Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.025
– volume: 173
  start-page: 50
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0155
  article-title: PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.12.015
– volume: 16
  start-page: 864
  issue: 6
  year: 2019
  ident: 10.1016/j.jag.2021.102548_b0255
  article-title: Scale adaptive proposal network for object detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2888887
– volume: 152
  start-page: 166
  year: 2019
  ident: 10.1016/j.jag.2021.102548_b0100
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 59
  start-page: 1553
  issue: 2
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0085
  article-title: Arbitrary direction ship detection in remote-sensing images based on multitask learning and multiregion feature fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3002850
– volume: 18
  start-page: 23
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0235
  article-title: Multiscale convolutional neural networks for geospatial object detection in VHR satellite images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2967819
– volume: 146
  start-page: 11
  year: 2018
  ident: 10.1016/j.jag.2021.102548_b0130
  article-title: An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.08.014
– ident: 10.1016/j.jag.2021.102548_b0170
  doi: 10.1109/CVPR.2018.00813
– start-page: 658
  year: 2019
  ident: 10.1016/j.jag.2021.102548_b0125
  article-title: Generalized intersection over union: A metric and a loss for bounding box regression
– volume: 59
  start-page: 675
  issue: 1
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0230
  article-title: Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2991407
– volume: 12
  start-page: 2734
  issue: 17
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0150
  article-title: Hierarchical multi-label object detection framework for remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12172734
– ident: 10.1016/j.jag.2021.102548_b0175
  doi: 10.1109/TGRS.2020.3042506
– volume: 166
  start-page: 1
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0265
  article-title: HyNet: Hyper-scale object detection network for multiple spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.019
– volume: 160
  start-page: 67
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0250
  article-title: Orientation guided anchoring for geospatial object detection from remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.12.001
– volume: 13
  start-page: 1318
  issue: 7
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0045
  article-title: Self-adaptive aspect ratio anchor for oriented object detection in remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs13071318
– volume: 58
  start-page: 4353
  issue: 6
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0215
  article-title: Hierarchical semantic propagation for object detection in remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2963243
– volume: 17
  start-page: 849
  issue: 5
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0005
  article-title: Detecting maneuvering target accurately based on a two-phase approach from remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2935230
– volume: 18
  start-page: 431
  issue: 3
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0020
  article-title: Cross-scale feature fusion for object detection in optical remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2975541
– volume: 16
  start-page: 1894
  issue: 12
  year: 2019
  ident: 10.1016/j.jag.2021.102548_b0245
  article-title: Vehicle detection from high-resolution remote sensing imagery using convolutional capsule networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2912582
– ident: 10.1016/j.jag.2021.102548_b0200
  doi: 10.1109/CVPR.2018.00418
– ident: 10.1016/j.jag.2021.102548_b0195
  doi: 10.1109/LGRS.2020.3040308
– volume: 12
  start-page: 3152
  issue: 19
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0025
  article-title: Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks
  publication-title: Remote Sens.
  doi: 10.3390/rs12193152
– volume: 175
  start-page: 340
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0095
  article-title: GAMSNet: Globally aware road detection network with multi-scale residual learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.03.008
– volume: 117
  start-page: 11
  year: 2016
  ident: 10.1016/j.jag.2021.102548_b0015
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.014
– ident: 10.1016/j.jag.2021.102548_b0090
  doi: 10.1109/TGRS.2021.3069056
– ident: 10.1016/j.jag.2021.102548_b0080
  doi: 10.1109/ICCV.2017.324
– volume: 18
  start-page: 602
  issue: 4
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0165
  article-title: Siamese graph embedding network for object detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2981420
– volume: 171
  start-page: 133
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0220
  article-title: Unmixing-based Sentinel-2 downscaling for urban land cover mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.009
– volume: 12
  start-page: 3225
  issue: 19
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0030
  article-title: SAFDet: A semi-anchor-free detector for effective detection of oriented objects in aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs12193225
– ident: 10.1016/j.jag.2021.102548_b0225
  doi: 10.1109/TGRS.2021.3092433
– volume: 12
  start-page: 4027
  issue: 24
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0240
  article-title: F3-Net: Feature fusion and filtration network for object detection in optical remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12244027
– ident: 10.1016/j.jag.2021.102548_b0185
  doi: 10.1109/TPAMI.2020.2983686
– volume: 18
  start-page: 1094
  issue: 6
  year: 2021
  ident: 10.1016/j.jag.2021.102548_b0055
  article-title: Spectral-spatial hyperspectral image classification using dual-channel capsule networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2991405
– ident: 10.1016/j.jag.2021.102548_b0160
  doi: 10.1109/CVPR.2019.00584
– ident: 10.1016/j.jag.2021.102548_b0210
  doi: 10.1109/LGRS.2020.3022512
– volume: 12
  start-page: 2866
  issue: 18
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0120
  article-title: DA-CapsUNet: A dual-attention capsule U-Net for road extraction from remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs12182866
– volume: 12
  start-page: 3140
  issue: 19
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0260
  article-title: Object detection in UAV images via global density fused convolutional network
  publication-title: Remote Sens.
  doi: 10.3390/rs12193140
– volume: 159
  start-page: 296
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0075
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.023
– volume: 8
  start-page: 180370
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0190
  article-title: Deep hash assisted network for object detection in remote sensing images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024720
– volume: 8
  start-page: 9325
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0105
  article-title: Attention mask R-CNN for ship detection and segmentation from remote sensing images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964540
– volume: 58
  start-page: 5693
  issue: 8
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0065
  article-title: Region-enhanced convolutional neural network for object detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2968802
– ident: 10.1016/j.jag.2021.102548_b0135
– ident: 10.1016/j.jag.2021.102548_b0040
  doi: 10.1109/ICCV.2015.169
– volume: 17
  start-page: 681
  issue: 4
  year: 2020
  ident: 10.1016/j.jag.2021.102548_b0010
  article-title: Multi-scale spatial and channel-wise attention for improving object detection in remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2930462
SSID ssj0017768
Score 2.4043808
Snippet [Display omitted] •High-resolution capsule network for semantically strong and spatially accurate feature extraction.•Capsule-based efficient self-attention...
As the optical remote sensing techniques keep developing with a rapid pace, remote sensing images are positively considered in many fields. Accordingly, a...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102548
SubjectTerms Capsule attention
Capsule network
data collection
image interpretation
ingredients
Object recognition
Region proposal
Remote sensing imagery
Sparse anchoring
spatial data
texture
Title Sparse anchoring guided high-resolution capsule network for geospatial object detection from remote sensing imagery
URI https://dx.doi.org/10.1016/j.jag.2021.102548
https://www.proquest.com/docview/2675583266
https://doaj.org/article/89a75a61acce4bad83cd7070fa1c01cc
Volume 104
WOSCitedRecordID wos000704640900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9JAeSpsH3aQpKuQUMLW0liUd25DQUwikgdzEWBpvN6TesN4t9N9nxo9k20N66cUHo4fRjKRvrE_fCHHitWUUy1QdGzNW4Mog-TpTNeQqscRbVXXJJuzlpbu99Vcbqb6YE9bLA_cD99l5sAZKBTFiUUFy05gs-WkNKuYqRl59CfWMwdRwfmBtfwnOlD5zxVSP55kds-sOZhQYasWyBYYT_2zsSJ1w_x8b019LdLfvXLwVbwbAKL_0H_pObGGzK15vyAjuioPz59tqVHSYru2eaK8fKG5FSZb90RHt5Gw9T5gkixRnFGgPficjULB8j7LpSeGSkKyc4aJlujW1uKj4b41MuOqIW43kSylyiWRmlC1T4Knp-U-Ww_i9L24uzr-ffcuGLAtZJDCyygpXOI1K6xzoAbF0oK1KdeEAdY60_VeFRwVASNKXNRBiq52PyUzRVJx8_UBsN4sG3wtZ1RG1i9HZRNWS8yb6vKpVWUJu0KSJyMeRDnGQIOdMGPdh5JrdBTJOYOOE3jgTcfpU5aHX33ip8Fc231NBls7uXpBDhcGhwr8caiKK0fhhQCE9uqCm5i_1_Wl0lEAzlI9doMHFug2aYjJDC2dZHv6P7zsSO9wtU2qU-SC2V8s1HotX8ddq3i4_dtPgETl2DkE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+anchoring+guided+high-resolution+capsule+network+for+geospatial+object+detection+from+remote+sensing+imagery&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Yongtao+Yu&rft.au=Jun+Wang&rft.au=Hao+Qiang&rft.au=Mingxin+Jiang&rft.date=2021-12-15&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=104&rft.spage=102548&rft_id=info:doi/10.1016%2Fj.jag.2021.102548&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_89a75a61acce4bad83cd7070fa1c01cc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon