A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression
Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces...
Uložené v:
| Vydané v: | Journal of electrocardiology Ročník 93; s. 154125 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.11.2025
|
| Predmet: | |
| ISSN: | 0022-0736, 1532-8430, 1532-8430 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model’s effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy.
•A novel multichannel CNN-autoencoder efficiently compresses ECG signals.•Channel-variant sparsity is introduced to boost data compression rates.•Channel-specific quantization and Huffman coding ensure high CR, minimal error.•Achieves 20.23:1 CR with 9.86% PRDN on benchmark ECG datasets. |
|---|---|
| AbstractList | AbstractElectrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model’s effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy. Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model’s effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy. •A novel multichannel CNN-autoencoder efficiently compresses ECG signals.•Channel-variant sparsity is introduced to boost data compression rates.•Channel-specific quantization and Huffman coding ensure high CR, minimal error.•Achieves 20.23:1 CR with 9.86% PRDN on benchmark ECG datasets. Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model's effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy. Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model's effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy.Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces. This paper presents a novel multichannel convolutional autoencoder model designed to compress ECG signals efficiently. The proposed approach encodes the ECG signal into a four-channel lower-dimensional space using a convolutional encoder, which is subsequently reconstructed by a deconvolutional decoder. Unlike traditional autoencoder-based methods, the first channel in the model remains unconstrained, while increasing levels of sparsity constraints are imposed on the remaining channels. Different quantization levels are applied to each channel to optimize compression further, reflecting the varying numerical ranges caused by the sparsity constraints. The quantized channels are then encoded using Huffman coding, resulting in a higher compression ratio. The model's effectiveness is evaluated on a popular benchmark dataset, using normalized percent root mean square difference (PRDN) error and compression ratio as performance metrics. The proposed method achieves an average compression ratio of 20.23:1, with an average PRDN error of 9.86%, demonstrating its capability to compress ECG signals efficiently while maintaining reconstruction accuracy. |
| ArticleNumber | 154125 |
| Author | Gürkan, Hakan Aydemir, Gürkan Damkacı, Mehmet Bekiryazıcı, Tahir |
| Author_xml | – sequence: 1 givenname: Tahir orcidid: 0000-0002-0664-649X surname: Bekiryazıcı fullname: Bekiryazıcı, Tahir – sequence: 2 givenname: Mehmet orcidid: 0009-0009-5059-965X surname: Damkacı fullname: Damkacı, Mehmet – sequence: 3 givenname: Gürkan orcidid: 0000-0001-9213-576X surname: Aydemir fullname: Aydemir, Gürkan email: gurkan.aydemir@btu.edu.tr – sequence: 4 givenname: Hakan orcidid: 0000-0002-7008-4778 surname: Gürkan fullname: Gürkan, Hakan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41092549$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtr3DAUhUVJaSZp_0IwXWXjqd62syjk0RcEumi7rdDIV4kcWZpI9kD-fWQmLaFQyEpX8J3DveccoYMQAyD0nuA1wUR-GNYDeDBTikanfk0xFWsiOKHiFVoRwWjdcoYP0ApjSmvcMHmIjnIeMMYdbegbdMhJmQTvVuj3eRXiDnw1zn5y5laHUD55q1OGysSwi36eXAzaV3qeIgQTe0iVjal6toOLN0mPVXY3C2jiuE2Qc5G9Ra-t9hnePb3H6NfnTz8vv9bX3798uzy_rg1n3VQz2EgrwNoWWi6Y7TSHtmk2kvTctEJI2hGGLZeSkdYygU3TSy0ZlZ3Akm_YMTrd-25TvJ8hT2p02YD3OkCcsyokaTrOpSjoyRM6b0bo1Ta5UacH9SeTApztAZNizgnsX4RgtRSgBvW8ALUUoPYFFPHVXgzl2p2DpLJxJTXoXSoK1Uf3MpuP_9gY74Iz2t_BA-QhzqkknRVRmSqsfixNL0VTUSbBFoOL_xu8dItHdq3BYA |
| Cites_doi | 10.1016/j.bspc.2021.103065 10.5244/C.26.124 10.1109/TBME.1982.324962 10.1109/TIM.2023.3279885 10.1109/TBME.1983.325186 10.1007/s10916-016-0468-7 10.1111/pace.12053 10.1111/exsy.12432 10.1109/10.846678 10.1016/j.jelectrocard.2024.153825 10.3390/e24081024 10.1109/LSP.2006.887841 10.3390/s19040775 10.1038/s41597-020-0495-6 10.1002/int.22911 10.3390/bios12070524 10.1016/j.bspc.2014.09.002 10.1016/j.irbm.2024.100859 10.1109/51.932724 10.1109/TBME.2000.880093 10.1109/TBME.1968.4502549 10.1111/exsy.12701 10.1016/j.cogsys.2018.07.004 10.1016/j.compbiomed.2005.11.004 10.1016/j.isatra.2023.07.033 10.1111/j.1468-0394.2008.00486.x 10.4236/jcc.2023.118003 10.1016/j.bspc.2024.107134 10.1016/j.cmpb.2019.03.019 10.1016/S1350-4533(01)00030-3 10.1007/s00034-020-01483-x 10.1038/s41569-021-00522-7 10.1016/j.amjmed.2013.10.003 10.1007/s00034-022-02071-x 10.1109/10.871403 10.1016/j.bspc.2018.06.009 10.1109/4233.966104 10.30564/jcsr.v4i4.5204 10.52783/anvi.v27.1354 10.3390/electronics12081760 10.1016/j.dsp.2014.08.007 10.1016/j.compbiomed.2016.03.021 10.1155/2007/12071 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Inc. Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.jelectrocard.2025.154125 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-8430 |
| EndPage | 154125 |
| ExternalDocumentID | 41092549 10_1016_j_jelectrocard_2025_154125 S0022073625002535 1_s2_0_S0022073625002535 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 7X7 88E 88I 8AF 8AO 8FI 8FJ 8P~ 8R4 8R5 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACDOS ACGFO ACGFS ACGOD ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFHD AFFNX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 D-I DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ HCIFZ HEB HMCUK HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B M1P M29 M2P M2Q M41 MJL MO0 N9A O-L O9- OAUVE OA~ OL0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO Q2X Q38 R2- ROL RPZ RWL S0X SAE SDF SDG SEL SES SEW SPCBC SSH SSZ T5K TAE UKHRP UNMZH WH7 WUQ X7M Z5R ZGI ~G- ~HD 9DU AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c439t-3eb6f5eff8e8453f9a4e877b61d4c855629130f466318f350c7d6a632695064b3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598909800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-0736 1532-8430 |
| IngestDate | Sat Oct 18 22:56:52 EDT 2025 Sat Oct 18 23:08:48 EDT 2025 Sat Nov 29 07:08:28 EST 2025 Sat Nov 15 16:51:51 EST 2025 Sat Nov 22 12:31:08 EST 2025 Sat Nov 15 06:41:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ECG ECG compression Sparse autoencoders Convolutional autoencoders |
| Language | English |
| License | Copyright © 2025 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c439t-3eb6f5eff8e8453f9a4e877b61d4c855629130f466318f350c7d6a632695064b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9213-576X 0000-0002-0664-649X 0009-0009-5059-965X 0000-0002-7008-4778 |
| PMID | 41092549 |
| PQID | 3261794465 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3261794465 pubmed_primary_41092549 crossref_primary_10_1016_j_jelectrocard_2025_154125 elsevier_sciencedirect_doi_10_1016_j_jelectrocard_2025_154125 elsevier_clinicalkeyesjournals_1_s2_0_S0022073625002535 elsevier_clinicalkey_doi_10_1016_j_jelectrocard_2025_154125 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of electrocardiology |
| PublicationTitleAlternate | J Electrocardiol |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Lalos, Alonso, Verikoukis (b59) 2014; 35 Yildirim, Tan, Acharya (b29) 2018; 52 Han, Zhong, He, Yu, Zhang (b48) 2015 Baviskar V, Verma M, Chatterjee P, Singal G, Gadekallu TR. Optimization using Internet of Agent based Stacked Sparse Autoencoder Model for Heart Disease Prediction. Expert Syst e13359. Bulanda, Starzyk, Horzyk (b13) 2025; 88 Wei, Chang, Chou, Jan (b20) 2001; 5 Blanco-Valesco, Cruz-Roldan, Godino-Llorente, Blanco-Valesco, Armeins-Aparicio, Ferreras (b57) 2005; 27 Bekiryazici, Gürkan (b30) 2020 Rosenberg, Samuel, Thosani, Zimetbaum (b5) 2013; 36 Pal, Kumar, Vishwakarma, Singh (b15) 2023 Shi, Wang, Qin, Chen, Liu, He, Wang, Chang, Huang (b33) 2022; 12 Zigel (b7) 1998 Eman, El Hindi (b38) 2022; 4 Tohumoglu, Sezgin (b18) 2007; 37 Roy, Roy, Mukherjee, Ghosh, Bhattacharyya, Naskar (b45) 2019 Aspuru, Ochoa-Brust, Félix, Mata-López, Mena, Ostos, Martínez-Peláez (b2) 2019; 19 Wang, Ma, Liu, Chang, Wang, He, Huang (b31) 2019; 175 Huang, Xue, Xiao, Bu (b35) 2023; 12 Pal, Kumar, Vishwakarma, Lee (b60) 2023; 142 Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A. Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification. In: BMVC. 2012, p. 1–12. Bekiryazıcı, Aydemir, Gürkan (b39) 2024 Gurkan, Guz, Yarman (b23) 2007; 2007 Singh, Sharma, Dandapat (b22) 2016; 73 Zhang, Zhang, Lo, Xu (b3) 2020; 37 Mehta, Lingayat, Sanghvi (b1) 2009; 26 Benzid, Marir, Bouguechal (b14) 2007; 14 Wang, Zhou, Ji, Yang, Guo, Gong, Yi, Wang (b50) 2022; 37 Hua, Rao, Peng, Liu, Tang (b37) 2022; 24 Men, Joshi (b44) 2024; 27 Ishijima, Shin, Hostetter, Sklansky (b12) 1983 Khorasani, Hodtani, Kakhki (b41) 2018 Shamsi, Rezaii, Beheshti (b40) 2020 Mueller (b10) 1978; 14 Abenstein, Tompkins (b9) 1982 Adamo, Grossi, Lanzarotti, Lin (b42) 2015; 15 Gupta (b21) 2016; 40 Kabiena, Djomadji, Tonye (b26) 2023; 11 Dasan, Gnanaraj (b34) 2022; 41 Zhang, Dong, Wang, Guo, Wang (b32) 2021; 70 Zhang, Satapathy, Wang (b52) 2022; 39 Sörnmo, Laguna (b8) 2005; vol. 8 Abo-Zahhad, Hussein, Mohamed (b61) 2015; 8 Batista, Melcher, Carvalho (b16) 2001; 23 Cho (b47) 2013 Zigel, Cohen, Katz (b58) 2000; 47 Hasssan, Meng, Cao, Seo (b54) 2022 Gurkan (b24) 2012; 2012:119 Wagner, Strodthoff, Bousseljot, Kreiseler, Lunze, Samek, Schaeffter (b55) 2020; 7 Aydemir, Bekiryazici, Gürkan (b36) 2020 Zhang, Zhao, Chen, Wu (b28) 2017; 12 Barrett, Komatireddy, Haaser, Topol, Sheard, Encinas, Fought, Topol (b6) 2014; 127 Zhao, Gui, Zhang, Feng, Yang, Zhou, Tang, Liu (b25) 2025; 101 Kumar, Deka, Datta (b43) 2020; 39 Bayoumy, Gaber, Elshafeey, Mhaimeed, Dineen, Marvel, Martin, Muse, Turakhia, Tarakji (b4) 2021; 18 Jha, Kolekar (b17) 2018; 46 Ghaffari, Palangi, Babaie-Zadeh, Jutten (b46) 2009 Zigel, Cohen, Katz (b27) 2000; 47 Cox, Nolle, Fozzard, Oliver (b11) 1968 Dumas, Roumy, Guillemot (b53) 2016 Moody, Mark (b56) 2001; 20 Lu, Kim, Pearlman (b19) 2000; 47 Wang (10.1016/j.jelectrocard.2025.154125_b31) 2019; 175 Bayoumy (10.1016/j.jelectrocard.2025.154125_b4) 2021; 18 Khorasani (10.1016/j.jelectrocard.2025.154125_b41) 2018 Dasan (10.1016/j.jelectrocard.2025.154125_b34) 2022; 41 Jha (10.1016/j.jelectrocard.2025.154125_b17) 2018; 46 Bekiryazici (10.1016/j.jelectrocard.2025.154125_b30) 2020 Zhang (10.1016/j.jelectrocard.2025.154125_b32) 2021; 70 Cox (10.1016/j.jelectrocard.2025.154125_b11) 1968 Zhang (10.1016/j.jelectrocard.2025.154125_b28) 2017; 12 Kabiena (10.1016/j.jelectrocard.2025.154125_b26) 2023; 11 Gurkan (10.1016/j.jelectrocard.2025.154125_b24) 2012; 2012:119 Aydemir (10.1016/j.jelectrocard.2025.154125_b36) 2020 Shamsi (10.1016/j.jelectrocard.2025.154125_b40) 2020 Zhao (10.1016/j.jelectrocard.2025.154125_b25) 2025; 101 10.1016/j.jelectrocard.2025.154125_b49 Adamo (10.1016/j.jelectrocard.2025.154125_b42) 2015; 15 Wagner (10.1016/j.jelectrocard.2025.154125_b55) 2020; 7 Gurkan (10.1016/j.jelectrocard.2025.154125_b23) 2007; 2007 Mehta (10.1016/j.jelectrocard.2025.154125_b1) 2009; 26 Lalos (10.1016/j.jelectrocard.2025.154125_b59) 2014; 35 Zigel (10.1016/j.jelectrocard.2025.154125_b58) 2000; 47 Roy (10.1016/j.jelectrocard.2025.154125_b45) 2019 Rosenberg (10.1016/j.jelectrocard.2025.154125_b5) 2013; 36 Aspuru (10.1016/j.jelectrocard.2025.154125_b2) 2019; 19 Wang (10.1016/j.jelectrocard.2025.154125_b50) 2022; 37 Pal (10.1016/j.jelectrocard.2025.154125_b15) 2023 Barrett (10.1016/j.jelectrocard.2025.154125_b6) 2014; 127 Bulanda (10.1016/j.jelectrocard.2025.154125_b13) 2025; 88 Zigel (10.1016/j.jelectrocard.2025.154125_b7) 1998 Ishijima (10.1016/j.jelectrocard.2025.154125_b12) 1983 Blanco-Valesco (10.1016/j.jelectrocard.2025.154125_b57) 2005; 27 Dumas (10.1016/j.jelectrocard.2025.154125_b53) 2016 Hasssan (10.1016/j.jelectrocard.2025.154125_b54) 2022 Men (10.1016/j.jelectrocard.2025.154125_b44) 2024; 27 Abenstein (10.1016/j.jelectrocard.2025.154125_b9) 1982 Abo-Zahhad (10.1016/j.jelectrocard.2025.154125_b61) 2015; 8 Kumar (10.1016/j.jelectrocard.2025.154125_b43) 2020; 39 Moody (10.1016/j.jelectrocard.2025.154125_b56) 2001; 20 Zhang (10.1016/j.jelectrocard.2025.154125_b52) 2022; 39 Yildirim (10.1016/j.jelectrocard.2025.154125_b29) 2018; 52 Zhang (10.1016/j.jelectrocard.2025.154125_b3) 2020; 37 Mueller (10.1016/j.jelectrocard.2025.154125_b10) 1978; 14 Tohumoglu (10.1016/j.jelectrocard.2025.154125_b18) 2007; 37 Bekiryazıcı (10.1016/j.jelectrocard.2025.154125_b39) 2024 Singh (10.1016/j.jelectrocard.2025.154125_b22) 2016; 73 Shi (10.1016/j.jelectrocard.2025.154125_b33) 2022; 12 Lu (10.1016/j.jelectrocard.2025.154125_b19) 2000; 47 Eman (10.1016/j.jelectrocard.2025.154125_b38) 2022; 4 Wei (10.1016/j.jelectrocard.2025.154125_b20) 2001; 5 Hua (10.1016/j.jelectrocard.2025.154125_b37) 2022; 24 Pal (10.1016/j.jelectrocard.2025.154125_b60) 2023; 142 Cho (10.1016/j.jelectrocard.2025.154125_b47) 2013 Sörnmo (10.1016/j.jelectrocard.2025.154125_b8) 2005; vol. 8 Huang (10.1016/j.jelectrocard.2025.154125_b35) 2023; 12 Han (10.1016/j.jelectrocard.2025.154125_b48) 2015 Ghaffari (10.1016/j.jelectrocard.2025.154125_b46) 2009 Batista (10.1016/j.jelectrocard.2025.154125_b16) 2001; 23 10.1016/j.jelectrocard.2025.154125_b51 Zigel (10.1016/j.jelectrocard.2025.154125_b27) 2000; 47 Benzid (10.1016/j.jelectrocard.2025.154125_b14) 2007; 14 Gupta (10.1016/j.jelectrocard.2025.154125_b21) 2016; 40 |
| References_xml | – volume: 101 year: 2025 ident: b25 article-title: An improved ECG data compression scheme based on ensemble empirical mode decomposition publication-title: Biomed Signal Process Control – volume: 27 start-page: 798:802 year: 2005 ident: b57 article-title: On the use of PRD and CR parameters for ECG compression publication-title: Med Eng Phys – start-page: 43 year: 1982 end-page: 48 ident: b9 article-title: A new data-reduction algorithm for real-time ECG analysis publication-title: IEEE Trans Biomed Eng – start-page: 432 year: 2013 end-page: 440 ident: b47 article-title: Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images publication-title: International conference on machine learning – volume: 27 start-page: 1 year: 2024 end-page: 18 ident: b44 article-title: Biomedical ECG signal compression by combining wavelet transform and unsupervised autoencoder techniques publication-title: Adv Nonlinear Var Inequal – volume: 175 start-page: 139 year: 2019 end-page: 150 ident: b31 article-title: A novel ECG signal compression method using spindle convolutional auto-encoder publication-title: Comput Methods Programs Biomed – volume: 142 start-page: 335 year: 2023 end-page: 346 ident: b60 article-title: Electrocardiogram signal compression using adaptive tunable-Q wavelet transform and modified dead-zone quantizer publication-title: ISA Trans – volume: 41 start-page: 6152 year: 2022 end-page: 6181 ident: b34 article-title: Joint ECG-EMG-EEG signal compression and reconstruction with incremental multimodal autoencoder approach publication-title: Circuits Systems Signal Process – start-page: 31 year: 2019 end-page: 38 ident: b45 article-title: Sparse encoding algorithm for real-time ECG compression publication-title: Recent trends in signal and image processing – reference: Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A. Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification. In: BMVC. 2012, p. 1–12. – volume: 2007 start-page: 1 year: 2007 end-page: 12 ident: b23 article-title: Modeling of electrocardiogram signals using predefined signature and envelope vector sets publication-title: EURASIP J on Adv Signal Processing – volume: 12 start-page: 1760 year: 2023 ident: b35 article-title: A novel method for ECG signal compression and reconstruction: Down-sampling operation and signal-referenced network publication-title: Electronics – start-page: 1 year: 2020 end-page: 4 ident: b30 article-title: ECG compression method based on convolutional autoencoder and discrete wavelet transform publication-title: 2020 28th signal processing and communications applications conference – volume: 39 start-page: 6299 year: 2020 end-page: 6315 ident: b43 article-title: Multichannel ECG compression using Block-Sparsity-based joint compressive sensing publication-title: Circuits Systems Signal Process – volume: 37 year: 2020 ident: b3 article-title: Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASE-based feature selection publication-title: Expert Syst – volume: 5 start-page: 290 year: 2001 end-page: 299 ident: b20 article-title: ECG data compression using truncated singular value decomposition publication-title: IEEE Trans Inf Technol Biomed – year: 2024 ident: b39 article-title: Electrocardiogram signal compression using deep convolutional autoencoder with constant error and flexible compression rate publication-title: IRBM – volume: 23 start-page: 127 year: 2001 end-page: 134 ident: b16 article-title: Compression of ECG signals by optimized quantization of discrete cosine transform coefficients publication-title: Med Eng Phys – volume: 18 start-page: 581 year: 2021 end-page: 599 ident: b4 article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward publication-title: Nat Rev Cardiol – volume: 47 start-page: 1308:1316 year: 2000 ident: b27 article-title: ECG signal compression using analysis by synthesis coding publication-title: IEEE Trans Biomed Eng – volume: 127 start-page: 95 year: 2014 end-page: e11 ident: b6 article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring publication-title: Am J Med – start-page: 1 year: 2016 end-page: 6 ident: b53 article-title: Shallow sparse autoencoders versus sparse coding algorithms for image compression publication-title: 2016 IEEE international conference on multimedia & expo workshops – volume: 36 start-page: 328 year: 2013 end-page: 333 ident: b5 article-title: Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study publication-title: Pacing Clin Electrophysiol – volume: vol. 8 year: 2005 ident: b8 publication-title: Bioelectrical signal processing in cardiac and neurological applications – start-page: 268 year: 2018 end-page: 273 ident: b41 article-title: Effects of pre-processing on the ECG signal sparsity and compression quality publication-title: 2018 8th international conference on computer and knowledge engineering – start-page: 328 year: 2020 end-page: 331 ident: b40 article-title: MNDL sparsity order selection for compressed sensing with application in ECG compression publication-title: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society – volume: 2012:119 start-page: 1 year: 2012 end-page: 17 ident: b24 article-title: Compression of ECG signals using variable-length classified vector sets and wavelet transforms publication-title: EURASIP J Adv Signal Process – volume: 12 start-page: 1:20 year: 2017 ident: b28 article-title: ECG data compression using a neural network model based on multi-objective optimization publication-title: PLoS One – volume: 4 start-page: 15 year: 2022 end-page: 25 ident: b38 article-title: Bidirectional recurrent nets for ECG signal compression publication-title: J Comput Sci Res – volume: 39 year: 2022 ident: b52 article-title: Fruit category classification by fractional Fourier entropy with rotation angle vector grid and stacked sparse autoencoder publication-title: Expert Syst – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b56 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng Med Biol Mag – volume: 52 start-page: 198:211 year: 2018 ident: b29 article-title: An efficient compression of ECG signals using deep convolutional autoencoders publication-title: Cogn Syst Res – start-page: 156 year: 2015 end-page: 166 ident: b48 article-title: The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification publication-title: Brain informatics and health: 8th international conference, BIH 2015, London, UK, August 30-September 2, 2015. proceedings 8 – year: 2023 ident: b15 article-title: Optimized tunable-Q wavelet transform based 2D ECG compression technique using DCT publication-title: IEEE Trans Instrum Meas – start-page: 1 year: 2020 end-page: 4 ident: b36 article-title: Compression of ECG signals using long short-term memory based sequence-to-sequence autoencoder publication-title: 2020 28th signal processing and communications applications conference – volume: 47 start-page: 849 year: 2000 end-page: 856 ident: b19 article-title: Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm publication-title: IEEE Trans Biomed Eng – volume: 88 year: 2025 ident: b13 article-title: FlexPoints: Efficient electrocardiogram signal compression for machine learning publication-title: J Electrocardiol – start-page: 344 year: 2022 end-page: 348 ident: b54 article-title: Spatial-temporal data compression of dynamic vision sensor output with high pixel-level saliency using low-precision sparse autoencoder publication-title: 2022 56th asilomar conference on signals, systems, and computers – volume: 24 start-page: 1024 year: 2022 ident: b37 article-title: Deep compressive sensing on ECG signals with modified inception block and LSTM publication-title: Entropy – volume: 8 start-page: 97 year: 2015 end-page: 117 ident: b61 article-title: Compression of ECG signal based on compressive sensing and the extraction of significant features publication-title: Int J Commun Netw System Sci – volume: 14 start-page: 81 year: 1978 end-page: 85 ident: b10 article-title: Arrhythmia detection program for an ambulatory ECG monitor publication-title: Biomed Sci Instrum – volume: 47 start-page: 1422 year: 2000 end-page: 1430 ident: b58 article-title: The weighted diagnostic distortion (WDD) measure for ECG signal compression publication-title: IEEE Trans Biomed Eng – volume: 19 start-page: 775 year: 2019 ident: b2 article-title: Segmentation of the ECG signal by means of a linear regression algorithm publication-title: Sensors – year: 1998 ident: b7 article-title: ECG signal compression – start-page: 723 year: 1983 end-page: 729 ident: b12 article-title: Scan-along polygonal approximation for data compression of electrocardiograms publication-title: IEEE Trans Biomed Eng – volume: 26 start-page: 125 year: 2009 end-page: 143 ident: b1 article-title: Detection and delineation of P and T waves in 12-lead electrocardiograms publication-title: Expert Syst – volume: 73 start-page: 24 year: 2016 end-page: 37 ident: b22 article-title: Multi-channel ECG data compression using compressed sensing in eigenspace publication-title: Comput Biol Med – volume: 37 start-page: 7944 year: 2022 end-page: 7967 ident: b50 article-title: Deep sparse autoencoder integrated with three-stage framework for glaucoma diagnosis publication-title: Int J Intell Syst – reference: Baviskar V, Verma M, Chatterjee P, Singal G, Gadekallu TR. Optimization using Internet of Agent based Stacked Sparse Autoencoder Model for Heart Disease Prediction. Expert Syst e13359. – volume: 15 start-page: 11 year: 2015 end-page: 17 ident: b42 article-title: ECG compression retaining the best natural basis k-coefficients via sparse decomposition publication-title: Biomed Signal Process Control – volume: 35 start-page: 105 year: 2014 end-page: 116 ident: b59 article-title: Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs publication-title: Digit Signal Process – volume: 12 start-page: 524 year: 2022 ident: b33 article-title: New ECG compression method for portable ECG monitoring system merged with binary convolutional auto-encoder and residual error compensation publication-title: Biosensors – volume: 40 start-page: 112 year: 2016 ident: b21 article-title: Quality aware compression of electrocardiogram using principal component analysis publication-title: J Med Syst – volume: 37 start-page: 173 year: 2007 end-page: 182 ident: b18 article-title: ECG signal compression by multi-iteration EZW coding for different wavelets and thresholds publication-title: Comput Biol Med – volume: 7 start-page: 154 year: 2020 ident: b55 article-title: PTB-XL, a large publicly available electrocardiography dataset publication-title: Sci Data – start-page: 1 year: 2009 end-page: 6 ident: b46 article-title: ECG denoising and compression by sparse 2D separable transform with overcomplete mixed dictionaries publication-title: 2009 IEEE international workshop on machine learning for signal processing – start-page: 128 year: 1968 end-page: 129 ident: b11 article-title: AZTEC, a preprocessing program for real-time ECG rhythm analysis publication-title: IEEE Trans Biomed Eng – volume: 46 start-page: 174 year: 2018 end-page: 181 ident: b17 article-title: Electrocardiogram data compression using DCT based discrete orthogonal stockwell transform publication-title: Biomed Signal Process Control – volume: 11 start-page: 29 year: 2023 end-page: 43 ident: b26 article-title: New ECG signal compression model based on set theory applied to images publication-title: J Comput Commun – volume: 14 start-page: 373 year: 2007 end-page: 376 ident: b14 article-title: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder publication-title: IEEE Signal Process Lett – volume: 70 year: 2021 ident: b32 article-title: CSNet: A deep learning approach for ECG compressed sensing publication-title: Biomed Signal Process Control – volume: 70 year: 2021 ident: 10.1016/j.jelectrocard.2025.154125_b32 article-title: CSNet: A deep learning approach for ECG compressed sensing publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103065 – start-page: 328 year: 2020 ident: 10.1016/j.jelectrocard.2025.154125_b40 article-title: MNDL sparsity order selection for compressed sensing with application in ECG compression – year: 1998 ident: 10.1016/j.jelectrocard.2025.154125_b7 – ident: 10.1016/j.jelectrocard.2025.154125_b49 doi: 10.5244/C.26.124 – start-page: 43 issue: 1 year: 1982 ident: 10.1016/j.jelectrocard.2025.154125_b9 article-title: A new data-reduction algorithm for real-time ECG analysis publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1982.324962 – volume: 2012:119 start-page: 1 year: 2012 ident: 10.1016/j.jelectrocard.2025.154125_b24 article-title: Compression of ECG signals using variable-length classified vector sets and wavelet transforms publication-title: EURASIP J Adv Signal Process – start-page: 344 year: 2022 ident: 10.1016/j.jelectrocard.2025.154125_b54 article-title: Spatial-temporal data compression of dynamic vision sensor output with high pixel-level saliency using low-precision sparse autoencoder – year: 2023 ident: 10.1016/j.jelectrocard.2025.154125_b15 article-title: Optimized tunable-Q wavelet transform based 2D ECG compression technique using DCT publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2023.3279885 – start-page: 723 issue: 11 year: 1983 ident: 10.1016/j.jelectrocard.2025.154125_b12 article-title: Scan-along polygonal approximation for data compression of electrocardiograms publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1983.325186 – volume: 40 start-page: 112 issue: 5 year: 2016 ident: 10.1016/j.jelectrocard.2025.154125_b21 article-title: Quality aware compression of electrocardiogram using principal component analysis publication-title: J Med Syst doi: 10.1007/s10916-016-0468-7 – volume: 36 start-page: 328 issue: 3 year: 2013 ident: 10.1016/j.jelectrocard.2025.154125_b5 article-title: Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study publication-title: Pacing Clin Electrophysiol doi: 10.1111/pace.12053 – volume: 37 issue: 1 year: 2020 ident: 10.1016/j.jelectrocard.2025.154125_b3 article-title: Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASE-based feature selection publication-title: Expert Syst doi: 10.1111/exsy.12432 – volume: 14 start-page: 81 year: 1978 ident: 10.1016/j.jelectrocard.2025.154125_b10 article-title: Arrhythmia detection program for an ambulatory ECG monitor publication-title: Biomed Sci Instrum – start-page: 156 year: 2015 ident: 10.1016/j.jelectrocard.2025.154125_b48 article-title: The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification – start-page: 31 year: 2019 ident: 10.1016/j.jelectrocard.2025.154125_b45 article-title: Sparse encoding algorithm for real-time ECG compression – volume: 47 start-page: 849 issue: 7 year: 2000 ident: 10.1016/j.jelectrocard.2025.154125_b19 article-title: Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.846678 – volume: 88 year: 2025 ident: 10.1016/j.jelectrocard.2025.154125_b13 article-title: FlexPoints: Efficient electrocardiogram signal compression for machine learning publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2024.153825 – volume: 24 start-page: 1024 issue: 8 year: 2022 ident: 10.1016/j.jelectrocard.2025.154125_b37 article-title: Deep compressive sensing on ECG signals with modified inception block and LSTM publication-title: Entropy doi: 10.3390/e24081024 – volume: 14 start-page: 373 issue: 6 year: 2007 ident: 10.1016/j.jelectrocard.2025.154125_b14 article-title: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2006.887841 – volume: 12 start-page: 1:20 issue: 10 year: 2017 ident: 10.1016/j.jelectrocard.2025.154125_b28 article-title: ECG data compression using a neural network model based on multi-objective optimization publication-title: PLoS One – volume: 19 start-page: 775 issue: 4 year: 2019 ident: 10.1016/j.jelectrocard.2025.154125_b2 article-title: Segmentation of the ECG signal by means of a linear regression algorithm publication-title: Sensors doi: 10.3390/s19040775 – volume: 7 start-page: 154 issue: 1 year: 2020 ident: 10.1016/j.jelectrocard.2025.154125_b55 article-title: PTB-XL, a large publicly available electrocardiography dataset publication-title: Sci Data doi: 10.1038/s41597-020-0495-6 – volume: 37 start-page: 7944 issue: 10 year: 2022 ident: 10.1016/j.jelectrocard.2025.154125_b50 article-title: Deep sparse autoencoder integrated with three-stage framework for glaucoma diagnosis publication-title: Int J Intell Syst doi: 10.1002/int.22911 – volume: 12 start-page: 524 issue: 7 year: 2022 ident: 10.1016/j.jelectrocard.2025.154125_b33 article-title: New ECG compression method for portable ECG monitoring system merged with binary convolutional auto-encoder and residual error compensation publication-title: Biosensors doi: 10.3390/bios12070524 – volume: 15 start-page: 11 year: 2015 ident: 10.1016/j.jelectrocard.2025.154125_b42 article-title: ECG compression retaining the best natural basis k-coefficients via sparse decomposition publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.09.002 – start-page: 1 year: 2020 ident: 10.1016/j.jelectrocard.2025.154125_b36 article-title: Compression of ECG signals using long short-term memory based sequence-to-sequence autoencoder – start-page: 1 year: 2009 ident: 10.1016/j.jelectrocard.2025.154125_b46 article-title: ECG denoising and compression by sparse 2D separable transform with overcomplete mixed dictionaries – year: 2024 ident: 10.1016/j.jelectrocard.2025.154125_b39 article-title: Electrocardiogram signal compression using deep convolutional autoencoder with constant error and flexible compression rate publication-title: IRBM doi: 10.1016/j.irbm.2024.100859 – start-page: 268 year: 2018 ident: 10.1016/j.jelectrocard.2025.154125_b41 article-title: Effects of pre-processing on the ECG signal sparsity and compression quality – ident: 10.1016/j.jelectrocard.2025.154125_b51 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.jelectrocard.2025.154125_b56 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.932724 – volume: 47 start-page: 1422 issue: 11 year: 2000 ident: 10.1016/j.jelectrocard.2025.154125_b58 article-title: The weighted diagnostic distortion (WDD) measure for ECG signal compression publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2000.880093 – start-page: 1 year: 2016 ident: 10.1016/j.jelectrocard.2025.154125_b53 article-title: Shallow sparse autoencoders versus sparse coding algorithms for image compression – start-page: 128 issue: 2 year: 1968 ident: 10.1016/j.jelectrocard.2025.154125_b11 article-title: AZTEC, a preprocessing program for real-time ECG rhythm analysis publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1968.4502549 – volume: 39 issue: 3 year: 2022 ident: 10.1016/j.jelectrocard.2025.154125_b52 article-title: Fruit category classification by fractional Fourier entropy with rotation angle vector grid and stacked sparse autoencoder publication-title: Expert Syst doi: 10.1111/exsy.12701 – volume: 52 start-page: 198:211 year: 2018 ident: 10.1016/j.jelectrocard.2025.154125_b29 article-title: An efficient compression of ECG signals using deep convolutional autoencoders publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.07.004 – volume: vol. 8 year: 2005 ident: 10.1016/j.jelectrocard.2025.154125_b8 – volume: 37 start-page: 173 issue: 2 year: 2007 ident: 10.1016/j.jelectrocard.2025.154125_b18 article-title: ECG signal compression by multi-iteration EZW coding for different wavelets and thresholds publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2005.11.004 – volume: 142 start-page: 335 year: 2023 ident: 10.1016/j.jelectrocard.2025.154125_b60 article-title: Electrocardiogram signal compression using adaptive tunable-Q wavelet transform and modified dead-zone quantizer publication-title: ISA Trans doi: 10.1016/j.isatra.2023.07.033 – volume: 27 start-page: 798:802 year: 2005 ident: 10.1016/j.jelectrocard.2025.154125_b57 article-title: On the use of PRD and CR parameters for ECG compression publication-title: Med Eng Phys – volume: 26 start-page: 125 issue: 1 year: 2009 ident: 10.1016/j.jelectrocard.2025.154125_b1 article-title: Detection and delineation of P and T waves in 12-lead electrocardiograms publication-title: Expert Syst doi: 10.1111/j.1468-0394.2008.00486.x – volume: 11 start-page: 29 issue: 8 year: 2023 ident: 10.1016/j.jelectrocard.2025.154125_b26 article-title: New ECG signal compression model based on set theory applied to images publication-title: J Comput Commun doi: 10.4236/jcc.2023.118003 – volume: 101 year: 2025 ident: 10.1016/j.jelectrocard.2025.154125_b25 article-title: An improved ECG data compression scheme based on ensemble empirical mode decomposition publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.107134 – volume: 175 start-page: 139 issn: 01692607 year: 2019 ident: 10.1016/j.jelectrocard.2025.154125_b31 article-title: A novel ECG signal compression method using spindle convolutional auto-encoder publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.03.019 – volume: 23 start-page: 127 issue: 2 year: 2001 ident: 10.1016/j.jelectrocard.2025.154125_b16 article-title: Compression of ECG signals by optimized quantization of discrete cosine transform coefficients publication-title: Med Eng Phys doi: 10.1016/S1350-4533(01)00030-3 – volume: 39 start-page: 6299 year: 2020 ident: 10.1016/j.jelectrocard.2025.154125_b43 article-title: Multichannel ECG compression using Block-Sparsity-based joint compressive sensing publication-title: Circuits Systems Signal Process doi: 10.1007/s00034-020-01483-x – volume: 18 start-page: 581 issue: 8 year: 2021 ident: 10.1016/j.jelectrocard.2025.154125_b4 article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward publication-title: Nat Rev Cardiol doi: 10.1038/s41569-021-00522-7 – volume: 127 start-page: 95 issue: 1 year: 2014 ident: 10.1016/j.jelectrocard.2025.154125_b6 article-title: Comparison of 24-hour holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring publication-title: Am J Med doi: 10.1016/j.amjmed.2013.10.003 – volume: 41 start-page: 6152 issue: 11 year: 2022 ident: 10.1016/j.jelectrocard.2025.154125_b34 article-title: Joint ECG-EMG-EEG signal compression and reconstruction with incremental multimodal autoencoder approach publication-title: Circuits Systems Signal Process doi: 10.1007/s00034-022-02071-x – volume: 47 start-page: 1308:1316 issue: 10 year: 2000 ident: 10.1016/j.jelectrocard.2025.154125_b27 article-title: ECG signal compression using analysis by synthesis coding publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.871403 – volume: 46 start-page: 174 year: 2018 ident: 10.1016/j.jelectrocard.2025.154125_b17 article-title: Electrocardiogram data compression using DCT based discrete orthogonal stockwell transform publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.06.009 – volume: 8 start-page: 97 issue: 5 year: 2015 ident: 10.1016/j.jelectrocard.2025.154125_b61 article-title: Compression of ECG signal based on compressive sensing and the extraction of significant features publication-title: Int J Commun Netw System Sci – volume: 5 start-page: 290 issue: 4 year: 2001 ident: 10.1016/j.jelectrocard.2025.154125_b20 article-title: ECG data compression using truncated singular value decomposition publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/4233.966104 – volume: 4 start-page: 15 issue: 4 year: 2022 ident: 10.1016/j.jelectrocard.2025.154125_b38 article-title: Bidirectional recurrent nets for ECG signal compression publication-title: J Comput Sci Res doi: 10.30564/jcsr.v4i4.5204 – start-page: 432 year: 2013 ident: 10.1016/j.jelectrocard.2025.154125_b47 article-title: Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images – volume: 27 start-page: 1 issn: 1092-910X issue: 3 year: 2024 ident: 10.1016/j.jelectrocard.2025.154125_b44 article-title: Biomedical ECG signal compression by combining wavelet transform and unsupervised autoencoder techniques publication-title: Adv Nonlinear Var Inequal doi: 10.52783/anvi.v27.1354 – volume: 12 start-page: 1760 issue: 8 year: 2023 ident: 10.1016/j.jelectrocard.2025.154125_b35 article-title: A novel method for ECG signal compression and reconstruction: Down-sampling operation and signal-referenced network publication-title: Electronics doi: 10.3390/electronics12081760 – volume: 35 start-page: 105 year: 2014 ident: 10.1016/j.jelectrocard.2025.154125_b59 article-title: Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs publication-title: Digit Signal Process doi: 10.1016/j.dsp.2014.08.007 – volume: 73 start-page: 24 year: 2016 ident: 10.1016/j.jelectrocard.2025.154125_b22 article-title: Multi-channel ECG data compression using compressed sensing in eigenspace publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.03.021 – volume: 2007 start-page: 1 year: 2007 ident: 10.1016/j.jelectrocard.2025.154125_b23 article-title: Modeling of electrocardiogram signals using predefined signature and envelope vector sets publication-title: EURASIP J on Adv Signal Processing doi: 10.1155/2007/12071 – start-page: 1 year: 2020 ident: 10.1016/j.jelectrocard.2025.154125_b30 article-title: ECG compression method based on convolutional autoencoder and discrete wavelet transform |
| SSID | ssj0009272 |
| Score | 2.4082832 |
| Snippet | Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep... AbstractElectrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 154125 |
| SubjectTerms | Cardiovascular Convolutional autoencoders ECG ECG compression Sparse autoencoders |
| Title | A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022073625002535 https://www.clinicalkey.es/playcontent/1-s2.0-S0022073625002535 https://dx.doi.org/10.1016/j.jelectrocard.2025.154125 https://www.ncbi.nlm.nih.gov/pubmed/41092549 https://www.proquest.com/docview/3261794465 |
| Volume | 93 |
| WOSCitedRecordID | wos001598909800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1532-8430 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009272 issn: 0022-0736 databaseCode: AIEXJ dateStart: 20220301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1532-8430 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009272 issn: 0022-0736 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLZoO017mXbt2KXypGkvVSpyceJo2kPo6C6ibA9U4mlWEmwVKIFxU7s_sr-7c2InBLVI7GEvARwdDD5fjj_b50LIO5g0E8U8afmJ6sMCRYEd5ImyUjuVzI5ZQ-kkSe2g0-G9XvijVvtTxMKsroIs49fX4fS_qhraQNkYOvsP6i6_FBrgPSgdrqB2uO6k-Og4m6zklXYVxLjeDD6A3Zhpx_SV6RxzBCwXE8xjiekk8szfuiROmruootfWMXp35AlExsZfNttCZjdEqxv1TTkazG7i30ham3aqX3KQxJeD0jH4UzwexZWb5_JyvI7Mjm7QhT-H1mc82G-ezkZrUFea8nk0Lu6ZvQyHmaC-qvkF--yZkxp5R5ux2bqq4i3zr3cihifDyr8-wY5wA83WEdabObc738XZRbstuq1e9_30l4XlyPDY3tRm2SMHTsBCMJcH0ddW79s6n7OT1wUrf1yRzzZ3HdzW_Tbus21tk3Oc7iPy0OiTRhpUj0lNZk_I_XPjfvGU_Ixoji1axRbV2KIb2KIVbFHAFr2FLaqxRSvYekYuzlrd0y-WKdBhpcBjF5YrE18xqRSX3GOuCmNP8iBIfLvvpZwBtQ6BIikPWK3NlcsaadD3Yx9WDCHmSUzc52Q_m2TyBaEcj2sD24mBv3t-6HIpg9T3sboAA44s68Qthk5MdR4WUTgoDkV1wAUOuNADXicfilEWRaQxzI0C8LKTdHCXtJybp30ubDF3REOgx4MDc6UP6wkQd0HyYylpmKxmqDv3_LaAhABzj2d4cSYny7lwsYJCiFkO6-RQY6UcD88GWDIvfLmD9CvyYP0Avib7i9lSviH30tViMJ8dkb2gx48M5v8CKr7X2A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+multichannel+sparse+convolutional+autoencoder+for+electrocardiogram+signal+compression&rft.jtitle=Journal+of+electrocardiology&rft.au=Bekiryaz%C4%B1c%C4%B1%2C+Tahir&rft.au=Damkac%C4%B1%2C+Mehmet&rft.au=Aydemir%2C+G%C3%BCrkan&rft.au=G%C3%BCrkan%2C+Hakan&rft.date=2025-11-01&rft.issn=1532-8430&rft.eissn=1532-8430&rft.volume=93&rft_id=info:doi/10.1016%2Fj.jelectrocard.2025.154125&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00220736%2Fcov200h.gif |