Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Sulfobacillus thermosulfidooxidans

Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in microbiology Ročník 11; s. 2102
Hlavní autoři: Huynh, Dieu, Norambuena, Javiera, Boldt, Christin, Kaschabek, Stefan R., Levicán, Gloria, Schlömann, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 11.09.2020
Témata:
ISSN:1664-302X, 1664-302X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.
AbstractList Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.
Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.
Author Schlömann, Michael
Huynh, Dieu
Kaschabek, Stefan R.
Norambuena, Javiera
Levicán, Gloria
Boldt, Christin
AuthorAffiliation 1 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany
2 Biology Department, Universidad de Santiago de Chile , Santiago , Chile
AuthorAffiliation_xml – name: 2 Biology Department, Universidad de Santiago de Chile , Santiago , Chile
– name: 1 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg , Freiberg , Germany
Author_xml – sequence: 1
  givenname: Dieu
  surname: Huynh
  fullname: Huynh, Dieu
– sequence: 2
  givenname: Javiera
  surname: Norambuena
  fullname: Norambuena, Javiera
– sequence: 3
  givenname: Christin
  surname: Boldt
  fullname: Boldt, Christin
– sequence: 4
  givenname: Stefan R.
  surname: Kaschabek
  fullname: Kaschabek, Stefan R.
– sequence: 5
  givenname: Gloria
  surname: Levicán
  fullname: Levicán, Gloria
– sequence: 6
  givenname: Michael
  surname: Schlömann
  fullname: Schlömann, Michael
BookMark eNp1kU1rGzEQhkVJaNI09x517MXurKT9uhRSk7SGQANpoTeh1Y5sBa2UStpS__vIdihNobqMmI_nneF9Q0588EjIuwqWnHf9BzNZPSwZMFgCq4C9IudV04gFB_bj5K__GblM6QHKE6UX4DU54xwq3jbtOXHXxqDONBh6H0Y7T3S1dSHaEWnw9G4XbUb6yQaHSm-t31DlR7r2Nlvl6FXOJTuhz3TY0fvZmTAobZ2bE81bjFNIJWfHEH7bUfn0lpwa5RJePscL8v3m-tvqy-L26-f16up2oQXv84K3FTYIwvTlqh5rxWteDw3wXoEBxozpW82QAdeCQat0qXQMecdHqFml-AVZH7ljUA_yMdpJxZ0MyspDIsSNVDFb7VCacpeBrufCCCE4V3XdmrrgWsUr7JrC-nhkPc7DhKMux0blXkBfVrzdyk34Jdu6aso6BfD-GRDDzxlTlpNNGp1THsOcJBOiyPSt2GvBsVXHkFJE80emArn3XB48l3vP5cHzMtL8M6JtVtmG_TLW_X_wCZlnsyk
CitedBy_id crossref_primary_10_1007_s40831_025_01179_z
crossref_primary_10_1016_j_watres_2024_122756
crossref_primary_10_1002_tqem_22085
crossref_primary_10_3390_ma18184407
Cites_doi 10.1146/annurev.micro.56.012302.161052
10.3389/fmicb.2016.02132
10.1016/j.surfrep.2010.08.003
10.1016/j.hydromet.2014.04.016
10.1016/0304-386X(92)90004-J
10.1002/bit.260120104
10.1016/j.mineng.2014.09.011
10.1007/BF02756732
10.3389/fmicb.2019.00896
10.4028/www.scientific.net/SSP.262.364
10.1007/s00253-013-4954-2
10.1128/AEM.65.1.36-40.1999
10.1016/S0892-6875(00)00020-0
10.1128/AEM.62.9.3424-3431.1996
10.1016/j.hydromet.2013.06.008
10.1016/j.mineng.2018.02.025
10.3389/fmicb.2019.00592
10.1111/j.1574-6976.1997.tb00340.x
10.4028/www.scientific.net/SSP.262.385
10.1016/j.mineng.2016.03.023
10.1016/0304-386X(91)90055-Q
10.3389/fmicb.2019.02455
10.1186/s13568-014-0084-1
10.1016/j.mineng.2009.12.011
10.5851/kosfa.2014.34.2.257
10.1016/j.hydromet.2005.07.001
10.1128/AEM.65.11.5163-5168.1999
10.1128/AEM.65.1.319-321.1999
10.1016/S1003-6326(14)63174-5
10.3390/min9020069
10.1016/S0304-386X(00)00180-8
10.1099/00221287-133-5-1171
10.1128/AEM.60.9.3349-3357.1994
10.1128/AEM.02795-17
10.1016/j.hydromet.2006.03.016
10.1128/AEM.66.3.1031-1037.2000
10.1016/0168-1656(89)90024-2
10.1099/00221287-105-2-215
10.1002/bit.22709
10.1128/AEM.64.7.2743-2747.1998
10.1252/jcej.26.83
10.1016/S1003-6326(08)60123-5
10.3390/genes9020113
10.1016/0016-2361(86)90262-0
10.1016/S0304-386X(98)00079-6
10.1128/AEM.65.2.585-590.1999
10.3390/min8090406
10.4028/www.scientific.net/SSP.262.334
10.1016/j.copbio.2014.04.008
10.1007/s00792-020-01178-w
10.1146/annurev-micro-020518-115504
10.1099/ijsem.0.003313
10.1080/08827508.2017.1389729
10.1007/s00253-011-3731-3
10.1038/nrmicro2415
10.1016/S0032-9592(97)00018-6
10.1371/journal.pone.0170406
10.1016/j.hydromet.2006.03.044
10.1007/10_2013_216
10.1007/s002530051495
10.1016/j.mimet.2012.01.021
10.1016/j.hydromet.2013.11.008
10.1038/s41598-017-04420-2
10.1016/j.hydromet.2016.08.008
10.1080/01490450303880
10.3389/fmicb.2016.00748
10.1038/nrmicro821
10.1099/mic.0.045344-0
10.1016/j.resmic.2014.08.006
10.1016/j.jhazmat.2009.07.133
10.1016/j.btre.2014.09.003
10.3390/min6030071
10.1099/ijs.0.63300-0
10.3389/fmicb.2016.01365
10.1099/00221287-142-4-785
10.1016/j.resmic.2018.07.004
10.1016/j.mineng.2011.03.008
10.1016/j.hydromet.2014.05.020
10.1016/S0065-2911(09)05501-5
10.1128/AEM.02268-09
10.1016/j.femsle.2004.06.005
10.1016/j.hydromet.2008.11.004
10.1016/j.mineng.2019.04.033
10.1007/BF00166909
10.1016/j.procbio.2011.01.014
10.3389/fmicb.2018.03134
10.1128/AEM.59.10.3280-3286.1993
10.1016/S0168-6496(03)00028-X
10.2166/wst.2001.0365
ContentType Journal Article
Copyright Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann.
Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann. 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann
Copyright_xml – notice: Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann.
– notice: Copyright © 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann. 2020 Huynh, Norambuena, Boldt, Kaschabek, Levicán and Schlömann
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmicb.2020.02102
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_feacf08934f44433a557f59827a31e86
PMC7516052
10_3389_fmicb_2020_02102
GrantInformation_xml – fundername: Biohydrometallurgical Center Freiberg of the Dr. Erich-Krüger foundation
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-371e6e04f91029e5a3535b6039a0f022ff97c2e203c4207ac03982e383d0521a3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576028200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-302X
IngestDate Fri Oct 03 12:52:44 EDT 2025
Tue Sep 30 15:59:33 EDT 2025
Fri Sep 05 14:24:10 EDT 2025
Tue Nov 18 21:26:14 EST 2025
Sat Nov 29 02:29:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-371e6e04f91029e5a3535b6039a0f022ff97c2e203c4207ac03982e383d0521a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Nicolas Guiliani, University of Chile, Chile; Rose M. Jones, University of Minnesota Twin Cities, United States; Paul Norris, University of Exeter, United Kingdom
This article was submitted to Microbiological Chemistry and Geomicrobiology, a section of the journal Frontiers in Microbiology
Edited by: Ruiyong Zhang, Federal Institute for Geosciences and Natural Resources, Germany
OpenAccessLink https://doaj.org/article/feacf08934f44433a557f59827a31e86
PMID 33013767
PQID 2448639746
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_feacf08934f44433a557f59827a31e86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516052
proquest_miscellaneous_2448639746
crossref_primary_10_3389_fmicb_2020_02102
crossref_citationtrail_10_3389_fmicb_2020_02102
PublicationCentury 2000
PublicationDate 2020-09-11
PublicationDateYYYYMMDD 2020-09-11
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-11
  day: 11
PublicationDecade 2020
PublicationTitle Frontiers in microbiology
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hall-Stoodley (ref37) 2004; 2
Bruynesteyn (ref18) 1989; 11
Li (ref54) 2016; 6
Huynh (ref41) 2019; 138
Blake (ref10) 1994; 60
Mackintosh (ref57) 1978; 105
Dopson (ref25) 1999; 65
Dutrizac (ref27) 1992; 29
Khaleque (ref49) 2019; 69
Becker (ref6) 2011; 46
Bobadilla-Fazzini (ref12) 2017; 168
Rea (ref65) 2015; 75
Bellenberg (ref8) 2019; 10
Gehrke (ref34) 2001; 43
Konishi (ref51) 1993; 26
Hedrich (ref40) 2011; 157
Winand (ref87) 1991; 27
Huynh (ref42) 2017; 262
Borilova (ref14) 2018; 9
Baker (ref4) 2003; 44
Sampson (ref69) 2000; 13
Schippers (ref74) 2014; 141
Dopson (ref24) 2017; 7
Harneit (ref39) 2006; 83
Shiers (ref78) 2005; 80
Gehrke (ref35) 1998; 64
Olson (ref61) 1986; 65
Kaksonen (ref46)
Schippers (ref77) 1999; 65
Bacelar-Nicolau (ref3) 1999; 65
Tao (ref81) 2014; 4
Africa (ref1) 2010; 23
Bonnefoy (ref13) 2018; 84
Chandra (ref19) 2010; 65
Zammit (ref88) 2012; 93
Kaksonen (ref47); 142
Liu (ref56) 2017; 7
Tsaplina (ref82) 2000; 69
Norris (ref60) 2020; 24
Sanhueza (ref72) 1999; 51
Falagán (ref28) 2018; 169
Flemming (ref30) 2010; 8
Philips (ref62) 2017; 12
Sand (ref70) 2001; 59
Li (ref55) 2018; 8
Gahan (ref33) 2009; 172
Lee (ref53) 2014; 34
Bosecker (ref15) 1997; 20
Jefferson (ref43) 2004; 236
Rivera-Araya (ref67) 2017; 262
Porro (ref63) 1997; 32
Bremer (ref17) 2019; 73
Bellenberg (ref7) 2014; 165
Rodríguez (ref68) 2003; 20
Vandevivere (ref83) 1993; 59
Zhang (ref89) 2019; 10
Wiche (ref86) 2016; 92
Ferrer (ref29) 2016; 7
Rawlings (ref64) 2002; 56
Lacey (ref52) 1970; 12
Suzuki (ref80) 1999; 65
Sand (ref71) 1995; 43
Schippers (ref75) 1996; 62
Florian (ref31) 2011; 24
Harahuc (ref38) 2000; 66
Mamani (ref58) 2016; 7
Bevilaqua (ref9) 2013; 138
Schippers (ref76) 1999; 52
Vardanyan (ref84) 2019; 9
Baker (ref5) 2010; 76
Rivera-Araya (ref66) 2019; 10
Vera (ref85) 2013; 97
Braunschweig (ref16) 2012; 89
Díaz (ref23) 2018; 9
Ghauri (ref36) 2007; 85
Karavaiko (ref48) 2005; 55
Alexander (ref2) 1987; 133
Bobadilla-Fazzini (ref11) 2014; 4
Gahan (ref32) 2010; 106
Johnson (ref44) 2014; 30
Slonczewski (ref79) 2009; 55
Dopson (ref26) 2009; 96
Nazari (ref59) 2014; 24
Cisternas (ref20) 2017; 39
Kaksonen (ref45); 150
Schieferbein (ref73) 2017; 262
Clark (ref21) 1996; 142
Deveci (ref22) 2008; 18
Khaleque (ref50) 2018; 120
References_xml – volume: 56
  start-page: 65
  year: 2002
  ident: ref64
  article-title: Heavy metal mining using microbes
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.56.012302.161052
– volume: 7
  start-page: 2132
  year: 2017
  ident: ref24
  article-title: Multiple osmotic stress responses in Acidihalobacter prosperus result in tolerance to chloride ions
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.02132
– volume: 65
  start-page: 293
  year: 2010
  ident: ref19
  article-title: The mechanisms of pyrite oxidation and leaching: a fundamental perspective
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2010.08.003
– start-page: 255
  ident: ref46
  article-title: Biohydrometallurgical iron oxidation and precipitation: part I—effect of pH on process performance
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.04.016
– volume: 29
  start-page: 1
  year: 1992
  ident: ref27
  article-title: The leaching of sulphide minerals in chloride media
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(92)90004-J
– volume: 12
  start-page: 29
  year: 1970
  ident: ref52
  article-title: Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260120104
– volume: 75
  start-page: 126
  year: 2015
  ident: ref65
  article-title: Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.09.011
– volume: 69
  start-page: 271
  year: 2000
  ident: ref82
  article-title: Carbon metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, strain 41
  publication-title: Microbiology
  doi: 10.1007/BF02756732
– volume: 10
  start-page: 896
  year: 2019
  ident: ref89
  article-title: Insight into interactions of thermoacidophilic archaea with elemental sulfur: biofilm dynamics and EPS analysis
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00896
– volume: 262
  start-page: 364
  year: 2017
  ident: ref42
  article-title: Microorganisms oxidize iron (II) ions in the presence of high concentrations of sodium chloride ‐ potentially useful for bioleaching
  publication-title: Solid State Phenom.
  doi: 10.4028/www.scientific.net/SSP.262.364
– volume: 97
  start-page: 7529
  year: 2013
  ident: ref85
  article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-4954-2
– volume: 65
  start-page: 36
  year: 1999
  ident: ref25
  article-title: Potential role of Thiobacillus caldus in arsenopyrite bioleaching
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.1.36-40.1999
– volume: 13
  start-page: 373
  year: 2000
  ident: ref69
  article-title: Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(00)00020-0
– volume: 62
  start-page: 3424
  year: 1996
  ident: ref75
  article-title: Sulfur chemistry in bacterial leaching of pyrite
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.62.9.3424-3431.1996
– volume: 138
  start-page: 1
  year: 2013
  ident: ref9
  article-title: Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.06.008
– volume: 120
  start-page: 87
  year: 2018
  ident: ref50
  article-title: Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron‐ and sulfur-oxidizing cultures
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.02.025
– volume: 10
  start-page: 592
  year: 2019
  ident: ref8
  article-title: Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00592
– volume: 20
  start-page: 591
  year: 1997
  ident: ref15
  article-title: Bioleaching: metal solubilization by microorganisms
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1997.tb00340.x
– volume: 262
  start-page: 385
  year: 2017
  ident: ref67
  article-title: Comparative study of NaCl-tolerance mechanisms in acidophilic iron-oxidizing bacteria and archaea
  publication-title: Solid State Phenom.
  doi: 10.4028/www.scientific.net/SSP.262.385
– volume: 92
  start-page: 208
  year: 2016
  ident: ref86
  article-title: Germanium (Ge) and rare earth element (REE) accumulation in selected energy crops cultivated on two different soils
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.03.023
– volume: 27
  start-page: 285
  year: 1991
  ident: ref87
  article-title: Chloride hydrometallurgy
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(91)90055-Q
– volume: 10
  start-page: 2455
  year: 2019
  ident: ref66
  article-title: Osmotic imbalance, cytoplasm acidification and oxidative stress induction support the high toxicity of chloride in acidophilic bacteria
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02455
– volume: 4
  start-page: 84
  year: 2014
  ident: ref11
  article-title: Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion
  publication-title: AMB Express
  doi: 10.1186/s13568-014-0084-1
– volume: 23
  start-page: 486
  year: 2010
  ident: ref1
  article-title: In situ investigation and visualisation of microbial attachment and colonisation in a heap bioleach environment: the novel biofilm reactor
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2009.12.011
– volume: 34
  start-page: 257
  year: 2014
  ident: ref53
  article-title: Effect of NaCl on biofilm formation of the isolate from Staphylococcus aureus outbreak linked to ham
  publication-title: Korean J. Food Sci. Anim. Resour.
  doi: 10.5851/kosfa.2014.34.2.257
– volume: 80
  start-page: 75
  year: 2005
  ident: ref78
  article-title: Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2005.07.001
– volume: 65
  start-page: 5163
  year: 1999
  ident: ref80
  article-title: Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.11.5163-5168.1999
– volume: 65
  start-page: 319
  year: 1999
  ident: ref77
  article-title: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.1.319-321.1999
– volume: 24
  start-page: 1152
  year: 2014
  ident: ref59
  article-title: Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(14)63174-5
– volume: 9
  start-page: 69
  year: 2019
  ident: ref84
  article-title: Adhesion to mineral surfaces by cells of Leptospirillum, Acidithiobacillus and Sulfobacillus from Armenian sulfide ores
  publication-title: Fortschr. Mineral.
  doi: 10.3390/min9020069
– volume: 59
  start-page: 159
  year: 2001
  ident: ref70
  article-title: (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00180-8
– volume: 133
  start-page: 1171
  year: 1987
  ident: ref2
  article-title: The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans
  publication-title: Microbiology
  doi: 10.1099/00221287-133-5-1171
– volume: 60
  start-page: 3349
  year: 1994
  ident: ref10
  article-title: Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.60.9.3349-3357.1994
– volume: 84
  start-page: e02795
  year: 2018
  ident: ref13
  article-title: Salt stress-induced loss of iron oxidoreduction activities and reacquisition of that phenotype depend on rus operon transcription in Acidithiobacillus ferridurans
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02795-17
– volume: 85
  start-page: 72
  year: 2007
  ident: ref36
  article-title: Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.03.016
– volume: 66
  start-page: 1031
  year: 2000
  ident: ref38
  article-title: Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.3.1031-1037.2000
– volume: 11
  start-page: 1
  year: 1989
  ident: ref18
  article-title: Mineral biotechnology
  publication-title: J. Biotechnol.
  doi: 10.1016/0168-1656(89)90024-2
– volume: 105
  start-page: 215
  year: 1978
  ident: ref57
  article-title: Nitrogen fixation by Thiobacillus ferrooxidans
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-105-2-215
– volume: 106
  start-page: 422
  year: 2010
  ident: ref32
  article-title: Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22709
– volume: 64
  start-page: 2743
  year: 1998
  ident: ref35
  article-title: Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.7.2743-2747.1998
– volume: 26
  start-page: 83
  year: 1993
  ident: ref51
  article-title: Removal of inorganic sulfur from coal by Thiobacillus ferrooxidans
  publication-title: J. Chem. Eng. Jpn
  doi: 10.1252/jcej.26.83
– volume: 18
  start-page: 714
  year: 2008
  ident: ref22
  article-title: Effect of salinity and acidity on bioleaching activity of mesophilic and extremely thermophilic bacteria
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(08)60123-5
– volume: 9
  start-page: 113
  year: 2018
  ident: ref23
  article-title: Biofilm formation by the acidophile bacterium Acidithiobacillus thiooxidans involves c-di-GMP pathway and Pel exopolysaccharide
  publication-title: Genes
  doi: 10.3390/genes9020113
– volume: 65
  start-page: 1638
  year: 1986
  ident: ref61
  article-title: Bioprocessing of coal
  publication-title: Fuel
  doi: 10.1016/0016-2361(86)90262-0
– volume: 51
  start-page: 115
  year: 1999
  ident: ref72
  article-title: Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(98)00079-6
– volume: 65
  start-page: 585
  year: 1999
  ident: ref3
  article-title: Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.2.585-590.1999
– volume: 8
  start-page: 406
  year: 2018
  ident: ref55
  article-title: Comparative analysis of attachment to chalcopyrite of three mesophilic iron and/or sulfur-oxidizing acidophiles
  publication-title: Fortschr. Mineral.
  doi: 10.3390/min8090406
– volume: 262
  start-page: 334
  year: 2017
  ident: ref73
  article-title: Mineral specific biofilm formation of “Acidibacillus ferrooxidans” Huett2
  publication-title: Solid State Phenom.
  doi: 10.4028/www.scientific.net/SSP.262.334
– volume: 30
  start-page: 24
  year: 2014
  ident: ref44
  article-title: Biomining-biotechnologies for extracting and recovering metals from ores and waste materials
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.04.008
– volume: 24
  start-page: 593
  year: 2020
  ident: ref60
  article-title: Salt-tolerant Acidihalobacter and Acidithiobacillus species from Vulcano (Italy) and Milos (Greece)
  publication-title: Extremophiles
  doi: 10.1007/s00792-020-01178-w
– volume: 73
  start-page: 313
  year: 2019
  ident: ref17
  article-title: Responses of microorganisms to osmotic stress
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-020518-115504
– volume: 69
  start-page: 1557
  year: 2019
  ident: ref49
  article-title: Genome-based classification of two halotolerant extreme acidophiles, Acidihalobacter prosperus V6 (=DSM 14174 =JCM 32253) and ‘Acidihalobacter ferrooxidans’ V8 (=DSM 14175 =JCM 32254) as two new species, Acidihalobacter aeolianus sp. nov. and Acidihalobacter ferrooxydans sp. nov., respectively
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijsem.0.003313
– volume: 39
  start-page: 18
  year: 2017
  ident: ref20
  article-title: The use of seawater in mining
  publication-title: Miner. Process. Extr. Metall. Rev.
  doi: 10.1080/08827508.2017.1389729
– volume: 93
  start-page: 319
  year: 2012
  ident: ref88
  article-title: Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3731-3
– volume: 8
  start-page: 623
  year: 2010
  ident: ref30
  article-title: The biofilm matrix
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2415
– volume: 32
  start-page: 573
  year: 1997
  ident: ref63
  article-title: Bacterial attachment: its role in bioleaching processes
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(97)00018-6
– volume: 12
  start-page: e0170406
  year: 2017
  ident: ref62
  article-title: Biofilm formation by Clostridium ljungdahlii is induced by sodium chloride stress: experimental evaluation and transcriptome analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0170406
– volume: 83
  start-page: 245
  year: 2006
  ident: ref39
  article-title: Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.03.044
– volume: 141
  start-page: 1
  year: 2014
  ident: ref74
  article-title: Biomining: metal recovery from ores with microorganisms
  publication-title: Adv. Biochem. Eng. Biotechnol.
  doi: 10.1007/10_2013_216
– volume: 52
  start-page: 104
  year: 1999
  ident: ref76
  article-title: Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051495
– volume: 89
  start-page: 41
  year: 2012
  ident: ref16
  article-title: Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2012.01.021
– volume: 142
  start-page: 70
  ident: ref47
  article-title: The role of microorganisms in gold processing and recovery—a review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.11.008
– volume: 7
  start-page: 5032
  year: 2017
  ident: ref56
  article-title: Limited role of sessile acidophiles in pyrite oxidation below redox potential of 650 mV
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04420-2
– volume: 168
  start-page: 26
  year: 2017
  ident: ref12
  article-title: Primary copper sulfides bioleaching vs. chloride leaching: advantages and drawbacks
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.08.008
– volume: 20
  start-page: 131
  year: 2003
  ident: ref68
  article-title: Study of bacterial attachment during the bioleaching of bprite, chalcopyrite, and sphalerite
  publication-title: Geomicrobiol J.
  doi: 10.1080/01490450303880
– volume: 7
  start-page: 748
  year: 2016
  ident: ref29
  article-title: Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00748
– volume: 2
  start-page: 95
  year: 2004
  ident: ref37
  article-title: Bacterial biofilms: from the natural environment to infectious diseases
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro821
– volume: 157
  start-page: 1551
  year: 2011
  ident: ref40
  article-title: The iron-oxidizing proteobacteria
  publication-title: Microbiology
  doi: 10.1099/mic.0.045344-0
– volume: 165
  start-page: 773
  year: 2014
  ident: ref7
  article-title: Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2014.08.006
– volume: 172
  start-page: 1273
  year: 2009
  ident: ref33
  article-title: A study on the toxic effects of chloride on the biooxidation efficiency of pyrite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.07.133
– volume: 4
  start-page: 107
  year: 2014
  ident: ref81
  article-title: Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy ‐ a presentation
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2014.09.003
– volume: 6
  start-page: 71
  year: 2016
  ident: ref54
  article-title: Enhancement of biofilm formation on pyrite by Sulfobacillus thermosulfidooxidans
  publication-title: Fortschr. Mineral.
  doi: 10.3390/min6030071
– volume: 55
  start-page: 941
  year: 2005
  ident: ref48
  article-title: Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.63300-0
– volume: 7
  start-page: 1365
  year: 2016
  ident: ref58
  article-title: Insights into the quorum sensing regulon of the acidophilic Acidithiobacillus ferrooxidans revealed by transcriptomic in the presence of an acyl homoserine lactone superagonist analog
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01365
– volume: 142
  start-page: 785
  year: 1996
  ident: ref21
  article-title: Acidimicrobium ferrooxidans gen. nov., sp. nov: mixed-culture ferrous iron oxidation with Sulfobacillus species
  publication-title: Microbiology
  doi: 10.1099/00221287-142-4-785
– volume: 169
  start-page: 552
  year: 2018
  ident: ref28
  article-title: The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2018.07.004
– volume: 24
  start-page: 1132
  year: 2011
  ident: ref31
  article-title: Some quantitative data on bacterial attachment to pyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2011.03.008
– volume: 150
  start-page: 227
  ident: ref45
  article-title: Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.05.020
– volume: 55
  start-page: 1
  year: 2009
  ident: ref79
  article-title: Cytoplasmic pH measurement and homeostasis in bacteria and archaea
  publication-title: Adv. Microb. Physiol.
  doi: 10.1016/S0065-2911(09)05501-5
– volume: 76
  start-page: 150
  year: 2010
  ident: ref5
  article-title: Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02268-09
– volume: 236
  start-page: 163
  year: 2004
  ident: ref43
  article-title: What drives bacteria to produce a biofilm?
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/j.femsle.2004.06.005
– volume: 96
  start-page: 288
  year: 2009
  ident: ref26
  article-title: Silicate mineral dissolution in the presence of acidophilic microorganisms: implications for heap bioleaching
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.11.004
– volume: 138
  start-page: 52
  year: 2019
  ident: ref41
  article-title: Effect of sodium chloride on Leptospirillum ferriphilum DSM 14647T and Sulfobacillus thermosulfidooxidans DSM 9293T: growth, iron oxidation activity and bioleaching of sulfidic metal ores
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.04.033
– volume: 43
  start-page: 961
  year: 1995
  ident: ref71
  article-title: Sulfur chemistry, biofilm, and the (in)direct attack mechanism – A critical evaluation of bacterial leaching
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00166909
– volume: 46
  start-page: 966
  year: 2011
  ident: ref6
  article-title: In situ imaging of Sulfobacillus thermosulfidooxidans on pyrite under conditions of variable pH using tapping mode atomic force microscopy
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2011.01.014
– volume: 9
  start-page: 3134
  year: 2018
  ident: ref14
  article-title: Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by Acidithiobacillus ferrooxidans?
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.03134
– volume: 59
  start-page: 3280
  year: 1993
  ident: ref83
  article-title: Attachment stimulates exopolysaccharide synthesis by a bacterium
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.59.10.3280-3286.1993
– volume: 44
  start-page: 139
  year: 2003
  ident: ref4
  article-title: Microbial communities in acid mine drainage
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/S0168-6496(03)00028-X
– volume: 43
  start-page: 159
  year: 2001
  ident: ref34
  article-title: The EPS of Acidithiobacillus ferrooxidans ‐ a model for structure-function relationships of attached bacteria and their physiology
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2001.0365
SSID ssj0000402000
Score 2.2874486
Snippet Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2102
SubjectTerms bacterial attachment
chloride tolerance
microbial iron oxidation
Microbiology
pyrite bioleaching
Sulfobacillus thermosulfidooxidans
Title Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Sulfobacillus thermosulfidooxidans
URI https://www.proquest.com/docview/2448639746
https://pubmed.ncbi.nlm.nih.gov/PMC7516052
https://doaj.org/article/feacf08934f44433a557f59827a31e86
Volume 11
WOSCitedRecordID wos000576028200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T90wELZaVKQuqAWqPlqQkVg6BBzbiZOxRaB2KEKCSm-zHP8QkUJS8ZKqb-nf3jsnoJeFLl0yOJfEubN998WX7wg5cczmyqVIheh4Ah5CJZUSaaIsOP8gMlexKhabUFdXxXJZXm-U-sKcsJEeeFTcWYCVITDwqjJIKYUwWaYCss4pI1JfRLJtiHo2wFRcgxEWMTbuSwIKK8FMta0AD3J2GmHOzA9Fuv5ZjDnPkNxwOZdvyM4UK9LPYx_fkhe-3SXbY_XI9R5pRuZh2gV607l6uKfnd5hP5zztWnq9BtjvKUpPCZPUtI5-w2QhvGnfQyt-GqTVmt4MTYCJbeumGVYUY8L7bgVtteu637UDd7ZPflxe3J5_TabiCYmFGKOHhSP1uWcyQDzAS58ZkYmsypkoDQvguEMoleWeM2ElZ8pYOFNwD4DV4f-8RrwjW23X-veEoqMrU1MECKVkKU3FrQlOuDxYaU1eLMjZoyq1nZjFscBFowFhoPJ1VL5G5euo_AX59HTFz5FV4xnZL2idJznkw44NMEr0NEr0v0bJghw_2lbD_MFNEdP6blhpCG8K3NyUIKNmRp89cX6mre8iE7fKUoCD_OB_dPEDeY0vjbkoafqRbPUPgz8kr-yvvl49HJGXalkcxUEOx-9_Lv4CYg0CuA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Sodium+Chloride+on+Pyrite+Bioleaching+and+Initial+Attachment+by+Sulfobacillus+thermosulfidooxidans&rft.jtitle=Frontiers+in+microbiology&rft.au=Huynh%2C+Dieu&rft.au=Norambuena%2C+Javiera&rft.au=Boldt%2C+Christin&rft.au=Kaschabek%2C+Stefan+R.&rft.date=2020-09-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=11&rft_id=info:doi/10.3389%2Ffmicb.2020.02102&rft_id=info%3Apmid%2F33013767&rft.externalDocID=PMC7516052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon