Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Sulfobacillus thermosulfidooxidans
Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attac...
Uloženo v:
| Vydáno v: | Frontiers in microbiology Ročník 11; s. 2102 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Frontiers Media S.A
11.09.2020
|
| Témata: | |
| ISSN: | 1664-302X, 1664-302X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl. |
|---|---|
| AbstractList | Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl. Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl. |
| Author | Schlömann, Michael Huynh, Dieu Kaschabek, Stefan R. Norambuena, Javiera Levicán, Gloria Boldt, Christin |
| AuthorAffiliation | 1 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany 2 Biology Department, Universidad de Santiago de Chile , Santiago , Chile |
| AuthorAffiliation_xml | – name: 2 Biology Department, Universidad de Santiago de Chile , Santiago , Chile – name: 1 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany |
| Author_xml | – sequence: 1 givenname: Dieu surname: Huynh fullname: Huynh, Dieu – sequence: 2 givenname: Javiera surname: Norambuena fullname: Norambuena, Javiera – sequence: 3 givenname: Christin surname: Boldt fullname: Boldt, Christin – sequence: 4 givenname: Stefan R. surname: Kaschabek fullname: Kaschabek, Stefan R. – sequence: 5 givenname: Gloria surname: Levicán fullname: Levicán, Gloria – sequence: 6 givenname: Michael surname: Schlömann fullname: Schlömann, Michael |
| BookMark | eNp1kU1rGzEQhkVJaNI09x517MXurKT9uhRSk7SGQANpoTeh1Y5sBa2UStpS__vIdihNobqMmI_nneF9Q0588EjIuwqWnHf9BzNZPSwZMFgCq4C9IudV04gFB_bj5K__GblM6QHKE6UX4DU54xwq3jbtOXHXxqDONBh6H0Y7T3S1dSHaEWnw9G4XbUb6yQaHSm-t31DlR7r2Nlvl6FXOJTuhz3TY0fvZmTAobZ2bE81bjFNIJWfHEH7bUfn0lpwa5RJePscL8v3m-tvqy-L26-f16up2oQXv84K3FTYIwvTlqh5rxWteDw3wXoEBxozpW82QAdeCQat0qXQMecdHqFml-AVZH7ljUA_yMdpJxZ0MyspDIsSNVDFb7VCacpeBrufCCCE4V3XdmrrgWsUr7JrC-nhkPc7DhKMux0blXkBfVrzdyk34Jdu6aso6BfD-GRDDzxlTlpNNGp1THsOcJBOiyPSt2GvBsVXHkFJE80emArn3XB48l3vP5cHzMtL8M6JtVtmG_TLW_X_wCZlnsyk |
| CitedBy_id | crossref_primary_10_1007_s40831_025_01179_z crossref_primary_10_1016_j_watres_2024_122756 crossref_primary_10_1002_tqem_22085 crossref_primary_10_3390_ma18184407 |
| Cites_doi | 10.1146/annurev.micro.56.012302.161052 10.3389/fmicb.2016.02132 10.1016/j.surfrep.2010.08.003 10.1016/j.hydromet.2014.04.016 10.1016/0304-386X(92)90004-J 10.1002/bit.260120104 10.1016/j.mineng.2014.09.011 10.1007/BF02756732 10.3389/fmicb.2019.00896 10.4028/www.scientific.net/SSP.262.364 10.1007/s00253-013-4954-2 10.1128/AEM.65.1.36-40.1999 10.1016/S0892-6875(00)00020-0 10.1128/AEM.62.9.3424-3431.1996 10.1016/j.hydromet.2013.06.008 10.1016/j.mineng.2018.02.025 10.3389/fmicb.2019.00592 10.1111/j.1574-6976.1997.tb00340.x 10.4028/www.scientific.net/SSP.262.385 10.1016/j.mineng.2016.03.023 10.1016/0304-386X(91)90055-Q 10.3389/fmicb.2019.02455 10.1186/s13568-014-0084-1 10.1016/j.mineng.2009.12.011 10.5851/kosfa.2014.34.2.257 10.1016/j.hydromet.2005.07.001 10.1128/AEM.65.11.5163-5168.1999 10.1128/AEM.65.1.319-321.1999 10.1016/S1003-6326(14)63174-5 10.3390/min9020069 10.1016/S0304-386X(00)00180-8 10.1099/00221287-133-5-1171 10.1128/AEM.60.9.3349-3357.1994 10.1128/AEM.02795-17 10.1016/j.hydromet.2006.03.016 10.1128/AEM.66.3.1031-1037.2000 10.1016/0168-1656(89)90024-2 10.1099/00221287-105-2-215 10.1002/bit.22709 10.1128/AEM.64.7.2743-2747.1998 10.1252/jcej.26.83 10.1016/S1003-6326(08)60123-5 10.3390/genes9020113 10.1016/0016-2361(86)90262-0 10.1016/S0304-386X(98)00079-6 10.1128/AEM.65.2.585-590.1999 10.3390/min8090406 10.4028/www.scientific.net/SSP.262.334 10.1016/j.copbio.2014.04.008 10.1007/s00792-020-01178-w 10.1146/annurev-micro-020518-115504 10.1099/ijsem.0.003313 10.1080/08827508.2017.1389729 10.1007/s00253-011-3731-3 10.1038/nrmicro2415 10.1016/S0032-9592(97)00018-6 10.1371/journal.pone.0170406 10.1016/j.hydromet.2006.03.044 10.1007/10_2013_216 10.1007/s002530051495 10.1016/j.mimet.2012.01.021 10.1016/j.hydromet.2013.11.008 10.1038/s41598-017-04420-2 10.1016/j.hydromet.2016.08.008 10.1080/01490450303880 10.3389/fmicb.2016.00748 10.1038/nrmicro821 10.1099/mic.0.045344-0 10.1016/j.resmic.2014.08.006 10.1016/j.jhazmat.2009.07.133 10.1016/j.btre.2014.09.003 10.3390/min6030071 10.1099/ijs.0.63300-0 10.3389/fmicb.2016.01365 10.1099/00221287-142-4-785 10.1016/j.resmic.2018.07.004 10.1016/j.mineng.2011.03.008 10.1016/j.hydromet.2014.05.020 10.1016/S0065-2911(09)05501-5 10.1128/AEM.02268-09 10.1016/j.femsle.2004.06.005 10.1016/j.hydromet.2008.11.004 10.1016/j.mineng.2019.04.033 10.1007/BF00166909 10.1016/j.procbio.2011.01.014 10.3389/fmicb.2018.03134 10.1128/AEM.59.10.3280-3286.1993 10.1016/S0168-6496(03)00028-X 10.2166/wst.2001.0365 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann. Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann. 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann |
| Copyright_xml | – notice: Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann. – notice: Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann. 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fmicb.2020.02102 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-302X |
| ExternalDocumentID | oai_doaj_org_article_feacf08934f44433a557f59827a31e86 PMC7516052 10_3389_fmicb_2020_02102 |
| GrantInformation_xml | – fundername: Biohydrometallurgical Center Freiberg of the Dr. Erich-Krüger foundation |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c439t-371e6e04f91029e5a3535b6039a0f022ff97c2e203c4207ac03982e383d0521a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576028200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-302X |
| IngestDate | Fri Oct 03 12:52:44 EDT 2025 Tue Sep 30 15:59:33 EDT 2025 Fri Sep 05 14:24:10 EDT 2025 Tue Nov 18 21:26:14 EST 2025 Sat Nov 29 02:29:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-371e6e04f91029e5a3535b6039a0f022ff97c2e203c4207ac03982e383d0521a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Nicolas Guiliani, University of Chile, Chile; Rose M. Jones, University of Minnesota Twin Cities, United States; Paul Norris, University of Exeter, United Kingdom This article was submitted to Microbiological Chemistry and Geomicrobiology, a section of the journal Frontiers in Microbiology Edited by: Ruiyong Zhang, Federal Institute for Geosciences and Natural Resources, Germany |
| OpenAccessLink | https://doaj.org/article/feacf08934f44433a557f59827a31e86 |
| PMID | 33013767 |
| PQID | 2448639746 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_feacf08934f44433a557f59827a31e86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516052 proquest_miscellaneous_2448639746 crossref_primary_10_3389_fmicb_2020_02102 crossref_citationtrail_10_3389_fmicb_2020_02102 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-11 |
| PublicationDateYYYYMMDD | 2020-09-11 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in microbiology |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Hall-Stoodley (ref37) 2004; 2 Bruynesteyn (ref18) 1989; 11 Li (ref54) 2016; 6 Huynh (ref41) 2019; 138 Blake (ref10) 1994; 60 Mackintosh (ref57) 1978; 105 Dopson (ref25) 1999; 65 Dutrizac (ref27) 1992; 29 Khaleque (ref49) 2019; 69 Becker (ref6) 2011; 46 Bobadilla-Fazzini (ref12) 2017; 168 Rea (ref65) 2015; 75 Bellenberg (ref8) 2019; 10 Gehrke (ref34) 2001; 43 Konishi (ref51) 1993; 26 Hedrich (ref40) 2011; 157 Winand (ref87) 1991; 27 Huynh (ref42) 2017; 262 Borilova (ref14) 2018; 9 Baker (ref4) 2003; 44 Sampson (ref69) 2000; 13 Schippers (ref74) 2014; 141 Dopson (ref24) 2017; 7 Harneit (ref39) 2006; 83 Shiers (ref78) 2005; 80 Gehrke (ref35) 1998; 64 Olson (ref61) 1986; 65 Kaksonen (ref46) Schippers (ref77) 1999; 65 Bacelar-Nicolau (ref3) 1999; 65 Tao (ref81) 2014; 4 Africa (ref1) 2010; 23 Bonnefoy (ref13) 2018; 84 Chandra (ref19) 2010; 65 Zammit (ref88) 2012; 93 Kaksonen (ref47); 142 Liu (ref56) 2017; 7 Tsaplina (ref82) 2000; 69 Norris (ref60) 2020; 24 Sanhueza (ref72) 1999; 51 Falagán (ref28) 2018; 169 Flemming (ref30) 2010; 8 Philips (ref62) 2017; 12 Sand (ref70) 2001; 59 Li (ref55) 2018; 8 Gahan (ref33) 2009; 172 Lee (ref53) 2014; 34 Bosecker (ref15) 1997; 20 Jefferson (ref43) 2004; 236 Rivera-Araya (ref67) 2017; 262 Porro (ref63) 1997; 32 Bremer (ref17) 2019; 73 Bellenberg (ref7) 2014; 165 Rodríguez (ref68) 2003; 20 Vandevivere (ref83) 1993; 59 Zhang (ref89) 2019; 10 Wiche (ref86) 2016; 92 Ferrer (ref29) 2016; 7 Rawlings (ref64) 2002; 56 Lacey (ref52) 1970; 12 Suzuki (ref80) 1999; 65 Sand (ref71) 1995; 43 Schippers (ref75) 1996; 62 Florian (ref31) 2011; 24 Harahuc (ref38) 2000; 66 Mamani (ref58) 2016; 7 Bevilaqua (ref9) 2013; 138 Schippers (ref76) 1999; 52 Vardanyan (ref84) 2019; 9 Baker (ref5) 2010; 76 Rivera-Araya (ref66) 2019; 10 Vera (ref85) 2013; 97 Braunschweig (ref16) 2012; 89 Díaz (ref23) 2018; 9 Ghauri (ref36) 2007; 85 Karavaiko (ref48) 2005; 55 Alexander (ref2) 1987; 133 Bobadilla-Fazzini (ref11) 2014; 4 Gahan (ref32) 2010; 106 Johnson (ref44) 2014; 30 Slonczewski (ref79) 2009; 55 Dopson (ref26) 2009; 96 Nazari (ref59) 2014; 24 Cisternas (ref20) 2017; 39 Kaksonen (ref45); 150 Schieferbein (ref73) 2017; 262 Clark (ref21) 1996; 142 Deveci (ref22) 2008; 18 Khaleque (ref50) 2018; 120 |
| References_xml | – volume: 56 start-page: 65 year: 2002 ident: ref64 article-title: Heavy metal mining using microbes publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.56.012302.161052 – volume: 7 start-page: 2132 year: 2017 ident: ref24 article-title: Multiple osmotic stress responses in Acidihalobacter prosperus result in tolerance to chloride ions publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.02132 – volume: 65 start-page: 293 year: 2010 ident: ref19 article-title: The mechanisms of pyrite oxidation and leaching: a fundamental perspective publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2010.08.003 – start-page: 255 ident: ref46 article-title: Biohydrometallurgical iron oxidation and precipitation: part I—effect of pH on process performance publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.04.016 – volume: 29 start-page: 1 year: 1992 ident: ref27 article-title: The leaching of sulphide minerals in chloride media publication-title: Hydrometallurgy doi: 10.1016/0304-386X(92)90004-J – volume: 12 start-page: 29 year: 1970 ident: ref52 article-title: Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260120104 – volume: 75 start-page: 126 year: 2015 ident: ref65 article-title: Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.09.011 – volume: 69 start-page: 271 year: 2000 ident: ref82 article-title: Carbon metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, strain 41 publication-title: Microbiology doi: 10.1007/BF02756732 – volume: 10 start-page: 896 year: 2019 ident: ref89 article-title: Insight into interactions of thermoacidophilic archaea with elemental sulfur: biofilm dynamics and EPS analysis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00896 – volume: 262 start-page: 364 year: 2017 ident: ref42 article-title: Microorganisms oxidize iron (II) ions in the presence of high concentrations of sodium chloride ‐ potentially useful for bioleaching publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.262.364 – volume: 97 start-page: 7529 year: 2013 ident: ref85 article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-4954-2 – volume: 65 start-page: 36 year: 1999 ident: ref25 article-title: Potential role of Thiobacillus caldus in arsenopyrite bioleaching publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.1.36-40.1999 – volume: 13 start-page: 373 year: 2000 ident: ref69 article-title: Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides publication-title: Miner. Eng. doi: 10.1016/S0892-6875(00)00020-0 – volume: 62 start-page: 3424 year: 1996 ident: ref75 article-title: Sulfur chemistry in bacterial leaching of pyrite publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.62.9.3424-3431.1996 – volume: 138 start-page: 1 year: 2013 ident: ref9 article-title: Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.06.008 – volume: 120 start-page: 87 year: 2018 ident: ref50 article-title: Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron‐ and sulfur-oxidizing cultures publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.02.025 – volume: 10 start-page: 592 year: 2019 ident: ref8 article-title: Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00592 – volume: 20 start-page: 591 year: 1997 ident: ref15 article-title: Bioleaching: metal solubilization by microorganisms publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1997.tb00340.x – volume: 262 start-page: 385 year: 2017 ident: ref67 article-title: Comparative study of NaCl-tolerance mechanisms in acidophilic iron-oxidizing bacteria and archaea publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.262.385 – volume: 92 start-page: 208 year: 2016 ident: ref86 article-title: Germanium (Ge) and rare earth element (REE) accumulation in selected energy crops cultivated on two different soils publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.03.023 – volume: 27 start-page: 285 year: 1991 ident: ref87 article-title: Chloride hydrometallurgy publication-title: Hydrometallurgy doi: 10.1016/0304-386X(91)90055-Q – volume: 10 start-page: 2455 year: 2019 ident: ref66 article-title: Osmotic imbalance, cytoplasm acidification and oxidative stress induction support the high toxicity of chloride in acidophilic bacteria publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02455 – volume: 4 start-page: 84 year: 2014 ident: ref11 article-title: Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion publication-title: AMB Express doi: 10.1186/s13568-014-0084-1 – volume: 23 start-page: 486 year: 2010 ident: ref1 article-title: In situ investigation and visualisation of microbial attachment and colonisation in a heap bioleach environment: the novel biofilm reactor publication-title: Miner. Eng. doi: 10.1016/j.mineng.2009.12.011 – volume: 34 start-page: 257 year: 2014 ident: ref53 article-title: Effect of NaCl on biofilm formation of the isolate from Staphylococcus aureus outbreak linked to ham publication-title: Korean J. Food Sci. Anim. Resour. doi: 10.5851/kosfa.2014.34.2.257 – volume: 80 start-page: 75 year: 2005 ident: ref78 article-title: Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2005.07.001 – volume: 65 start-page: 5163 year: 1999 ident: ref80 article-title: Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.11.5163-5168.1999 – volume: 65 start-page: 319 year: 1999 ident: ref77 article-title: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.1.319-321.1999 – volume: 24 start-page: 1152 year: 2014 ident: ref59 article-title: Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(14)63174-5 – volume: 9 start-page: 69 year: 2019 ident: ref84 article-title: Adhesion to mineral surfaces by cells of Leptospirillum, Acidithiobacillus and Sulfobacillus from Armenian sulfide ores publication-title: Fortschr. Mineral. doi: 10.3390/min9020069 – volume: 59 start-page: 159 year: 2001 ident: ref70 article-title: (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00180-8 – volume: 133 start-page: 1171 year: 1987 ident: ref2 article-title: The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans publication-title: Microbiology doi: 10.1099/00221287-133-5-1171 – volume: 60 start-page: 3349 year: 1994 ident: ref10 article-title: Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.60.9.3349-3357.1994 – volume: 84 start-page: e02795 year: 2018 ident: ref13 article-title: Salt stress-induced loss of iron oxidoreduction activities and reacquisition of that phenotype depend on rus operon transcription in Acidithiobacillus ferridurans publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02795-17 – volume: 85 start-page: 72 year: 2007 ident: ref36 article-title: Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.03.016 – volume: 66 start-page: 1031 year: 2000 ident: ref38 article-title: Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.3.1031-1037.2000 – volume: 11 start-page: 1 year: 1989 ident: ref18 article-title: Mineral biotechnology publication-title: J. Biotechnol. doi: 10.1016/0168-1656(89)90024-2 – volume: 105 start-page: 215 year: 1978 ident: ref57 article-title: Nitrogen fixation by Thiobacillus ferrooxidans publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-105-2-215 – volume: 106 start-page: 422 year: 2010 ident: ref32 article-title: Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22709 – volume: 64 start-page: 2743 year: 1998 ident: ref35 article-title: Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.7.2743-2747.1998 – volume: 26 start-page: 83 year: 1993 ident: ref51 article-title: Removal of inorganic sulfur from coal by Thiobacillus ferrooxidans publication-title: J. Chem. Eng. Jpn doi: 10.1252/jcej.26.83 – volume: 18 start-page: 714 year: 2008 ident: ref22 article-title: Effect of salinity and acidity on bioleaching activity of mesophilic and extremely thermophilic bacteria publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(08)60123-5 – volume: 9 start-page: 113 year: 2018 ident: ref23 article-title: Biofilm formation by the acidophile bacterium Acidithiobacillus thiooxidans involves c-di-GMP pathway and Pel exopolysaccharide publication-title: Genes doi: 10.3390/genes9020113 – volume: 65 start-page: 1638 year: 1986 ident: ref61 article-title: Bioprocessing of coal publication-title: Fuel doi: 10.1016/0016-2361(86)90262-0 – volume: 51 start-page: 115 year: 1999 ident: ref72 article-title: Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(98)00079-6 – volume: 65 start-page: 585 year: 1999 ident: ref3 article-title: Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.2.585-590.1999 – volume: 8 start-page: 406 year: 2018 ident: ref55 article-title: Comparative analysis of attachment to chalcopyrite of three mesophilic iron and/or sulfur-oxidizing acidophiles publication-title: Fortschr. Mineral. doi: 10.3390/min8090406 – volume: 262 start-page: 334 year: 2017 ident: ref73 article-title: Mineral specific biofilm formation of “Acidibacillus ferrooxidans” Huett2 publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.262.334 – volume: 30 start-page: 24 year: 2014 ident: ref44 article-title: Biomining-biotechnologies for extracting and recovering metals from ores and waste materials publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.04.008 – volume: 24 start-page: 593 year: 2020 ident: ref60 article-title: Salt-tolerant Acidihalobacter and Acidithiobacillus species from Vulcano (Italy) and Milos (Greece) publication-title: Extremophiles doi: 10.1007/s00792-020-01178-w – volume: 73 start-page: 313 year: 2019 ident: ref17 article-title: Responses of microorganisms to osmotic stress publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-020518-115504 – volume: 69 start-page: 1557 year: 2019 ident: ref49 article-title: Genome-based classification of two halotolerant extreme acidophiles, Acidihalobacter prosperus V6 (=DSM 14174 =JCM 32253) and ‘Acidihalobacter ferrooxidans’ V8 (=DSM 14175 =JCM 32254) as two new species, Acidihalobacter aeolianus sp. nov. and Acidihalobacter ferrooxydans sp. nov., respectively publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.003313 – volume: 39 start-page: 18 year: 2017 ident: ref20 article-title: The use of seawater in mining publication-title: Miner. Process. Extr. Metall. Rev. doi: 10.1080/08827508.2017.1389729 – volume: 93 start-page: 319 year: 2012 ident: ref88 article-title: Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3731-3 – volume: 8 start-page: 623 year: 2010 ident: ref30 article-title: The biofilm matrix publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2415 – volume: 32 start-page: 573 year: 1997 ident: ref63 article-title: Bacterial attachment: its role in bioleaching processes publication-title: Process Biochem. doi: 10.1016/S0032-9592(97)00018-6 – volume: 12 start-page: e0170406 year: 2017 ident: ref62 article-title: Biofilm formation by Clostridium ljungdahlii is induced by sodium chloride stress: experimental evaluation and transcriptome analysis publication-title: PLoS One doi: 10.1371/journal.pone.0170406 – volume: 83 start-page: 245 year: 2006 ident: ref39 article-title: Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.03.044 – volume: 141 start-page: 1 year: 2014 ident: ref74 article-title: Biomining: metal recovery from ores with microorganisms publication-title: Adv. Biochem. Eng. Biotechnol. doi: 10.1007/10_2013_216 – volume: 52 start-page: 104 year: 1999 ident: ref76 article-title: Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051495 – volume: 89 start-page: 41 year: 2012 ident: ref16 article-title: Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2012.01.021 – volume: 142 start-page: 70 ident: ref47 article-title: The role of microorganisms in gold processing and recovery—a review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.11.008 – volume: 7 start-page: 5032 year: 2017 ident: ref56 article-title: Limited role of sessile acidophiles in pyrite oxidation below redox potential of 650 mV publication-title: Sci. Rep. doi: 10.1038/s41598-017-04420-2 – volume: 168 start-page: 26 year: 2017 ident: ref12 article-title: Primary copper sulfides bioleaching vs. chloride leaching: advantages and drawbacks publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.08.008 – volume: 20 start-page: 131 year: 2003 ident: ref68 article-title: Study of bacterial attachment during the bioleaching of bprite, chalcopyrite, and sphalerite publication-title: Geomicrobiol J. doi: 10.1080/01490450303880 – volume: 7 start-page: 748 year: 2016 ident: ref29 article-title: Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00748 – volume: 2 start-page: 95 year: 2004 ident: ref37 article-title: Bacterial biofilms: from the natural environment to infectious diseases publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro821 – volume: 157 start-page: 1551 year: 2011 ident: ref40 article-title: The iron-oxidizing proteobacteria publication-title: Microbiology doi: 10.1099/mic.0.045344-0 – volume: 165 start-page: 773 year: 2014 ident: ref7 article-title: Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2014.08.006 – volume: 172 start-page: 1273 year: 2009 ident: ref33 article-title: A study on the toxic effects of chloride on the biooxidation efficiency of pyrite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.07.133 – volume: 4 start-page: 107 year: 2014 ident: ref81 article-title: Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy ‐ a presentation publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2014.09.003 – volume: 6 start-page: 71 year: 2016 ident: ref54 article-title: Enhancement of biofilm formation on pyrite by Sulfobacillus thermosulfidooxidans publication-title: Fortschr. Mineral. doi: 10.3390/min6030071 – volume: 55 start-page: 941 year: 2005 ident: ref48 article-title: Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63300-0 – volume: 7 start-page: 1365 year: 2016 ident: ref58 article-title: Insights into the quorum sensing regulon of the acidophilic Acidithiobacillus ferrooxidans revealed by transcriptomic in the presence of an acyl homoserine lactone superagonist analog publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01365 – volume: 142 start-page: 785 year: 1996 ident: ref21 article-title: Acidimicrobium ferrooxidans gen. nov., sp. nov: mixed-culture ferrous iron oxidation with Sulfobacillus species publication-title: Microbiology doi: 10.1099/00221287-142-4-785 – volume: 169 start-page: 552 year: 2018 ident: ref28 article-title: The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2018.07.004 – volume: 24 start-page: 1132 year: 2011 ident: ref31 article-title: Some quantitative data on bacterial attachment to pyrite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2011.03.008 – volume: 150 start-page: 227 ident: ref45 article-title: Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.05.020 – volume: 55 start-page: 1 year: 2009 ident: ref79 article-title: Cytoplasmic pH measurement and homeostasis in bacteria and archaea publication-title: Adv. Microb. Physiol. doi: 10.1016/S0065-2911(09)05501-5 – volume: 76 start-page: 150 year: 2010 ident: ref5 article-title: Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02268-09 – volume: 236 start-page: 163 year: 2004 ident: ref43 article-title: What drives bacteria to produce a biofilm? publication-title: FEMS Microbiol. Lett. doi: 10.1016/j.femsle.2004.06.005 – volume: 96 start-page: 288 year: 2009 ident: ref26 article-title: Silicate mineral dissolution in the presence of acidophilic microorganisms: implications for heap bioleaching publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.11.004 – volume: 138 start-page: 52 year: 2019 ident: ref41 article-title: Effect of sodium chloride on Leptospirillum ferriphilum DSM 14647T and Sulfobacillus thermosulfidooxidans DSM 9293T: growth, iron oxidation activity and bioleaching of sulfidic metal ores publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.04.033 – volume: 43 start-page: 961 year: 1995 ident: ref71 article-title: Sulfur chemistry, biofilm, and the (in)direct attack mechanism – A critical evaluation of bacterial leaching publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00166909 – volume: 46 start-page: 966 year: 2011 ident: ref6 article-title: In situ imaging of Sulfobacillus thermosulfidooxidans on pyrite under conditions of variable pH using tapping mode atomic force microscopy publication-title: Process Biochem. doi: 10.1016/j.procbio.2011.01.014 – volume: 9 start-page: 3134 year: 2018 ident: ref14 article-title: Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by Acidithiobacillus ferrooxidans? publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.03134 – volume: 59 start-page: 3280 year: 1993 ident: ref83 article-title: Attachment stimulates exopolysaccharide synthesis by a bacterium publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.59.10.3280-3286.1993 – volume: 44 start-page: 139 year: 2003 ident: ref4 article-title: Microbial communities in acid mine drainage publication-title: FEMS Microbiol. Ecol. doi: 10.1016/S0168-6496(03)00028-X – volume: 43 start-page: 159 year: 2001 ident: ref34 article-title: The EPS of Acidithiobacillus ferrooxidans ‐ a model for structure-function relationships of attached bacteria and their physiology publication-title: Water Sci. Technol. doi: 10.2166/wst.2001.0365 |
| SSID | ssj0000402000 |
| Score | 2.2874486 |
| Snippet | Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2102 |
| SubjectTerms | bacterial attachment chloride tolerance microbial iron oxidation Microbiology pyrite bioleaching Sulfobacillus thermosulfidooxidans |
| Title | Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Sulfobacillus thermosulfidooxidans |
| URI | https://www.proquest.com/docview/2448639746 https://pubmed.ncbi.nlm.nih.gov/PMC7516052 https://doaj.org/article/feacf08934f44433a557f59827a31e86 |
| Volume | 11 |
| WOSCitedRecordID | wos000576028200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T90wELZaVKQuqAWqPlqQkVg6BBzbiZOxRaB2KEKCSm-zHP8QkUJS8ZKqb-nf3jsnoJeFLl0yOJfEubN998WX7wg5cczmyqVIheh4Ah5CJZUSaaIsOP8gMlexKhabUFdXxXJZXm-U-sKcsJEeeFTcWYCVITDwqjJIKYUwWaYCss4pI1JfRLJtiHo2wFRcgxEWMTbuSwIKK8FMta0AD3J2GmHOzA9Fuv5ZjDnPkNxwOZdvyM4UK9LPYx_fkhe-3SXbY_XI9R5pRuZh2gV607l6uKfnd5hP5zztWnq9BtjvKUpPCZPUtI5-w2QhvGnfQyt-GqTVmt4MTYCJbeumGVYUY8L7bgVtteu637UDd7ZPflxe3J5_TabiCYmFGKOHhSP1uWcyQDzAS58ZkYmsypkoDQvguEMoleWeM2ElZ8pYOFNwD4DV4f-8RrwjW23X-veEoqMrU1MECKVkKU3FrQlOuDxYaU1eLMjZoyq1nZjFscBFowFhoPJ1VL5G5euo_AX59HTFz5FV4xnZL2idJznkw44NMEr0NEr0v0bJghw_2lbD_MFNEdP6blhpCG8K3NyUIKNmRp89cX6mre8iE7fKUoCD_OB_dPEDeY0vjbkoafqRbPUPgz8kr-yvvl49HJGXalkcxUEOx-9_Lv4CYg0CuA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Sodium+Chloride+on+Pyrite+Bioleaching+and+Initial+Attachment+by+Sulfobacillus+thermosulfidooxidans&rft.jtitle=Frontiers+in+microbiology&rft.au=Huynh%2C+Dieu&rft.au=Norambuena%2C+Javiera&rft.au=Boldt%2C+Christin&rft.au=Kaschabek%2C+Stefan+R.&rft.date=2020-09-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=11&rft_id=info:doi/10.3389%2Ffmicb.2020.02102&rft_id=info%3Apmid%2F33013767&rft.externalDocID=PMC7516052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |