A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression

Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of electrocardiology Ročník 93; s. 154125
Hlavní autori: Bekiryazıcı, Tahir, Damkacı, Mehmet, Aydemir, Gürkan, Gürkan, Hakan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.11.2025
Predmet:
ISSN:0022-0736, 1532-8430, 1532-8430
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model’s effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy. •A novel multichannel CNN-autoencoder efficiently compresses ECG signals.•Channel-variant sparsity is introduced to boost data compression rates.•Channel-specific quantization and Huffman coding ensure high CR, minimal error.•Achieves 20.23:1 CR with 9.86% PRDN on benchmark ECG datasets.
AbstractList AbstractElectrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model’s effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy.
Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model’s effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy. •A novel multichannel CNN-autoencoder efficiently compresses ECG signals.•Channel-variant sparsity is introduced to boost data compression rates.•Channel-specific quantization and Huffman coding ensure high CR, minimal error.•Achieves 20.23:1 CR with 9.86% PRDN on benchmark ECG datasets.
Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model's effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy.
Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model's effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy.Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model's effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy.
ArticleNumber 154125
Author Gürkan, Hakan
Aydemir, Gürkan
Damkacı, Mehmet
Bekiryazıcı, Tahir
Author_xml – sequence: 1
  givenname: Tahir
  orcidid: 0000-0002-0664-649X
  surname: Bekiryazıcı
  fullname: Bekiryazıcı, Tahir
– sequence: 2
  givenname: Mehmet
  orcidid: 0009-0009-5059-965X
  surname: Damkacı
  fullname: Damkacı, Mehmet
– sequence: 3
  givenname: Gürkan
  orcidid: 0000-0001-9213-576X
  surname: Aydemir
  fullname: Aydemir, Gürkan
  email: gurkan.aydemir@btu.edu.tr
– sequence: 4
  givenname: Hakan
  orcidid: 0000-0002-7008-4778
  surname: Gürkan
  fullname: Gürkan, Hakan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41092549$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVJaSZp_0IwXWXjqd62syjk0RcEumi7rdDIV4kcWZpI9kD-fWQmLaFQyEpX8J3DveccoYMQAyD0nuA1wUR-GNYDeDBTikanfk0xFWsiOKHiFVoRwWjdcoYP0ApjSmvcMHmIjnIeMMYdbegbdMhJmQTvVuj3eRXiDnw1zn5y5laHUD55q1OGysSwi36eXAzaV3qeIgQTe0iVjal6toOLN0mPVXY3C2jiuE2Qc5G9Ra-t9hnePb3H6NfnTz8vv9bX3798uzy_rg1n3VQz2EgrwNoWWi6Y7TSHtmk2kvTctEJI2hGGLZeSkdYygU3TSy0ZlZ3Akm_YMTrd-25TvJ8hT2p02YD3OkCcsyokaTrOpSjoyRM6b0bo1Ta5UacH9SeTApztAZNizgnsX4RgtRSgBvW8ALUUoPYFFPHVXgzl2p2DpLJxJTXoXSoK1Uf3MpuP_9gY74Iz2t_BA-QhzqkknRVRmSqsfixNL0VTUSbBFoOL_xu8dItHdq3BYA
Cites_doi 10.1016/j.bspc.2021.103065
10.5244/C.26.124
10.1109/TBME.1982.324962
10.1109/TIM.2023.3279885
10.1109/TBME.1983.325186
10.1007/s10916-016-0468-7
10.1111/pace.12053
10.1111/exsy.12432
10.1109/10.846678
10.1016/j.jelectrocard.2024.153825
10.3390/e24081024
10.1109/LSP.2006.887841
10.3390/s19040775
10.1038/s41597-020-0495-6
10.1002/int.22911
10.3390/bios12070524
10.1016/j.bspc.2014.09.002
10.1016/j.irbm.2024.100859
10.1109/51.932724
10.1109/TBME.2000.880093
10.1109/TBME.1968.4502549
10.1111/exsy.12701
10.1016/j.cogsys.2018.07.004
10.1016/j.compbiomed.2005.11.004
10.1016/j.isatra.2023.07.033
10.1111/j.1468-0394.2008.00486.x
10.4236/jcc.2023.118003
10.1016/j.bspc.2024.107134
10.1016/j.cmpb.2019.03.019
10.1016/S1350-4533(01)00030-3
10.1007/s00034-020-01483-x
10.1038/s41569-021-00522-7
10.1016/j.amjmed.2013.10.003
10.1007/s00034-022-02071-x
10.1109/10.871403
10.1016/j.bspc.2018.06.009
10.1109/4233.966104
10.30564/jcsr.v4i4.5204
10.52783/anvi.v27.1354
10.3390/electronics12081760
10.1016/j.dsp.2014.08.007
10.1016/j.compbiomed.2016.03.021
10.1155/2007/12071
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jelectrocard.2025.154125
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-8430
EndPage 154125
ExternalDocumentID 41092549
10_1016_j_jelectrocard_2025_154125
S0022073625002535
1_s2_0_S0022073625002535
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
7X7
88E
88I
8AF
8AO
8FI
8FJ
8P~
8R4
8R5
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACDOS
ACGFO
ACGFS
ACGOD
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFHD
AFFNX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-I
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
HCIFZ
HEB
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M1P
M29
M2P
M2Q
M41
MJL
MO0
N9A
O-L
O9-
OAUVE
OA~
OL0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
Q38
R2-
ROL
RPZ
RWL
S0X
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TAE
UKHRP
UNMZH
WH7
WUQ
X7M
Z5R
ZGI
~G-
~HD
9DU
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c439t-3eb6f5eff8e8453f9a4e877b61d4c855629130f466318f350c7d6a632695064b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598909800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0736
1532-8430
IngestDate Sat Oct 18 22:56:52 EDT 2025
Sat Oct 18 23:08:48 EDT 2025
Sat Nov 29 07:08:28 EST 2025
Sat Nov 15 16:51:51 EST 2025
Sat Nov 22 12:31:08 EST 2025
Sat Nov 15 06:41:42 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords ECG
ECG compression
Sparse autoencoders
Convolutional autoencoders
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-3eb6f5eff8e8453f9a4e877b61d4c855629130f466318f350c7d6a632695064b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9213-576X
0000-0002-0664-649X
0009-0009-5059-965X
0000-0002-7008-4778
PMID 41092549
PQID 3261794465
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3261794465
pubmed_primary_41092549
crossref_primary_10_1016_j_jelectrocard_2025_154125
elsevier_sciencedirect_doi_10_1016_j_jelectrocard_2025_154125
elsevier_clinicalkeyesjournals_1_s2_0_S0022073625002535
elsevier_clinicalkey_doi_10_1016_j_jelectrocard_2025_154125
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of electrocardiology
PublicationTitleAlternate J Electrocardiol
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lalos, Alonso, Verikoukis (b59) 2014; 35
Yildirim, Tan, Acharya (b29) 2018; 52
Han, Zhong, He, Yu, Zhang (b48) 2015
Baviskar V, Verma M, Chatterjee P, Singal G, Gadekallu TR. Optimization using Internet of Agent based Stacked Sparse Autoencoder Model for Heart Disease Prediction. Expert Syst e13359.
Bulanda, Starzyk, Horzyk (b13) 2025; 88
Wei, Chang, Chou, Jan (b20) 2001; 5
Blanco-Valesco, Cruz-Roldan, Godino-Llorente, Blanco-Valesco, Armeins-Aparicio, Ferreras (b57) 2005; 27
Bekiryazici, Gürkan (b30) 2020
Rosenberg, Samuel, Thosani, Zimetbaum (b5) 2013; 36
Pal, Kumar, Vishwakarma, Singh (b15) 2023
Shi, Wang, Qin, Chen, Liu, He, Wang, Chang, Huang (b33) 2022; 12
Zigel (b7) 1998
Eman, El Hindi (b38) 2022; 4
Tohumoglu, Sezgin (b18) 2007; 37
Roy, Roy, Mukherjee, Ghosh, Bhattacharyya, Naskar (b45) 2019
Aspuru, Ochoa-Brust, Félix, Mata-López, Mena, Ostos, Martínez-Peláez (b2) 2019; 19
Wang, Ma, Liu, Chang, Wang, He, Huang (b31) 2019; 175
Huang, Xue, Xiao, Bu (b35) 2023; 12
Pal, Kumar, Vishwakarma, Lee (b60) 2023; 142
Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A. Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification. In: BMVC. 2012, p. 1–12.
Bekiryazıcı, Aydemir, Gürkan (b39) 2024
Gurkan, Guz, Yarman (b23) 2007; 2007
Singh, Sharma, Dandapat (b22) 2016; 73
Zhang, Zhang, Lo, Xu (b3) 2020; 37
Mehta, Lingayat, Sanghvi (b1) 2009; 26
Benzid, Marir, Bouguechal (b14) 2007; 14
Wang, Zhou, Ji, Yang, Guo, Gong, Yi, Wang (b50) 2022; 37
Hua, Rao, Peng, Liu, Tang (b37) 2022; 24
Men, Joshi (b44) 2024; 27
Ishijima, Shin, Hostetter, Sklansky (b12) 1983
Khorasani, Hodtani, Kakhki (b41) 2018
Shamsi, Rezaii, Beheshti (b40) 2020
Mueller (b10) 1978; 14
Abenstein, Tompkins (b9) 1982
Adamo, Grossi, Lanzarotti, Lin (b42) 2015; 15
Gupta (b21) 2016; 40
Kabiena, Djomadji, Tonye (b26) 2023; 11
Dasan, Gnanaraj (b34) 2022; 41
Zhang, Dong, Wang, Guo, Wang (b32) 2021; 70
Zhang, Satapathy, Wang (b52) 2022; 39
Sörnmo, Laguna (b8) 2005; vol. 8
Abo-Zahhad, Hussein, Mohamed (b61) 2015; 8
Batista, Melcher, Carvalho (b16) 2001; 23
Cho (b47) 2013
Zigel, Cohen, Katz (b58) 2000; 47
Hasssan, Meng, Cao, Seo (b54) 2022
Gurkan (b24) 2012; 2012:119
Wagner, Strodthoff, Bousseljot, Kreiseler, Lunze, Samek, Schaeffter (b55) 2020; 7
Aydemir, Bekiryazici, Gürkan (b36) 2020
Zhang, Zhao, Chen, Wu (b28) 2017; 12
Barrett, Komatireddy, Haaser, Topol, Sheard, Encinas, Fought, Topol (b6) 2014; 127
Zhao, Gui, Zhang, Feng, Yang, Zhou, Tang, Liu (b25) 2025; 101
Kumar, Deka, Datta (b43) 2020; 39
Bayoumy, Gaber, Elshafeey, Mhaimeed, Dineen, Marvel, Martin, Muse, Turakhia, Tarakji (b4) 2021; 18
Jha, Kolekar (b17) 2018; 46
Ghaffari, Palangi, Babaie-Zadeh, Jutten (b46) 2009
Zigel, Cohen, Katz (b27) 2000; 47
Cox, Nolle, Fozzard, Oliver (b11) 1968
Dumas, Roumy, Guillemot (b53) 2016
Moody, Mark (b56) 2001; 20
Lu, Kim, Pearlman (b19) 2000; 47
Wang (10.1016/j.jelectrocard.2025.154125_b31) 2019; 175
Bayoumy (10.1016/j.jelectrocard.2025.154125_b4) 2021; 18
Khorasani (10.1016/j.jelectrocard.2025.154125_b41) 2018
Dasan (10.1016/j.jelectrocard.2025.154125_b34) 2022; 41
Jha (10.1016/j.jelectrocard.2025.154125_b17) 2018; 46
Bekiryazici (10.1016/j.jelectrocard.2025.154125_b30) 2020
Zhang (10.1016/j.jelectrocard.2025.154125_b32) 2021; 70
Cox (10.1016/j.jelectrocard.2025.154125_b11) 1968
Zhang (10.1016/j.jelectrocard.2025.154125_b28) 2017; 12
Kabiena (10.1016/j.jelectrocard.2025.154125_b26) 2023; 11
Gurkan (10.1016/j.jelectrocard.2025.154125_b24) 2012; 2012:119
Aydemir (10.1016/j.jelectrocard.2025.154125_b36) 2020
Shamsi (10.1016/j.jelectrocard.2025.154125_b40) 2020
Zhao (10.1016/j.jelectrocard.2025.154125_b25) 2025; 101
10.1016/j.jelectrocard.2025.154125_b49
Adamo (10.1016/j.jelectrocard.2025.154125_b42) 2015; 15
Wagner (10.1016/j.jelectrocard.2025.154125_b55) 2020; 7
Gurkan (10.1016/j.jelectrocard.2025.154125_b23) 2007; 2007
Mehta (10.1016/j.jelectrocard.2025.154125_b1) 2009; 26
Lalos (10.1016/j.jelectrocard.2025.154125_b59) 2014; 35
Zigel (10.1016/j.jelectrocard.2025.154125_b58) 2000; 47
Roy (10.1016/j.jelectrocard.2025.154125_b45) 2019
Rosenberg (10.1016/j.jelectrocard.2025.154125_b5) 2013; 36
Aspuru (10.1016/j.jelectrocard.2025.154125_b2) 2019; 19
Wang (10.1016/j.jelectrocard.2025.154125_b50) 2022; 37
Pal (10.1016/j.jelectrocard.2025.154125_b15) 2023
Barrett (10.1016/j.jelectrocard.2025.154125_b6) 2014; 127
Bulanda (10.1016/j.jelectrocard.2025.154125_b13) 2025; 88
Zigel (10.1016/j.jelectrocard.2025.154125_b7) 1998
Ishijima (10.1016/j.jelectrocard.2025.154125_b12) 1983
Blanco-Valesco (10.1016/j.jelectrocard.2025.154125_b57) 2005; 27
Dumas (10.1016/j.jelectrocard.2025.154125_b53) 2016
Hasssan (10.1016/j.jelectrocard.2025.154125_b54) 2022
Men (10.1016/j.jelectrocard.2025.154125_b44) 2024; 27
Abenstein (10.1016/j.jelectrocard.2025.154125_b9) 1982
Abo-Zahhad (10.1016/j.jelectrocard.2025.154125_b61) 2015; 8
Kumar (10.1016/j.jelectrocard.2025.154125_b43) 2020; 39
Moody (10.1016/j.jelectrocard.2025.154125_b56) 2001; 20
Zhang (10.1016/j.jelectrocard.2025.154125_b52) 2022; 39
Yildirim (10.1016/j.jelectrocard.2025.154125_b29) 2018; 52
Zhang (10.1016/j.jelectrocard.2025.154125_b3) 2020; 37
Mueller (10.1016/j.jelectrocard.2025.154125_b10) 1978; 14
Tohumoglu (10.1016/j.jelectrocard.2025.154125_b18) 2007; 37
Bekiryazıcı (10.1016/j.jelectrocard.2025.154125_b39) 2024
Singh (10.1016/j.jelectrocard.2025.154125_b22) 2016; 73
Shi (10.1016/j.jelectrocard.2025.154125_b33) 2022; 12
Lu (10.1016/j.jelectrocard.2025.154125_b19) 2000; 47
Eman (10.1016/j.jelectrocard.2025.154125_b38) 2022; 4
Wei (10.1016/j.jelectrocard.2025.154125_b20) 2001; 5
Hua (10.1016/j.jelectrocard.2025.154125_b37) 2022; 24
Pal (10.1016/j.jelectrocard.2025.154125_b60) 2023; 142
Cho (10.1016/j.jelectrocard.2025.154125_b47) 2013
Sörnmo (10.1016/j.jelectrocard.2025.154125_b8) 2005; vol. 8
Huang (10.1016/j.jelectrocard.2025.154125_b35) 2023; 12
Han (10.1016/j.jelectrocard.2025.154125_b48) 2015
Ghaffari (10.1016/j.jelectrocard.2025.154125_b46) 2009
Batista (10.1016/j.jelectrocard.2025.154125_b16) 2001; 23
10.1016/j.jelectrocard.2025.154125_b51
Zigel (10.1016/j.jelectrocard.2025.154125_b27) 2000; 47
Benzid (10.1016/j.jelectrocard.2025.154125_b14) 2007; 14
Gupta (10.1016/j.jelectrocard.2025.154125_b21) 2016; 40
References_xml – volume: 101
  year: 2025
  ident: b25
  article-title: An improved ECG data compression scheme based on ensemble empirical mode decomposition
  publication-title: Biomed Signal Process Control
– volume: 27
  start-page: 798:802
  year: 2005
  ident: b57
  article-title: On the use of PRD and CR parameters for ECG compression
  publication-title: Med Eng Phys
– start-page: 43
  year: 1982
  end-page: 48
  ident: b9
  article-title: A new data-reduction algorithm for real-time ECG analysis
  publication-title: IEEE Trans Biomed Eng
– start-page: 432
  year: 2013
  end-page: 440
  ident: b47
  article-title: Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images
  publication-title: International conference on machine learning
– volume: 27
  start-page: 1
  year: 2024
  end-page: 18
  ident: b44
  article-title: Biomedical ECG signal compression by combining wavelet transform and unsupervised autoencoder techniques
  publication-title: Adv Nonlinear Var Inequal
– volume: 175
  start-page: 139
  year: 2019
  end-page: 150
  ident: b31
  article-title: A novel ECG signal compression method using spindle convolutional auto-encoder
  publication-title: Comput Methods Programs Biomed
– volume: 142
  start-page: 335
  year: 2023
  end-page: 346
  ident: b60
  article-title: Electrocardiogram signal compression using adaptive tunable-Q wavelet transform and modified dead-zone quantizer
  publication-title: ISA Trans
– volume: 41
  start-page: 6152
  year: 2022
  end-page: 6181
  ident: b34
  article-title: Joint ECG-EMG-EEG signal compression and reconstruction with incremental multimodal autoencoder approach
  publication-title: Circuits Systems Signal Process
– start-page: 31
  year: 2019
  end-page: 38
  ident: b45
  article-title: Sparse encoding algorithm for real-time ECG compression
  publication-title: Recent trends in signal and image processing
– reference: Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A. Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification. In: BMVC. 2012, p. 1–12.
– volume: 2007
  start-page: 1
  year: 2007
  end-page: 12
  ident: b23
  article-title: Modeling of electrocardiogram signals using predefined signature and envelope vector sets
  publication-title: EURASIP J on Adv Signal Processing
– volume: 12
  start-page: 1760
  year: 2023
  ident: b35
  article-title: A novel method for ECG signal compression and reconstruction: Down-sampling operation and signal-referenced network
  publication-title: Electronics
– start-page: 1
  year: 2020
  end-page: 4
  ident: b30
  article-title: ECG compression method based on convolutional autoencoder and discrete wavelet transform
  publication-title: 2020 28th signal processing and communications applications conference
– volume: 39
  start-page: 6299
  year: 2020
  end-page: 6315
  ident: b43
  article-title: Multichannel ECG compression using Block-Sparsity-based joint compressive sensing
  publication-title: Circuits Systems Signal Process
– volume: 37
  year: 2020
  ident: b3
  article-title: Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASE-based feature selection
  publication-title: Expert Syst
– volume: 5
  start-page: 290
  year: 2001
  end-page: 299
  ident: b20
  article-title: ECG data compression using truncated singular value decomposition
  publication-title: IEEE Trans Inf Technol Biomed
– year: 2024
  ident: b39
  article-title: Electrocardiogram signal compression using deep convolutional autoencoder with constant error and flexible compression rate
  publication-title: IRBM
– volume: 23
  start-page: 127
  year: 2001
  end-page: 134
  ident: b16
  article-title: Compression of ECG signals by optimized quantization of discrete cosine transform coefficients
  publication-title: Med Eng Phys
– volume: 18
  start-page: 581
  year: 2021
  end-page: 599
  ident: b4
  article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward
  publication-title: Nat Rev Cardiol
– volume: 47
  start-page: 1308:1316
  year: 2000
  ident: b27
  article-title: ECG signal compression using analysis by synthesis coding
  publication-title: IEEE Trans Biomed Eng
– volume: 127
  start-page: 95
  year: 2014
  end-page: e11
  ident: b6
  article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring
  publication-title: Am J Med
– start-page: 1
  year: 2016
  end-page: 6
  ident: b53
  article-title: Shallow sparse autoencoders versus sparse coding algorithms for image compression
  publication-title: 2016 IEEE international conference on multimedia & expo workshops
– volume: 36
  start-page: 328
  year: 2013
  end-page: 333
  ident: b5
  article-title: Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study
  publication-title: Pacing Clin Electrophysiol
– volume: vol. 8
  year: 2005
  ident: b8
  publication-title: Bioelectrical signal processing in cardiac and neurological applications
– start-page: 268
  year: 2018
  end-page: 273
  ident: b41
  article-title: Effects of pre-processing on the ECG signal sparsity and compression quality
  publication-title: 2018 8th international conference on computer and knowledge engineering
– start-page: 328
  year: 2020
  end-page: 331
  ident: b40
  article-title: MNDL sparsity order selection for compressed sensing with application in ECG compression
  publication-title: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society
– volume: 2012:119
  start-page: 1
  year: 2012
  end-page: 17
  ident: b24
  article-title: Compression of ECG signals using variable-length classified vector sets and wavelet transforms
  publication-title: EURASIP J Adv Signal Process
– volume: 12
  start-page: 1:20
  year: 2017
  ident: b28
  article-title: ECG data compression using a neural network model based on multi-objective optimization
  publication-title: PLoS One
– volume: 4
  start-page: 15
  year: 2022
  end-page: 25
  ident: b38
  article-title: Bidirectional recurrent nets for ECG signal compression
  publication-title: J Comput Sci Res
– volume: 39
  year: 2022
  ident: b52
  article-title: Fruit category classification by fractional Fourier entropy with rotation angle vector grid and stacked sparse autoencoder
  publication-title: Expert Syst
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b56
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng Med Biol Mag
– volume: 52
  start-page: 198:211
  year: 2018
  ident: b29
  article-title: An efficient compression of ECG signals using deep convolutional autoencoders
  publication-title: Cogn Syst Res
– start-page: 156
  year: 2015
  end-page: 166
  ident: b48
  article-title: The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification
  publication-title: Brain informatics and health: 8th international conference, BIH 2015, London, UK, August 30-September 2, 2015. proceedings 8
– year: 2023
  ident: b15
  article-title: Optimized tunable-Q wavelet transform based 2D ECG compression technique using DCT
  publication-title: IEEE Trans Instrum Meas
– start-page: 1
  year: 2020
  end-page: 4
  ident: b36
  article-title: Compression of ECG signals using long short-term memory based sequence-to-sequence autoencoder
  publication-title: 2020 28th signal processing and communications applications conference
– volume: 47
  start-page: 849
  year: 2000
  end-page: 856
  ident: b19
  article-title: Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm
  publication-title: IEEE Trans Biomed Eng
– volume: 88
  year: 2025
  ident: b13
  article-title: FlexPoints: Efficient electrocardiogram signal compression for machine learning
  publication-title: J Electrocardiol
– start-page: 344
  year: 2022
  end-page: 348
  ident: b54
  article-title: Spatial-temporal data compression of dynamic vision sensor output with high pixel-level saliency using low-precision sparse autoencoder
  publication-title: 2022 56th asilomar conference on signals, systems, and computers
– volume: 24
  start-page: 1024
  year: 2022
  ident: b37
  article-title: Deep compressive sensing on ECG signals with modified inception block and LSTM
  publication-title: Entropy
– volume: 8
  start-page: 97
  year: 2015
  end-page: 117
  ident: b61
  article-title: Compression of ECG signal based on compressive sensing and the extraction of significant features
  publication-title: Int J Commun Netw System Sci
– volume: 14
  start-page: 81
  year: 1978
  end-page: 85
  ident: b10
  article-title: Arrhythmia detection program for an ambulatory ECG monitor
  publication-title: Biomed Sci Instrum
– volume: 47
  start-page: 1422
  year: 2000
  end-page: 1430
  ident: b58
  article-title: The weighted diagnostic distortion (WDD) measure for ECG signal compression
  publication-title: IEEE Trans Biomed Eng
– volume: 19
  start-page: 775
  year: 2019
  ident: b2
  article-title: Segmentation of the ECG signal by means of a linear regression algorithm
  publication-title: Sensors
– year: 1998
  ident: b7
  article-title: ECG signal compression
– start-page: 723
  year: 1983
  end-page: 729
  ident: b12
  article-title: Scan-along polygonal approximation for data compression of electrocardiograms
  publication-title: IEEE Trans Biomed Eng
– volume: 26
  start-page: 125
  year: 2009
  end-page: 143
  ident: b1
  article-title: Detection and delineation of P and T waves in 12-lead electrocardiograms
  publication-title: Expert Syst
– volume: 73
  start-page: 24
  year: 2016
  end-page: 37
  ident: b22
  article-title: Multi-channel ECG data compression using compressed sensing in eigenspace
  publication-title: Comput Biol Med
– volume: 37
  start-page: 7944
  year: 2022
  end-page: 7967
  ident: b50
  article-title: Deep sparse autoencoder integrated with three-stage framework for glaucoma diagnosis
  publication-title: Int J Intell Syst
– reference: Baviskar V, Verma M, Chatterjee P, Singal G, Gadekallu TR. Optimization using Internet of Agent based Stacked Sparse Autoencoder Model for Heart Disease Prediction. Expert Syst e13359.
– volume: 15
  start-page: 11
  year: 2015
  end-page: 17
  ident: b42
  article-title: ECG compression retaining the best natural basis k-coefficients via sparse decomposition
  publication-title: Biomed Signal Process Control
– volume: 35
  start-page: 105
  year: 2014
  end-page: 116
  ident: b59
  article-title: Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs
  publication-title: Digit Signal Process
– volume: 12
  start-page: 524
  year: 2022
  ident: b33
  article-title: New ECG compression method for portable ECG monitoring system merged with binary convolutional auto-encoder and residual error compensation
  publication-title: Biosensors
– volume: 40
  start-page: 112
  year: 2016
  ident: b21
  article-title: Quality aware compression of electrocardiogram using principal component analysis
  publication-title: J Med Syst
– volume: 37
  start-page: 173
  year: 2007
  end-page: 182
  ident: b18
  article-title: ECG signal compression by multi-iteration EZW coding for different wavelets and thresholds
  publication-title: Comput Biol Med
– volume: 7
  start-page: 154
  year: 2020
  ident: b55
  article-title: PTB-XL, a large publicly available electrocardiography dataset
  publication-title: Sci Data
– start-page: 1
  year: 2009
  end-page: 6
  ident: b46
  article-title: ECG denoising and compression by sparse 2D separable transform with overcomplete mixed dictionaries
  publication-title: 2009 IEEE international workshop on machine learning for signal processing
– start-page: 128
  year: 1968
  end-page: 129
  ident: b11
  article-title: AZTEC, a preprocessing program for real-time ECG rhythm analysis
  publication-title: IEEE Trans Biomed Eng
– volume: 46
  start-page: 174
  year: 2018
  end-page: 181
  ident: b17
  article-title: Electrocardiogram data compression using DCT based discrete orthogonal stockwell transform
  publication-title: Biomed Signal Process Control
– volume: 11
  start-page: 29
  year: 2023
  end-page: 43
  ident: b26
  article-title: New ECG signal compression model based on set theory applied to images
  publication-title: J Comput Commun
– volume: 14
  start-page: 373
  year: 2007
  end-page: 376
  ident: b14
  article-title: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder
  publication-title: IEEE Signal Process Lett
– volume: 70
  year: 2021
  ident: b32
  article-title: CSNet: A deep learning approach for ECG compressed sensing
  publication-title: Biomed Signal Process Control
– volume: 70
  year: 2021
  ident: 10.1016/j.jelectrocard.2025.154125_b32
  article-title: CSNet: A deep learning approach for ECG compressed sensing
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103065
– start-page: 328
  year: 2020
  ident: 10.1016/j.jelectrocard.2025.154125_b40
  article-title: MNDL sparsity order selection for compressed sensing with application in ECG compression
– year: 1998
  ident: 10.1016/j.jelectrocard.2025.154125_b7
– ident: 10.1016/j.jelectrocard.2025.154125_b49
  doi: 10.5244/C.26.124
– start-page: 43
  issue: 1
  year: 1982
  ident: 10.1016/j.jelectrocard.2025.154125_b9
  article-title: A new data-reduction algorithm for real-time ECG analysis
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1982.324962
– volume: 2012:119
  start-page: 1
  year: 2012
  ident: 10.1016/j.jelectrocard.2025.154125_b24
  article-title: Compression of ECG signals using variable-length classified vector sets and wavelet transforms
  publication-title: EURASIP J Adv Signal Process
– start-page: 344
  year: 2022
  ident: 10.1016/j.jelectrocard.2025.154125_b54
  article-title: Spatial-temporal data compression of dynamic vision sensor output with high pixel-level saliency using low-precision sparse autoencoder
– year: 2023
  ident: 10.1016/j.jelectrocard.2025.154125_b15
  article-title: Optimized tunable-Q wavelet transform based 2D ECG compression technique using DCT
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2023.3279885
– start-page: 723
  issue: 11
  year: 1983
  ident: 10.1016/j.jelectrocard.2025.154125_b12
  article-title: Scan-along polygonal approximation for data compression of electrocardiograms
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1983.325186
– volume: 40
  start-page: 112
  issue: 5
  year: 2016
  ident: 10.1016/j.jelectrocard.2025.154125_b21
  article-title: Quality aware compression of electrocardiogram using principal component analysis
  publication-title: J Med Syst
  doi: 10.1007/s10916-016-0468-7
– volume: 36
  start-page: 328
  issue: 3
  year: 2013
  ident: 10.1016/j.jelectrocard.2025.154125_b5
  article-title: Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study
  publication-title: Pacing Clin Electrophysiol
  doi: 10.1111/pace.12053
– volume: 37
  issue: 1
  year: 2020
  ident: 10.1016/j.jelectrocard.2025.154125_b3
  article-title: Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASE-based feature selection
  publication-title: Expert Syst
  doi: 10.1111/exsy.12432
– volume: 14
  start-page: 81
  year: 1978
  ident: 10.1016/j.jelectrocard.2025.154125_b10
  article-title: Arrhythmia detection program for an ambulatory ECG monitor
  publication-title: Biomed Sci Instrum
– start-page: 156
  year: 2015
  ident: 10.1016/j.jelectrocard.2025.154125_b48
  article-title: The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification
– start-page: 31
  year: 2019
  ident: 10.1016/j.jelectrocard.2025.154125_b45
  article-title: Sparse encoding algorithm for real-time ECG compression
– volume: 47
  start-page: 849
  issue: 7
  year: 2000
  ident: 10.1016/j.jelectrocard.2025.154125_b19
  article-title: Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.846678
– volume: 88
  year: 2025
  ident: 10.1016/j.jelectrocard.2025.154125_b13
  article-title: FlexPoints: Efficient electrocardiogram signal compression for machine learning
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2024.153825
– volume: 24
  start-page: 1024
  issue: 8
  year: 2022
  ident: 10.1016/j.jelectrocard.2025.154125_b37
  article-title: Deep compressive sensing on ECG signals with modified inception block and LSTM
  publication-title: Entropy
  doi: 10.3390/e24081024
– volume: 14
  start-page: 373
  issue: 6
  year: 2007
  ident: 10.1016/j.jelectrocard.2025.154125_b14
  article-title: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2006.887841
– volume: 12
  start-page: 1:20
  issue: 10
  year: 2017
  ident: 10.1016/j.jelectrocard.2025.154125_b28
  article-title: ECG data compression using a neural network model based on multi-objective optimization
  publication-title: PLoS One
– volume: 19
  start-page: 775
  issue: 4
  year: 2019
  ident: 10.1016/j.jelectrocard.2025.154125_b2
  article-title: Segmentation of the ECG signal by means of a linear regression algorithm
  publication-title: Sensors
  doi: 10.3390/s19040775
– volume: 7
  start-page: 154
  issue: 1
  year: 2020
  ident: 10.1016/j.jelectrocard.2025.154125_b55
  article-title: PTB-XL, a large publicly available electrocardiography dataset
  publication-title: Sci Data
  doi: 10.1038/s41597-020-0495-6
– volume: 37
  start-page: 7944
  issue: 10
  year: 2022
  ident: 10.1016/j.jelectrocard.2025.154125_b50
  article-title: Deep sparse autoencoder integrated with three-stage framework for glaucoma diagnosis
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22911
– volume: 12
  start-page: 524
  issue: 7
  year: 2022
  ident: 10.1016/j.jelectrocard.2025.154125_b33
  article-title: New ECG compression method for portable ECG monitoring system merged with binary convolutional auto-encoder and residual error compensation
  publication-title: Biosensors
  doi: 10.3390/bios12070524
– volume: 15
  start-page: 11
  year: 2015
  ident: 10.1016/j.jelectrocard.2025.154125_b42
  article-title: ECG compression retaining the best natural basis k-coefficients via sparse decomposition
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.09.002
– start-page: 1
  year: 2020
  ident: 10.1016/j.jelectrocard.2025.154125_b36
  article-title: Compression of ECG signals using long short-term memory based sequence-to-sequence autoencoder
– start-page: 1
  year: 2009
  ident: 10.1016/j.jelectrocard.2025.154125_b46
  article-title: ECG denoising and compression by sparse 2D separable transform with overcomplete mixed dictionaries
– year: 2024
  ident: 10.1016/j.jelectrocard.2025.154125_b39
  article-title: Electrocardiogram signal compression using deep convolutional autoencoder with constant error and flexible compression rate
  publication-title: IRBM
  doi: 10.1016/j.irbm.2024.100859
– start-page: 268
  year: 2018
  ident: 10.1016/j.jelectrocard.2025.154125_b41
  article-title: Effects of pre-processing on the ECG signal sparsity and compression quality
– ident: 10.1016/j.jelectrocard.2025.154125_b51
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.jelectrocard.2025.154125_b56
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/51.932724
– volume: 47
  start-page: 1422
  issue: 11
  year: 2000
  ident: 10.1016/j.jelectrocard.2025.154125_b58
  article-title: The weighted diagnostic distortion (WDD) measure for ECG signal compression
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2000.880093
– start-page: 1
  year: 2016
  ident: 10.1016/j.jelectrocard.2025.154125_b53
  article-title: Shallow sparse autoencoders versus sparse coding algorithms for image compression
– start-page: 128
  issue: 2
  year: 1968
  ident: 10.1016/j.jelectrocard.2025.154125_b11
  article-title: AZTEC, a preprocessing program for real-time ECG rhythm analysis
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1968.4502549
– volume: 39
  issue: 3
  year: 2022
  ident: 10.1016/j.jelectrocard.2025.154125_b52
  article-title: Fruit category classification by fractional Fourier entropy with rotation angle vector grid and stacked sparse autoencoder
  publication-title: Expert Syst
  doi: 10.1111/exsy.12701
– volume: 52
  start-page: 198:211
  year: 2018
  ident: 10.1016/j.jelectrocard.2025.154125_b29
  article-title: An efficient compression of ECG signals using deep convolutional autoencoders
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.07.004
– volume: vol. 8
  year: 2005
  ident: 10.1016/j.jelectrocard.2025.154125_b8
– volume: 37
  start-page: 173
  issue: 2
  year: 2007
  ident: 10.1016/j.jelectrocard.2025.154125_b18
  article-title: ECG signal compression by multi-iteration EZW coding for different wavelets and thresholds
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2005.11.004
– volume: 142
  start-page: 335
  year: 2023
  ident: 10.1016/j.jelectrocard.2025.154125_b60
  article-title: Electrocardiogram signal compression using adaptive tunable-Q wavelet transform and modified dead-zone quantizer
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2023.07.033
– volume: 27
  start-page: 798:802
  year: 2005
  ident: 10.1016/j.jelectrocard.2025.154125_b57
  article-title: On the use of PRD and CR parameters for ECG compression
  publication-title: Med Eng Phys
– volume: 26
  start-page: 125
  issue: 1
  year: 2009
  ident: 10.1016/j.jelectrocard.2025.154125_b1
  article-title: Detection and delineation of P and T waves in 12-lead electrocardiograms
  publication-title: Expert Syst
  doi: 10.1111/j.1468-0394.2008.00486.x
– volume: 11
  start-page: 29
  issue: 8
  year: 2023
  ident: 10.1016/j.jelectrocard.2025.154125_b26
  article-title: New ECG signal compression model based on set theory applied to images
  publication-title: J Comput Commun
  doi: 10.4236/jcc.2023.118003
– volume: 101
  year: 2025
  ident: 10.1016/j.jelectrocard.2025.154125_b25
  article-title: An improved ECG data compression scheme based on ensemble empirical mode decomposition
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.107134
– volume: 175
  start-page: 139
  issn: 01692607
  year: 2019
  ident: 10.1016/j.jelectrocard.2025.154125_b31
  article-title: A novel ECG signal compression method using spindle convolutional auto-encoder
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.03.019
– volume: 23
  start-page: 127
  issue: 2
  year: 2001
  ident: 10.1016/j.jelectrocard.2025.154125_b16
  article-title: Compression of ECG signals by optimized quantization of discrete cosine transform coefficients
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(01)00030-3
– volume: 39
  start-page: 6299
  year: 2020
  ident: 10.1016/j.jelectrocard.2025.154125_b43
  article-title: Multichannel ECG compression using Block-Sparsity-based joint compressive sensing
  publication-title: Circuits Systems Signal Process
  doi: 10.1007/s00034-020-01483-x
– volume: 18
  start-page: 581
  issue: 8
  year: 2021
  ident: 10.1016/j.jelectrocard.2025.154125_b4
  article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-021-00522-7
– volume: 127
  start-page: 95
  issue: 1
  year: 2014
  ident: 10.1016/j.jelectrocard.2025.154125_b6
  article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2013.10.003
– volume: 41
  start-page: 6152
  issue: 11
  year: 2022
  ident: 10.1016/j.jelectrocard.2025.154125_b34
  article-title: Joint ECG-EMG-EEG signal compression and reconstruction with incremental multimodal autoencoder approach
  publication-title: Circuits Systems Signal Process
  doi: 10.1007/s00034-022-02071-x
– volume: 47
  start-page: 1308:1316
  issue: 10
  year: 2000
  ident: 10.1016/j.jelectrocard.2025.154125_b27
  article-title: ECG signal compression using analysis by synthesis coding
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.871403
– volume: 46
  start-page: 174
  year: 2018
  ident: 10.1016/j.jelectrocard.2025.154125_b17
  article-title: Electrocardiogram data compression using DCT based discrete orthogonal stockwell transform
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.06.009
– volume: 8
  start-page: 97
  issue: 5
  year: 2015
  ident: 10.1016/j.jelectrocard.2025.154125_b61
  article-title: Compression of ECG signal based on compressive sensing and the extraction of significant features
  publication-title: Int J Commun Netw System Sci
– volume: 5
  start-page: 290
  issue: 4
  year: 2001
  ident: 10.1016/j.jelectrocard.2025.154125_b20
  article-title: ECG data compression using truncated singular value decomposition
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/4233.966104
– volume: 4
  start-page: 15
  issue: 4
  year: 2022
  ident: 10.1016/j.jelectrocard.2025.154125_b38
  article-title: Bidirectional recurrent nets for ECG signal compression
  publication-title: J Comput Sci Res
  doi: 10.30564/jcsr.v4i4.5204
– start-page: 432
  year: 2013
  ident: 10.1016/j.jelectrocard.2025.154125_b47
  article-title: Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images
– volume: 27
  start-page: 1
  issn: 1092-910X
  issue: 3
  year: 2024
  ident: 10.1016/j.jelectrocard.2025.154125_b44
  article-title: Biomedical ECG signal compression by combining wavelet transform and unsupervised autoencoder techniques
  publication-title: Adv Nonlinear Var Inequal
  doi: 10.52783/anvi.v27.1354
– volume: 12
  start-page: 1760
  issue: 8
  year: 2023
  ident: 10.1016/j.jelectrocard.2025.154125_b35
  article-title: A novel method for ECG signal compression and reconstruction: Down-sampling operation and signal-referenced network
  publication-title: Electronics
  doi: 10.3390/electronics12081760
– volume: 35
  start-page: 105
  year: 2014
  ident: 10.1016/j.jelectrocard.2025.154125_b59
  article-title: Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2014.08.007
– volume: 73
  start-page: 24
  year: 2016
  ident: 10.1016/j.jelectrocard.2025.154125_b22
  article-title: Multi-channel ECG data compression using compressed sensing in eigenspace
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.03.021
– volume: 2007
  start-page: 1
  year: 2007
  ident: 10.1016/j.jelectrocard.2025.154125_b23
  article-title: Modeling of electrocardiogram signals using predefined signature and envelope vector sets
  publication-title: EURASIP J on Adv Signal Processing
  doi: 10.1155/2007/12071
– start-page: 1
  year: 2020
  ident: 10.1016/j.jelectrocard.2025.154125_b30
  article-title: ECG compression method based on convolutional autoencoder and discrete wavelet transform
SSID ssj0009272
Score 2.4082832
Snippet Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep...
AbstractElectrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 154125
SubjectTerms Cardiovascular
Convolutional autoencoders
ECG
ECG compression
Sparse autoencoders
Title A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0022073625002535
https://www.clinicalkey.es/playcontent/1-s2.0-S0022073625002535
https://dx.doi.org/10.1016/j.jelectrocard.2025.154125
https://www.ncbi.nlm.nih.gov/pubmed/41092549
https://www.proquest.com/docview/3261794465
Volume 93
WOSCitedRecordID wos001598909800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1532-8430
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009272
  issn: 0022-0736
  databaseCode: AIEXJ
  dateStart: 20220301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1532-8430
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009272
  issn: 0022-0736
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLZoO017mXbt2KXypGkvVSpyceJo2kPo6C6ibA9U4mlWEmwVKIFxU7s_sr-7c2InBLVI7GEvARwdDD5fjj_b50LIO5g0E8U8afmJ6sMCRYEd5ImyUjuVzI5ZQ-kkSe2g0-G9XvijVvtTxMKsroIs49fX4fS_qhraQNkYOvsP6i6_FBrgPSgdrqB2uO6k-Og4m6zklXYVxLjeDD6A3Zhpx_SV6RxzBCwXE8xjiekk8szfuiROmruootfWMXp35AlExsZfNttCZjdEqxv1TTkazG7i30ham3aqX3KQxJeD0jH4UzwexZWb5_JyvI7Mjm7QhT-H1mc82G-ezkZrUFea8nk0Lu6ZvQyHmaC-qvkF--yZkxp5R5ux2bqq4i3zr3cihifDyr8-wY5wA83WEdabObc738XZRbstuq1e9_30l4XlyPDY3tRm2SMHTsBCMJcH0ddW79s6n7OT1wUrf1yRzzZ3HdzW_Tbus21tk3Oc7iPy0OiTRhpUj0lNZk_I_XPjfvGU_Ixoji1axRbV2KIb2KIVbFHAFr2FLaqxRSvYekYuzlrd0y-WKdBhpcBjF5YrE18xqRSX3GOuCmNP8iBIfLvvpZwBtQ6BIikPWK3NlcsaadD3Yx9WDCHmSUzc52Q_m2TyBaEcj2sD24mBv3t-6HIpg9T3sboAA44s68Qthk5MdR4WUTgoDkV1wAUOuNADXicfilEWRaQxzI0C8LKTdHCXtJybp30ubDF3REOgx4MDc6UP6wkQd0HyYylpmKxmqDv3_LaAhABzj2d4cSYny7lwsYJCiFkO6-RQY6UcD88GWDIvfLmD9CvyYP0Avib7i9lSviH30tViMJ8dkb2gx48M5v8CKr7X2A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+multichannel+sparse+convolutional+autoencoder+for+electrocardiogram+signal+compression&rft.jtitle=Journal+of+electrocardiology&rft.au=Bekiryaz%C4%B1c%C4%B1%2C+Tahir&rft.au=Damkac%C4%B1%2C+Mehmet&rft.au=Aydemir%2C+G%C3%BCrkan&rft.au=G%C3%BCrkan%2C+Hakan&rft.date=2025-11-01&rft.issn=1532-8430&rft.eissn=1532-8430&rft.volume=93&rft_id=info:doi/10.1016%2Fj.jelectrocard.2025.154125&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00220736%2Fcov200h.gif