Unbounded Predicate Inner Product Functional Encryption from Pairings

Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair ( y , v ) such that recovery of ⟨ x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cryptology Jg. 36; H. 3; S. 29
Hauptverfasser: Dowerah, Uddipana, Dutta, Subhranil, Mitrokotsa, Aikaterini, Mukherjee, Sayantan, Pal, Tapas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2023
Springer Nature B.V
Schlagworte:
ISSN:0933-2790, 1432-1378, 1432-1378
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair ( y , v ) such that recovery of ⟨ x , y ⟩ requires the vectors w , v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. ∙ zero predicate IPFE . We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers ⟨ x , y ⟩ if ⟨ w , v ⟩ = 0 . This construction is inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based semi-adaptive model under the standard symmetric external Diffie–Hellman assumption. ∙ non-zero predicate IPFE . We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that successfully recovers ⟨ x , y ⟩ if ⟨ w , v ⟩ ≠ 0 . We generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-hiding UNP-IPFE in both public and secret key setting. Interestingly, our secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public key UNP-IPFE or UQFE in the standard model as an important open problem.
AbstractList Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message $${\textbf {x}}$$ x is encrypted under an attribute $${\textbf {w}}$$ w and a secret key is generated for a pair $$({\textbf {y}}, {\textbf {v}})$$ ( y , v ) such that recovery of $$\langle {{\textbf {x}}}, {{\textbf {y}}}\rangle $$ ⟨ x , y ⟩ requires the vectors $${\textbf {w}}, {\textbf {v}}$$ w , v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. $$\bullet $$ ∙ zero predicate IPFE . We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers $$\langle {{\textbf {x}}}, {{\textbf {y}}}\rangle $$ ⟨ x , y ⟩ if $$\langle {{\textbf {w}}}, {{\textbf {v}}}\rangle =0$$ ⟨ w , v ⟩ = 0 . This construction is inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based semi-adaptive model under the standard symmetric external Diffie–Hellman assumption. $$\bullet $$ ∙ non-zero predicate IPFE . We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that successfully recovers $$\langle {{\textbf {x}}}, {{\textbf {y}}}\rangle $$ ⟨ x , y ⟩ if $$\langle {{\textbf {w}}}, {{\textbf {v}}}\rangle \ne 0$$ ⟨ w , v ⟩ ≠ 0 . We generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-hiding UNP-IPFE in both public and secret key setting. Interestingly, our secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public key UNP-IPFE or UQFE in the standard model as an important open problem.
Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair (y,v) such that recovery of ⟨x,y⟩ requires the vectors w,v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. ∙zero predicate IPFE. We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers ⟨x,y⟩ if ⟨w,v⟩=0. This construction is inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based semi-adaptive model under the standard symmetric external Diffie–Hellman assumption. ∙non-zero predicate IPFE. We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that successfully recovers ⟨x,y⟩ if ⟨w,v⟩≠0. We generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-hiding UNP-IPFE in both public and secret key setting. Interestingly, our secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public key UNP-IPFE or UQFE in the standard model as an important open problem.
Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair (y, v) such that recovery of ⟨ x, y⟩ requires the vectors w, v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. ∙ zero predicate IPFE. We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers ⟨ x, y⟩ if ⟨ w, v⟩ = 0 . This construction is inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based semi-adaptive model under the standard symmetric external Diffie–Hellman assumption. ∙ non-zero predicate IPFE. We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that successfully recovers ⟨ x, y⟩ if ⟨ w, v⟩ ≠ 0 . We generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-hiding UNP-IPFE in both public and secret key setting. Interestingly, our secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public key UNP-IPFE or UQFE in the standard model as an important open problem.
Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated for a pair ( y , v ) such that recovery of ⟨ x , y ⟩ requires the vectors w , v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes and message vectors. ∙ zero predicate IPFE . We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers ⟨ x , y ⟩ if ⟨ w , v ⟩ = 0 . This construction is inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based semi-adaptive model under the standard symmetric external Diffie–Hellman assumption. ∙ non-zero predicate IPFE . We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that successfully recovers ⟨ x , y ⟩ if ⟨ w , v ⟩ ≠ 0 . We generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-hiding UNP-IPFE in both public and secret key setting. Interestingly, our secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public key UNP-IPFE or UQFE in the standard model as an important open problem.
ArticleNumber 29
Author Mukherjee, Sayantan
Mitrokotsa, Aikaterini
Dowerah, Uddipana
Pal, Tapas
Dutta, Subhranil
Author_xml – sequence: 1
  givenname: Uddipana
  surname: Dowerah
  fullname: Dowerah, Uddipana
  organization: Chalmers University of Technology
– sequence: 2
  givenname: Subhranil
  surname: Dutta
  fullname: Dutta, Subhranil
  organization: Indian Institute of Technology Kharagpur
– sequence: 3
  givenname: Aikaterini
  surname: Mitrokotsa
  fullname: Mitrokotsa, Aikaterini
  organization: University of St Gallen
– sequence: 4
  givenname: Sayantan
  surname: Mukherjee
  fullname: Mukherjee, Sayantan
  email: csayantan.mukherjee@gmail.com
  organization: University of St Gallen
– sequence: 5
  givenname: Tapas
  surname: Pal
  fullname: Pal, Tapas
  organization: NTT Social Informatics Laboratories
BackLink https://research.chalmers.se/publication/536237$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9UU1rGzEQFSWFOm7-QE8LOW-qz13pWIydBAw1tDkPknaUbLCljbRL8b_vujYt9JDTMMx7b-bNuyZXMUUk5Aujd4zS9muhlElVUy5qaqTSNf9AFkwKXjPR6iuyoEaImreGfiLXpbzO8Fa1YkHWT9GlKXbYVbuMXe_tiNVjjJjnPnWTH6vNFP3Yp2j31Tr6fBxOTRVyOlQ72-c-PpfP5GOw-4I3l7okT5v1z9VDvf1-_7j6tq29FGasucMWheWUuk4qZ5x22CjuuW2MMg5FK5sgVcdRWm2CCqahjQ9aaR64nedL8uOsW37hMDkYcn-w-QjJ9pCxoM3-BfyL3R8wFygIMmjOnKYQpNAgjWnANFqBocFpzazXHZtVb8-qQ05vE5YRXtOUZ78FBFdSttQ0akbxM8rnVErG8Hc7o3AKAc4hwBwC_AkB-EzS_5F8P9rTA8ds-_37VHHxOpx-jPnfVe-wfgP8tZ1n
CitedBy_id crossref_primary_10_1049_ise2_1969519
crossref_primary_10_1016_j_tcs_2024_114548
Cites_doi 10.1007/978-3-030-64840-4_16
10.1007/978-3-030-45721-1_5
10.6028/NIST.SP.800-57p1r2006
10.1007/978-3-319-96884-1_20
10.1007/978-3-030-45374-9_4
10.1007/s10623-015-0131-1
10.1007/978-3-030-77870-5_18
10.1007/978-3-662-49384-7_7
10.1007/11693383_22
10.1145/2824233
10.1007/s00145-015-9220-6
10.1007/978-3-030-26951-7_26
10.1145/1180405.1180418
10.1007/978-3-030-56784-2_23
10.1007/978-3-540-78967-3_9
10.1007/978-3-030-03329-3_25
10.1007/s10623-004-3808-4
10.1007/978-3-030-17653-2_2
10.1007/978-3-642-14623-7_11
10.1007/978-3-642-03356-8_36
10.1007/978-3-030-17259-6_5
10.1007/978-3-030-92068-5_15
10.1007/978-3-642-29011-4_35
10.1007/978-3-662-54388-7_2
10.1007/978-3-030-03329-3_21
10.1145/3406325.3451093
10.1007/978-3-662-48797-6_20
10.1007/978-3-319-63688-7_20
10.1007/978-3-030-84259-8_8
10.1007/978-3-030-21568-2_21
10.1007/978-3-030-17259-6_6
10.1145/2488608.2488678
10.1007/978-3-662-53015-3_13
10.1007/978-3-642-34961-4_22
10.1007/978-3-030-34618-8_18
10.1007/978-3-319-56620-7_21
10.1007/978-3-030-90453-1_8
10.1007/978-3-662-46447-2_33
10.1007/978-3-030-90567-5_13
10.1007/978-3-319-63688-7_3
10.1007/978-3-030-64375-1_8
10.1007/978-3-319-76581-5_9
10.1007/s00145-009-9048-z
10.1007/978-3-642-19571-6_16
10.1007/978-3-642-20465-4_30
10.1007/978-3-662-53015-3_12
10.1007/978-3-030-90402-9_13
10.1145/3234511
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1007/s00145-023-09458-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
Computer Science
EISSN 1432-1378
ExternalDocumentID oai_research_chalmers_se_4f821b80_f438_4996_9685_90fb881ac8d1
10_1007_s00145_023_09458_2
GrantInformation_xml – fundername: University of St.Gallen
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c439t-2be7e3a200bd45b9b8be652c2a6959be3746f45d2e4a89f5f9606cf8582f2abe3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001009526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-2790
1432-1378
IngestDate Wed Nov 05 04:21:32 EST 2025
Sat Sep 27 04:21:10 EDT 2025
Sat Nov 29 06:12:31 EST 2025
Tue Nov 18 20:15:33 EST 2025
Fri Feb 21 02:43:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fully attribute-hiding
Weak attribute-hiding
Inner product predicate
Semi-adaptive security
Inner product functional encryption
Unbounded
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-2be7e3a200bd45b9b8be652c2a6959be3746f45d2e4a89f5f9606cf8582f2abe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00145-023-09458-2
PQID 3254470965
PQPubID 2043756
ParticipantIDs swepub_primary_oai_research_chalmers_se_4f821b80_f438_4996_9685_90fb881ac8d1
proquest_journals_3254470965
crossref_primary_10_1007_s00145_023_09458_2
crossref_citationtrail_10_1007_s00145_023_09458_2
springer_journals_10_1007_s00145_023_09458_2
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of cryptology
PublicationTitleAbbrev J Cryptol
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Q. Lai, F.H. Liu, Z. Wang, New lattice two-stage sampling technique and its applications to functional encryption—stronger security and smaller ciphertexts, in A. Canteaut, F. Standaert (eds.) Advances in Cryptology—EUROCRYPT 2021, Lecture Notes in Computer Science, vol. 12696 (Springer, 2021), pp. 498–527
R. Gay, A new paradigm for public-key functional encryption for degree-2 polynomials, in IACR International Conference on Public-Key Cryptography—PKC 2020, Lecture Notes in Computer Science, vol. 12110 (Springer, 2020), pp. 95–120
B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in S. Halevi (ed.) Advances in Cryptology—CRYPTO 2009, Lecture Notes in Computer Science, vol. 5677 (Springer, 2009), pp. 619–636
S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich, Reusable garbled circuits and succinct functional encryption, in Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing (2013), pp. 555–564
M. Abdalla, R. Gay, M. Raykova, H. Wee, Multi-input inner-product functional encryption from pairings, in J. Coron, J. Nielsen (eds.) Advances in Cryptology—EUROCRYPT 2017, Lecture Notes in Computer Science, vol. 10210 (Springer, 2017), pp. 601–626
J. Lee, D. Kim, D. Kim, Y. Song, J. Shin, J.H. Cheon, Instant privacy-preserving biometric authentication for hamming distance. Cryptology ePrint Archive, Paper 2018/1214 (2018). https://eprint.iacr.org/2018/1214
S. Agrawal, R. Goyal, J. Tomida, Multi-party functional encryption, in K. Nissim, B. Waters (eds.) Theory of Cryptography Conference—TCC 2021, Lecture Notes in Computer Science, vol. 13043 (Springer, 2021), pp. 224–255
T. Okamoto, K. Takashima, Adaptively attribute-hiding (hierarchical) inner product encryption, in D. Pointcheval, T. Johansson (eds.) Advances in Cryptology—EUROCRYPT 2012, Lecture Notes in Computer Science, vol. 7237 (Springer, 2012), pp. 591–608
T. Okamoto, K. Takashima, Fully secure unbounded inner-product and attribute-based encryption, in X. Wang, K. Sako (eds.) Advances in Cryptology—ASIACRYPT 2012, Lecture Notes in Computer Science, vol. 7658 (Springer, 2012), pp. 349–366
S. Agrawal, B. Libert, D. Stehlé, Fully secure functional encryption for inner products, from standard assumptions, in M. Robshaw, J. Katz (eds.) Advances in Cryptology—CRYPTO 2016, Lecture Notes in Computer Science, vol. 9816 (Springer, 2016), pp. 333–362
S. Agrawal, A. Pellet-Mary, Indistinguishability obfuscation without maps: attacks and fixes for noisy linear fe, in A. Canteaut, Y. Ishai (eds.) Advances in Cryptology—EUROCRYPT 2020, Lecture Notes in Computer Science, vol. 12105 (Springer, 2020), pp. 110–140
M. Abdalla, D. Catalano, R. Gay, B. Ursu, Inner-product functional encryption with fine-grained access control, in S. Moriai, H. Wang (eds.) Advances in Cryptology—ASIACRYPT 2020, Lecture Notes in Computer Science, vol. 12493 (Springer, 2020), pp. 467–497
F. Brezing, A. Weng, Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr. 37(1), 133–141 (2005)
P. Datta, T. Pal, (Compact) adaptively secure FE for attribute-weighted sums from k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-lin, in Advances in Cryptology—ASIACRYPT 2021, Lecture Notes in Computer Science, vol. 13093 (Springer, 2021), pp. 434–467
T. Okamoto, K. Takashima, Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption. Des. Codes Cryptogr.77(2), 725–771 (2015)
J. Tomida, Unbounded quadratic functional encryption and more from pairings. Cryptology ePrint Archive, Paper 2022/1124 (2022). https://eprint.iacr.org/2022/1124
M. Abdalla, J. Gong, H. Wee, Functional encryption for attribute-weighted sums from k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-lin, in R.T. Micciancio D. (ed.) Advances in Cryptology—CRYPTO 2020, Lecture Notes in Computer Science, vol. 12170 (Springer, 2020), pp. 685–716
T. Pal, R. Dutta, CCA secure attribute-hiding inner product encryption from minimal assumption, in Information Security and Privacy: 26th Australasian Conference, ACISP 2021, Virtual Event, December 1-3, 2021, Proceedings (Springer, Berlin, Heidelberg, 2021), pp. 254–274
F. Benhamouda, F. Bourse, H. Lipmaa, CCA-secure inner-product functional encryption from projective hash functions, in S. Fehr (ed.) Public-Key Cryptography—PKC 2017, Lecture Notes in Computer Science, vol. 10175 (Springer, 2017), pp. 36–66
D. Boneh, A. Sahai, B. Waters, Functional encryption: definitions and challenges, in Y. Ishai (ed.) Theory of Cryptography Conference—TCC 2011, Lecture Notes in Computer Science, vol. 6597 (Springer, 2011), pp. 253–273
S. Agrawal, M. Maitra, S. Yamada, Attribute based encryption (and more) for nondeterministic finite automata from LWE, in A. Boldyreva, D. Micciancio (eds.) Advances in Cryptology—CRYPTO 2019, Lecture Notes in Computer Science, vol. 11693 (Springer, 2019), pp. 765–797
G. Castagnos, F. Laguillaumie, I. Tucker, Practical fully secure unrestricted inner product functional encryption modulo p, in T. Peyrin, S. Galbraith (eds.) Advances in Cryptology—ASIACRYPT 2018, Lecture Notes in Computer Science, vol. 11273 (Springer, 2018), pp. 733–764
H. Wee, Functional encryption for quadratic functions from k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-lin, revisited, in R. Pass, K. Pietrzak (eds.) Theory of Cryptography Conference—TCC 2020, Lecture Notes in Computer Science, vol. 12550 (Springer, 2020), pp. 210–228
C.E.Z. Baltico, D. Catalano, D. Fiore, R. Gay, Practical functional encryption for quadratic functions with applications to predicate encryption, in J. Katz, H. Shacham (eds.) Advances in Cryptology—CRYPTO 2017, Lecture Notes in Computer Science, vol. 10401 (Springer, 2017), pp. 67–98
M. Abdalla, D. Catalano, D. Fiore, R. Gay, B. Ursu, Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings, in H. Shacham, A. Boldyreva (eds.) Advances in Cryptology—CRYPTO 2018, Lecture Notes in Computer Science, vol. 10991 (Springer, 2018), pp. 597–627
S. Agrawal, R. Goyal, J. Tomida, Multi-input quadratic functional encryption from pairings, in T. Malkin, C. Peikert (eds.) Advances in Cryptology—CRYPTO 2021, Lecture Notes in Computer Science, vol. 12828 (Springer, 2021), pp. 208–238
M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner, Decentralizing inner-product functional encryption, in D. Lin, K. Sako (eds.) Public-Key Cryptography—PKC 2019, Lecture Notes in Computer Science, vol. 11443 (Springer, 2019), pp. 128–157
V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, in Proceedings of the 13th ACM Conference on Computer and Communications security (2006), pp. 89–98
N. Bitansky, V. Vaikuntanathan, Indistinguishability obfuscation from functional encryption. J. ACM (JACM)65(6), 1–37 (2018)
A. Escala, G. Herold, E. Kiltz, C. Ràfols, J. Villar, An algebraic framework for diffie–hellman assumptions. J. Cryptol.30(1), 242–288 (2017)
J. Katz, A. Sahai, B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, in N. Smart (ed.) Advances in Cryptology—EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4965 (Springer, 2008), pp. 146–162
S. Dutta, T. Pal, R. Dutta, Fully secure unbounded zero inner product encryption with short ciphertexts and keys, in Q. Huang, Y. Yu (eds.) International Conference on Provable Security, Lecture Notes in Computer Science, vol. 13059 (Springer, 2021), pp. 241–258
T. Okamoto, K. Takashima, Fully secure functional encryption with general relations from the decisional linear assumption, in T. Rabin (ed.) Advances in Cryptology—CRYPTO 2010, Lecture Notes in Computer Science, vol. 6223 (Springer, 2010), pp. 191–208
J. Tomida, K. Takashima, Unbounded inner product functional encryption from bilinear maps, in T. Peyrin, S. Galbraith (eds.) Advances in Cryptology—ASIACRYPT 2018, Lecture Notes in Computer Science, vol. 11273 (Springer, 2018), pp. 609–639
A. Lewko, B. Waters, Unbounded HIBE and attribute-based encryption, in K. Paterson (ed.) Advances in Cryptology—EUROCRYPT 2011, Lecture Notes in Computer Science, vol. 6632 (Springer, 2011), pp. 547–567
P.S. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in B. Preneel, S. Tavares (eds.) International Workshop on Selected Areas in Cryptography—SAC 2005, Lecture Notes in Computer Science, vol. 3897 (Springer, 2005), pp. 319–331
B. Libert, R. Titiu, Multi-client functional encryption for linear functions in the standard model from LWE, in S. Galbraith, S. Moriai (eds.) Advances in Cryptology—ASIACRYPT 2019, Lecture Notes in Computer Science, vol. 11923 (Springer, 2019), pp. 520–551
P. Datta, R. Dutta, S. Mukhopadhyay, Functional encryption for inner product with full function privacy, in C. Cheng, K. Chung, G. Persiano, B. Yang (eds.) Public-Key Cryptography—PKC 2016, Lecture Notes in Computer Science, vol. 9614 (Springer, 2016), pp. 164–195
A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from well-founded assumptions, in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (2021), pp. 60–73
M. Abdalla, F. Bourse, A. De Caro, D. Pointcheval, Better security for functional encryption for inner product evaluations. Cryptology ePrint Archive (2016). https://eprint.iacr.org/2016/011
A. Bishop, A. Jain, L. Kowalczyk, Function
9458_CR21
9458_CR20
9458_CR27
9458_CR26
9458_CR29
9458_CR28
9458_CR23
9458_CR22
9458_CR25
9458_CR24
9458_CR30
9458_CR32
9458_CR31
9458_CR38
9458_CR37
9458_CR39
9458_CR34
9458_CR33
9458_CR36
9458_CR35
9458_CR41
9458_CR40
9458_CR43
9458_CR42
9458_CR49
9458_CR48
9458_CR45
9458_CR44
9458_CR47
9458_CR46
9458_CR51
9458_CR10
9458_CR50
9458_CR9
9458_CR8
9458_CR19
9458_CR1
9458_CR16
9458_CR15
9458_CR3
9458_CR18
9458_CR2
9458_CR17
9458_CR5
9458_CR12
9458_CR4
9458_CR11
9458_CR7
9458_CR14
9458_CR6
9458_CR13
References_xml – reference: C.E.Z. Baltico, D. Catalano, D. Fiore, R. Gay, Practical functional encryption for quadratic functions with applications to predicate encryption, in J. Katz, H. Shacham (eds.) Advances in Cryptology—CRYPTO 2017, Lecture Notes in Computer Science, vol. 10401 (Springer, 2017), pp. 67–98
– reference: N. Attrapadung, Unbounded dynamic predicate compositions in attribute-based encryption, in Y. Ishai, V. Rijmen (eds.) Advances in Cryptology—EUROCRYPT 2019, Lecture Notes in Computer Science, vol. 11476 (Springer, 2019), pp. 34–67
– reference: M. Abdalla, J. Gong, H. Wee, Functional encryption for attribute-weighted sums from k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-lin, in R.T. Micciancio D. (ed.) Advances in Cryptology—CRYPTO 2020, Lecture Notes in Computer Science, vol. 12170 (Springer, 2020), pp. 685–716
– reference: Z. Brakerski, V. Vaikuntanathan, Circuit-ABE from LWE: unbounded attributes and semi-adaptive security, in M. Robshaw, J. Katz (eds.) Advances in Cryptology— CRYPTO 2016, Lecture Notes in Computer Science, vol. 9816 (Springer, 2016), pp. 363–384
– reference: S. Agrawal, A. Pellet-Mary, Indistinguishability obfuscation without maps: attacks and fixes for noisy linear fe, in A. Canteaut, Y. Ishai (eds.) Advances in Cryptology—EUROCRYPT 2020, Lecture Notes in Computer Science, vol. 12105 (Springer, 2020), pp. 110–140
– reference: P.S. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in B. Preneel, S. Tavares (eds.) International Workshop on Selected Areas in Cryptography—SAC 2005, Lecture Notes in Computer Science, vol. 3897 (Springer, 2005), pp. 319–331
– reference: N. Bitansky, V. Vaikuntanathan, Indistinguishability obfuscation from functional encryption. J. ACM (JACM)65(6), 1–37 (2018)
– reference: M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner, Decentralizing inner-product functional encryption, in D. Lin, K. Sako (eds.) Public-Key Cryptography—PKC 2019, Lecture Notes in Computer Science, vol. 11443 (Springer, 2019), pp. 128–157
– reference: A. Bishop, A. Jain, L. Kowalczyk, Function-hiding inner product encryption, in T. Iwata, J. Cheon (eds.) Advances in Cryptology—ASIACRYPT 2015, Lecture Notes in Computer Science, vol. 9452 (Springer, 2015), pp. 470–491
– reference: G. Castagnos, F. Laguillaumie, I. Tucker, Practical fully secure unrestricted inner product functional encryption modulo p, in T. Peyrin, S. Galbraith (eds.) Advances in Cryptology—ASIACRYPT 2018, Lecture Notes in Computer Science, vol. 11273 (Springer, 2018), pp. 733–764
– reference: M. Abdalla, R. Gay, M. Raykova, H. Wee, Multi-input inner-product functional encryption from pairings, in J. Coron, J. Nielsen (eds.) Advances in Cryptology—EUROCRYPT 2017, Lecture Notes in Computer Science, vol. 10210 (Springer, 2017), pp. 601–626
– reference: J. Tomida, Unbounded quadratic functional encryption and more from pairings. Cryptology ePrint Archive, Paper 2022/1124 (2022). https://eprint.iacr.org/2022/1124
– reference: F. Benhamouda, F. Bourse, H. Lipmaa, CCA-secure inner-product functional encryption from projective hash functions, in S. Fehr (ed.) Public-Key Cryptography—PKC 2017, Lecture Notes in Computer Science, vol. 10175 (Springer, 2017), pp. 36–66
– reference: D. Boneh, A. Sahai, B. Waters, Functional encryption: definitions and challenges, in Y. Ishai (ed.) Theory of Cryptography Conference—TCC 2011, Lecture Notes in Computer Science, vol. 6597 (Springer, 2011), pp. 253–273
– reference: M. Abdalla, D. Catalano, D. Fiore, R. Gay, B. Ursu, Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings, in H. Shacham, A. Boldyreva (eds.) Advances in Cryptology—CRYPTO 2018, Lecture Notes in Computer Science, vol. 10991 (Springer, 2018), pp. 597–627
– reference: V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, in Proceedings of the 13th ACM Conference on Computer and Communications security (2006), pp. 89–98
– reference: P. Datta, R. Dutta, S. Mukhopadhyay, Functional encryption for inner product with full function privacy, in C. Cheng, K. Chung, G. Persiano, B. Yang (eds.) Public-Key Cryptography—PKC 2016, Lecture Notes in Computer Science, vol. 9614 (Springer, 2016), pp. 164–195
– reference: S. Gorbunov, V. Vaikuntanathan, H. Wee, Attribute-based encryption for circuits. J. ACM (JACM)62(6), 1–33 (2015)
– reference: M. Abdalla, F. Bourse, A.D. Caro, D. Pointcheval, Simple functional encryption schemes for inner products, in J. Katz (ed.) Public-Key Cryptography—PKC 2015, Lecture Notes in Computer Science, vol. 9020 (Springer, 2015), pp. 733–751
– reference: M. Abdalla, D. Catalano, R. Gay, B. Ursu, Inner-product functional encryption with fine-grained access control, in S. Moriai, H. Wang (eds.) Advances in Cryptology—ASIACRYPT 2020, Lecture Notes in Computer Science, vol. 12493 (Springer, 2020), pp. 467–497
– reference: H. Lin, Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs, in J. Katz, H. Shacham (eds.) Advances in Cryptology—CRYPTO 2017, Lecture Notes in Computer Science, vol. 10401 (Springer, 2017), pp. 599–629
– reference: T. Okamoto, K. Takashima, Adaptively attribute-hiding (hierarchical) inner product encryption, in D. Pointcheval, T. Johansson (eds.) Advances in Cryptology—EUROCRYPT 2012, Lecture Notes in Computer Science, vol. 7237 (Springer, 2012), pp. 591–608
– reference: P. Datta, T. Okamoto, J. Tomida, Full-hiding (unbounded) multi-input inner product functional encryption from the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Linear assumption, in M. Abdalla, R. Dahab (eds.) Public-Key Cryptography—PKC 2018, Lecture Notes in Computer Science, vol. 10770 (Springer, 2018), pp. 245–277
– reference: E. Dufour-Sans, D. Pointcheval, Unbounded inner-product functional encryption with succinct keys, in R. Deng, V. Gauthier-Umaña, M. Ochoa, M. Yung (eds.) Applied Cryptography and Network Security—ACNS 2019, Lecture Notes in Computer Science, vol. 11464 (Springer, 2019), pp. 426–441
– reference: A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from well-founded assumptions, in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (2021), pp. 60–73
– reference: D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves. J. Cryptol.23(2), 224–280 (2010)
– reference: T. Okamoto, K. Takashima, Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption. Des. Codes Cryptogr.77(2), 725–771 (2015)
– reference: E. Barker, E. Barker, W. Burr, W. Polk, M. Smid, et al., Recommendation for key management: Part 1: General. National Institute of Standards and Technology, Technology Administration... (2006)
– reference: J. Lee, D. Kim, D. Kim, Y. Song, J. Shin, J.H. Cheon, Instant privacy-preserving biometric authentication for hamming distance. Cryptology ePrint Archive, Paper 2018/1214 (2018). https://eprint.iacr.org/2018/1214
– reference: A. Lewko, B. Waters, Unbounded HIBE and attribute-based encryption, in K. Paterson (ed.) Advances in Cryptology—EUROCRYPT 2011, Lecture Notes in Computer Science, vol. 6632 (Springer, 2011), pp. 547–567
– reference: S. Agrawal, B. Libert, D. Stehlé, Fully secure functional encryption for inner products, from standard assumptions, in M. Robshaw, J. Katz (eds.) Advances in Cryptology—CRYPTO 2016, Lecture Notes in Computer Science, vol. 9816 (Springer, 2016), pp. 333–362
– reference: S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich, Reusable garbled circuits and succinct functional encryption, in Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing (2013), pp. 555–564
– reference: J. Katz, A. Sahai, B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, in N. Smart (ed.) Advances in Cryptology—EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4965 (Springer, 2008), pp. 146–162
– reference: A. Escala, G. Herold, E. Kiltz, C. Ràfols, J. Villar, An algebraic framework for diffie–hellman assumptions. J. Cryptol.30(1), 242–288 (2017)
– reference: T. Okamoto, K. Takashima, Fully secure functional encryption with general relations from the decisional linear assumption, in T. Rabin (ed.) Advances in Cryptology—CRYPTO 2010, Lecture Notes in Computer Science, vol. 6223 (Springer, 2010), pp. 191–208
– reference: H. Wee, Functional encryption for quadratic functions from k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-lin, revisited, in R. Pass, K. Pietrzak (eds.) Theory of Cryptography Conference—TCC 2020, Lecture Notes in Computer Science, vol. 12550 (Springer, 2020), pp. 210–228
– reference: R. Gay, A new paradigm for public-key functional encryption for degree-2 polynomials, in IACR International Conference on Public-Key Cryptography—PKC 2020, Lecture Notes in Computer Science, vol. 12110 (Springer, 2020), pp. 95–120
– reference: S. Agrawal, M. Maitra, S. Yamada, Attribute based encryption (and more) for nondeterministic finite automata from LWE, in A. Boldyreva, D. Micciancio (eds.) Advances in Cryptology—CRYPTO 2019, Lecture Notes in Computer Science, vol. 11693 (Springer, 2019), pp. 765–797
– reference: T. Pal, R. Dutta, CCA secure attribute-hiding inner product encryption from minimal assumption, in Information Security and Privacy: 26th Australasian Conference, ACISP 2021, Virtual Event, December 1-3, 2021, Proceedings (Springer, Berlin, Heidelberg, 2021), pp. 254–274
– reference: S. Agrawal, R. Goyal, J. Tomida, Multi-party functional encryption, in K. Nissim, B. Waters (eds.) Theory of Cryptography Conference—TCC 2021, Lecture Notes in Computer Science, vol. 13043 (Springer, 2021), pp. 224–255
– reference: M. Abdalla, F. Bourse, A. De Caro, D. Pointcheval, Better security for functional encryption for inner product evaluations. Cryptology ePrint Archive (2016). https://eprint.iacr.org/2016/011
– reference: B. Libert, R. Titiu, Multi-client functional encryption for linear functions in the standard model from LWE, in S. Galbraith, S. Moriai (eds.) Advances in Cryptology—ASIACRYPT 2019, Lecture Notes in Computer Science, vol. 11923 (Springer, 2019), pp. 520–551
– reference: B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in S. Halevi (ed.) Advances in Cryptology—CRYPTO 2009, Lecture Notes in Computer Science, vol. 5677 (Springer, 2009), pp. 619–636
– reference: S. Katsumata, S. Yamada, Non-zero inner product encryption schemes from various assumptions: LWE, DDH and DCR, in D. Lin, K. Sako (eds.) Public-Key Cryptography—PKC 2019, Lecture Notes in Computer Science, vol. 11443 (Springer, 2019), pp. 158–188
– reference: J. Tomida, K. Takashima, Unbounded inner product functional encryption from bilinear maps, in T. Peyrin, S. Galbraith (eds.) Advances in Cryptology—ASIACRYPT 2018, Lecture Notes in Computer Science, vol. 11273 (Springer, 2018), pp. 609–639
– reference: S. Dutta, T. Pal, R. Dutta, Fully secure unbounded zero inner product encryption with short ciphertexts and keys, in Q. Huang, Y. Yu (eds.) International Conference on Provable Security, Lecture Notes in Computer Science, vol. 13059 (Springer, 2021), pp. 241–258
– reference: T. Okamoto, K. Takashima, Fully secure unbounded inner-product and attribute-based encryption, in X. Wang, K. Sako (eds.) Advances in Cryptology—ASIACRYPT 2012, Lecture Notes in Computer Science, vol. 7658 (Springer, 2012), pp. 349–366
– reference: F. Brezing, A. Weng, Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr. 37(1), 133–141 (2005)
– reference: S. Agrawal, R. Goyal, J. Tomida, Multi-input quadratic functional encryption from pairings, in T. Malkin, C. Peikert (eds.) Advances in Cryptology—CRYPTO 2021, Lecture Notes in Computer Science, vol. 12828 (Springer, 2021), pp. 208–238
– reference: Q. Lai, F.H. Liu, Z. Wang, New lattice two-stage sampling technique and its applications to functional encryption—stronger security and smaller ciphertexts, in A. Canteaut, F. Standaert (eds.) Advances in Cryptology—EUROCRYPT 2021, Lecture Notes in Computer Science, vol. 12696 (Springer, 2021), pp. 498–527
– reference: P. Datta, T. Pal, (Compact) adaptively secure FE for attribute-weighted sums from k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-lin, in Advances in Cryptology—ASIACRYPT 2021, Lecture Notes in Computer Science, vol. 13093 (Springer, 2021), pp. 434–467
– ident: 9458_CR5
  doi: 10.1007/978-3-030-64840-4_16
– ident: 9458_CR12
  doi: 10.1007/978-3-030-45721-1_5
– ident: 9458_CR3
– ident: 9458_CR15
  doi: 10.6028/NIST.SP.800-57p1r2006
– ident: 9458_CR4
  doi: 10.1007/978-3-319-96884-1_20
– ident: 9458_CR31
  doi: 10.1007/978-3-030-45374-9_4
– ident: 9458_CR46
  doi: 10.1007/s10623-015-0131-1
– ident: 9458_CR38
  doi: 10.1007/978-3-030-77870-5_18
– ident: 9458_CR24
  doi: 10.1007/978-3-662-49384-7_7
– ident: 9458_CR16
  doi: 10.1007/11693383_22
– ident: 9458_CR33
  doi: 10.1145/2824233
– ident: 9458_CR29
  doi: 10.1007/s00145-015-9220-6
– ident: 9458_CR11
  doi: 10.1007/978-3-030-26951-7_26
– ident: 9458_CR34
  doi: 10.1145/1180405.1180418
– ident: 9458_CR7
  doi: 10.1007/978-3-030-56784-2_23
– ident: 9458_CR37
  doi: 10.1007/978-3-540-78967-3_9
– ident: 9458_CR23
  doi: 10.1007/978-3-030-03329-3_25
– ident: 9458_CR39
– ident: 9458_CR22
  doi: 10.1007/s10623-004-3808-4
– ident: 9458_CR13
  doi: 10.1007/978-3-030-17653-2_2
– ident: 9458_CR43
  doi: 10.1007/978-3-642-14623-7_11
– ident: 9458_CR50
  doi: 10.1007/978-3-642-03356-8_36
– ident: 9458_CR1
  doi: 10.1007/978-3-030-17259-6_5
– ident: 9458_CR26
  doi: 10.1007/978-3-030-92068-5_15
– ident: 9458_CR44
  doi: 10.1007/978-3-642-29011-4_35
– ident: 9458_CR17
  doi: 10.1007/978-3-662-54388-7_2
– ident: 9458_CR49
  doi: 10.1007/978-3-030-03329-3_21
– ident: 9458_CR35
  doi: 10.1145/3406325.3451093
– ident: 9458_CR18
  doi: 10.1007/978-3-662-48797-6_20
– ident: 9458_CR42
  doi: 10.1007/978-3-319-63688-7_20
– ident: 9458_CR8
  doi: 10.1007/978-3-030-84259-8_8
– ident: 9458_CR27
  doi: 10.1007/978-3-030-21568-2_21
– ident: 9458_CR36
  doi: 10.1007/978-3-030-17259-6_6
– ident: 9458_CR48
– ident: 9458_CR32
  doi: 10.1145/2488608.2488678
– ident: 9458_CR21
  doi: 10.1007/978-3-662-53015-3_13
– ident: 9458_CR45
  doi: 10.1007/978-3-642-34961-4_22
– ident: 9458_CR41
  doi: 10.1007/978-3-030-34618-8_18
– ident: 9458_CR6
  doi: 10.1007/978-3-319-56620-7_21
– ident: 9458_CR9
  doi: 10.1007/978-3-030-90453-1_8
– ident: 9458_CR2
  doi: 10.1007/978-3-662-46447-2_33
– ident: 9458_CR47
  doi: 10.1007/978-3-030-90567-5_13
– ident: 9458_CR14
  doi: 10.1007/978-3-319-63688-7_3
– ident: 9458_CR51
  doi: 10.1007/978-3-030-64375-1_8
– ident: 9458_CR25
  doi: 10.1007/978-3-319-76581-5_9
– ident: 9458_CR30
  doi: 10.1007/s00145-009-9048-z
– ident: 9458_CR20
  doi: 10.1007/978-3-642-19571-6_16
– ident: 9458_CR40
  doi: 10.1007/978-3-642-20465-4_30
– ident: 9458_CR10
  doi: 10.1007/978-3-662-53015-3_12
– ident: 9458_CR28
  doi: 10.1007/978-3-030-90402-9_13
– ident: 9458_CR19
  doi: 10.1145/3234511
SSID ssj0017573
Score 2.3957489
Snippet Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE) which additionally hides attributes associated to...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Access control
Coding and Information Theory
Combinatorics
Communications Engineering
Computational Mathematics and Numerical Analysis
Computer Science
Computing on Encrypted Data
Encryption
Fully attribute-hiding
Inner product functional encryption
Inner product predicate
Messages
Networks
Probability Theory and Stochastic Processes
Research Article
Semi-adaptive security
Signatures
Unbounded
Weak attribute-hiding
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagcOCyvEWXgnLYG0Qkjp8nhFArkKqqElvUm2U7troSSrtJQNp_vx7HTQWHXjhGTmInMx57PDPfh9CVk0ErZEVyZj3LiatcLjwug5dS86AjlhcRiennkq9WYruV63Tg1qW0yqNNjIa63ls4I_9UAZYWB6ySz4fbHFijILqaKDQeokeAklDG1L0fYxSB0yHCLIGvjMsiFc3E0jnwDaA2ucqDg0ODtvy9MJ12m2OA9B8w0bgALZ7-79CfoYu09cy-DLryHD1wzQtgbU4ZHi_RfNMYYFlydbZuYwCnd9l34OYK1xEYNluEZXA4PczmjW3vosHJoEYlW-sb-ILuFdos5tdfv-WJZiG3YTfS59g47iodpoupCTXSCOMYxRZrJqk0ruKEeUJr7IgW0lMPTo_1ggrssQ7tr9Gk2TfuDcpqwbgpTLAK1hKmjdE67Bdp6IeSmhE3ReXxHyubMMiBCuOXGtGTo1xUkIuKclF4ij6MzxwGBI6zd8-OMlBpNnbqJIAp-ngU56n53NuWg8jHngGNO8Ew7ZTdRY6bTnVOES9waUShPKmECn4kU5IJqmThjRCltqIuL88P7i16gqNCQjLwDE369rd7hx7bP_1N176Pqn0PTGj8rg
  priority: 102
  providerName: ProQuest
Title Unbounded Predicate Inner Product Functional Encryption from Pairings
URI https://link.springer.com/article/10.1007/s00145-023-09458-2
https://www.proquest.com/docview/3254470965
https://research.chalmers.se/publication/536237
Volume 36
WOSCitedRecordID wos001009526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1432-1378
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017573
  issn: 0933-2790
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yOvTSNElLtk0XHXJrDbas57EtuzQkLEvShNyEJEskUNyw3gby7yvJskNKCLRHI1sS85BmPDPfABw7GaRC1qRg1rOCuNoVwuMqeCkNDzJieZmQmK7O-GIhrq_lMheFdUO2-xCSTCf1WOwWrflYTVwXwSWhgb-bsE0j2kz00S-uxtgBp31cWcYuZVyWuVTm-TmeXkePNuYYFv0LQjRdO_Pd_9vwG3idzUz0pZeLPdhw7T7sDi0cUNbo_di0OSd4HMDssjWxyZJr0HKV4jdrh05ia67wnHBh0Tzcgv3PQzRr7eohnTcolqigpb6Nu-vewuV89uPb9yJ3WShsMEbWBTaOu1oHbTENoUYaYRyj2GLNJJXG1ZwwT2iDHdFCeuqjz2O9oAJ7rMP4O9hqf7XuEFAjGDelCYeCtYRpY7QO5iIN61DSMOImUA3EVjZDkMdOGD_VCJ6caKYCzVSimcIT-DR-c9cDcLz49tHAQ5WVsVN1hGHjEeZmAp8HVj0OvzTbWc_7ceUIxp1RmG6UvUktbjrVOUW8wJURpfKkFiq4kUxJJqiSpTdCVNqKpnr_b6t_gFc4CU_MDT6CrfXqt_sIO_Z-fdutprD9dbZYnk9h85QX05iyejFNevAHSDb8SA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyTY8K4YKOAFrCAicfxcIMRjRh11GI1Qi7oztmOrlVBaJgOoP8U3YjuPESxm1wXLyImT2MfXvr6-5wA8dzKgQpYkY9azjLjSZcLjIngpFQ8YsTxPTExf5nyxECcncrkDv_tcmHissreJyVBX5zbukb8uI5cWj1wlby--Z1E1KkZXewmNFhaH7vJXcNmaN7OPoX9fYDydHH04yDpVgcyGyXedYeO4K3VAh6kINdII4xjFFmsmqTSu5IR5QivsiBbSUx_X-NYLKrDHOpSHeq_BLikJoyPYfT9ZLD8PcQtO25i2jAppXOZdmk5K1oveSMyGLrPgUtGAz7-nws36dgjJ_kNfmqa86e3_rbHuwK1ucY3etaPhLuy4-l7Upe7OsNyHyXFtoo6Uq9BylUJUa4dmUX0sXCfqWzQNE327P4omtV1dJpOKYhYOWuqz2GLNAzi-kr_Yg1F9XruHgCrBuMlNsHvWEqaN0TqsiGl4DyUVI24MRd-nynYs61Hs45sa-KETDlTAgUo4UHgML4dnLlqOka137_d9rjp706hNh4_hVQ-fTfG22uYtxIY3R77xjmjqVNnTpOLTqMYp4gUujMiVJ6VQwVNmSjJBlcy9EaLQVlTFo-0f9wxuHBx9mqv5bHH4GG7iNBji0ed9GK1XP9wTuG5_rs-a1dNuYCH4etXw_APBt1wI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9aW0pf1GpLT63mwbe6uJvN56O0d1Q8jqNW8S0k2QQF2crtKvS_b5L9sC1FKH1cspuEySSZ2Zn5_QAOnQxaIUuSMetZRlzpMuFxEbyUigcdsTxPSEyXc75YiKsrufylij9luw8hya6mIaI01e3xXeWPx8K3aNnHyuIyC-4JDWv9HF6Q4MnEpK6v55djHIHTLsYsI2MZl3lfNvP3Pn6_mh7tzTFE-gecaLqCZhv_P_lNWO_NT3TS6csbeObqLdgYqB1Qv9O3Iplzn_ixDdOL2kTyJVeh5SrFdVqHTiNlV3hOeLFoFm7H7qcimtZ29SOdQyiWrqClvokzbd7CxWz67dOXrGdfyGwwUtoMG8ddqcMuMhWhRhphHKPYYs0klcaVnDBPaIUd0UJ66qMvZL2gAnusQ_s7WKu_1-49oEowbnITDgtrCdPGaB3MSBrGoaRixE2gGASvbA9NHhkybtUIqpxkpoLMVJKZwhP4OH5z1wFzPPn23rCeqt-kjSojPBuP8DcTOBqW7bH5qd7mnR6MI0eQ7h6d6VrZ60R906jGKeIFLozIlSelUMG9ZEoyQZXMvRGi0FZUxc6_jX4Ar5afZ2p-ujjbhdc46VFMH96DtXZ17z7AS_vQ3jSr_bQVfgLSiQS9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unbounded+Predicate+Inner+Product+Functional+Encryption+from+Pairings&rft.jtitle=Journal+of+cryptology&rft.au=Dowerah%2C+Uddipana&rft.au=Dutta%2C+Subhranil&rft.au=Mitrokotsa%2C+Aikaterini&rft.au=Mukherjee%2C+Sayantan&rft.date=2023-07-01&rft.issn=0933-2790&rft.eissn=1432-1378&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1007%2Fs00145-023-09458-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00145_023_09458_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-2790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-2790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-2790&client=summon