Deep Encoder-Decoder Adversarial Reconstruction (DEAR) Network for 3D CT from Few-View Data

X-ray computed tomography (CT) is widely used in clinical practice. The involved ionizing X-ray radiation, however, could increase cancer risk. Hence, the reduction of the radiation dose has been an important topic in recent years. Few-view CT image reconstruction is one of the main ways to minimize...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioengineering (Basel) Ročník 6; číslo 4; s. 111
Hlavní autoři: Xie, Huidong, Shan, Hongming, Wang, Ge
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 09.12.2019
MDPI
Témata:
ISSN:2306-5354, 2306-5354
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:X-ray computed tomography (CT) is widely used in clinical practice. The involved ionizing X-ray radiation, however, could increase cancer risk. Hence, the reduction of the radiation dose has been an important topic in recent years. Few-view CT image reconstruction is one of the main ways to minimize radiation dose and potentially allow a stationary CT architecture. In this paper, we propose a deep encoder-decoder adversarial reconstruction (DEAR) network for 3D CT image reconstruction from few-view data. Since the artifacts caused by few-view reconstruction appear in 3D instead of 2D geometry, a 3D deep network has a great potential for improving the image quality in a data driven fashion. More specifically, our proposed DEAR-3D network aims at reconstructing 3D volume directly from clinical 3D spiral cone-beam image data. DEAR is validated on a publicly available abdominal CT dataset prepared and authorized by Mayo Clinic. Compared with other 2D deep learning methods, the proposed DEAR-3D network can utilize 3D information to produce promising reconstruction results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering6040111