Development and validation of Nusselt number and friction factor correlations for laminar flow in semi-circular zigzag channel of printed circuit heat exchanger

Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied thermal engineering Ročník 123; číslo C; s. 1327 - 1344
Hlavní autoři: Yoon, Su-Jong, O'Brien, James, Chen, Minghui, Sabharwall, Piyush, Sun, Xiaodong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.08.2017
Elsevier BV
Elsevier
Témata:
ISSN:1359-4311, 1873-5606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although there have been previous studies of the thermal-hydraulic performance of zigzag channel PCHEs, explicit correlations for friction factor or Nusselt number as a function of geometric parameters have not yet been reported. In this study, computational fluid dynamic (CFD) predictions were used to aid in the development of friction factor and Nusselt number correlations for laminar flow in semicircular zigzag-channel PCHEs. Two CFD models were developed to investigate the thermal-hydraulic characteristics of fluid flow in zigzag channels. A single-channel isothermal CFD model was used to investigate friction factors in PCHE zigzag channels. A two-channel CFD model was used to investigate the Nusselt number in zigzag channels and the effect of temperature-dependent fluid properties on the pressure loss. The effects of geometric parameters such as relative length ratio, zigzag angle and radius of curvature of bend were investigated. From the extensive CFD analysis database, friction factor and Nusselt number correlations were developed by implementing a least squares method with a non-linear Generalized Reduced Gradient algorithm. The friction factor correlation is valid for 50≤Re≤2000, 5°≤α≤45° and 4.09≤lR/Dh≤32.73. The Nusselt number correlations are valid for 200≤Re≤2000, Pr≤1.0, 5°≤α≤45° and 4.09≤lR/Dh≤12.27. The correlations were validated against experimental data from The Ohio State University (OSU) and Korea Advanced Institute of Science and Technology (KAIST). The friction factor for zigzag-channel PCHEs is mainly influenced by the zigzag channel geometry while the Nusselt number is influenced by the overall heat exchanger design including the plenum sections.
AbstractList Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although there have been previous studies of the thermal-hydraulic performance of zigzag channel PCHEs, explicit correlations for friction factor or Nusselt number as a function of geometric parameters have not yet been reported. In this study, computational fluid dynamic (CFD) predictions were used to aid in the development of friction factor and Nusselt number correlations for laminar flow in semicircular zigzag-channel PCHEs. Two CFD models were developed to investigate the thermal-hydraulic characteristics of fluid flow in zigzag channels. A single-channel isothermal CFD model was used to investigate friction factors in PCHE zigzag channels. A two-channel CFD model was used to investigate the Nusselt number in zigzag channels and the effect of temperature-dependent fluid properties on the pressure loss. The effects of geometric parameters such as relative length ratio, zigzag angle and radius of curvature of bend were investigated. From the extensive CFD analysis database, friction factor and Nusselt number correlations were developed by implementing a least squares method with a non-linear Generalized Reduced Gradient algorithm. The friction factor correlation is valid for 50≤Re≤2000, 5°≤α≤45° and 4.09≤lR/Dh≤32.73. The Nusselt number correlations are valid for 200≤Re≤2000, Pr≤1.0, 5°≤α≤45° and 4.09≤lR/Dh≤12.27. The correlations were validated against experimental data from The Ohio State University (OSU) and Korea Advanced Institute of Science and Technology (KAIST). The friction factor for zigzag-channel PCHEs is mainly influenced by the zigzag channel geometry while the Nusselt number is influenced by the overall heat exchanger design including the plenum sections.
Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These correlations summarize the thermal hydraulic performance of PCHEs and allow for accurate determination of their cost and effectiveness. Although there have been previous studies of the thermal-hydraulic performance of zigzag channel PCHEs, explicit correlations for friction factor or Nusselt number as a function of geometric parameters have not yet been reported. In this study, computational fluid dynamic (CFD) predictions were used to aid in the development of friction factor and Nusselt number correlations for laminar flow in semicircular zigzag-channel PCHEs. Two CFD models were developed to investigate the thermal-hydraulic characteristics of fluid flow in zigzag channels. A single-channel isothermal CFD model was used to investigate friction factors in PCHE zigzag channels. A two-channel CFD model was used to investigate the Nusselt number in zigzag channels and the effect of temperature-dependent fluid properties on the pressure loss. The effects of geometric parameters such as relative length ratio, zigzag angle and radius of curvature of bend were investigated. From the extensive CFD analysis database, friction factor and Nusselt number correlations were developed by implementing a least squares method with a non-linear Generalized Reduced Gradient algorithm. The friction factor correlation is valid for 50 ≤ Re ≤ 2000, 5° ≤ α ≤ 45° and 4.09 ≤ lR/Dh ≤ 32.73. The Nusselt number correlations are valid for 200 ≤ Re ≤ 2000, Pr ≤ 1.0, 5° ≤ α ≤ 45° and 4.09 ≤ lR/Dh ≤ 12.27. The correlations were validated against experimental data from The Ohio State University (OSU) and Korea Advanced Institute of Science and Technology (KAIST). The friction factor for zigzag-channel PCHEs is mainly influenced by the zigzag channel geometry while the Nusselt number is influenced by the overall heat exchanger design including the plenum sections.
Author Sabharwall, Piyush
Yoon, Su-Jong
Chen, Minghui
Sun, Xiaodong
O'Brien, James
Author_xml – sequence: 1
  givenname: Su-Jong
  surname: Yoon
  fullname: Yoon, Su-Jong
  email: sujong.yoon@inl.gov
  organization: Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415, United States
– sequence: 2
  givenname: James
  surname: O'Brien
  fullname: O'Brien, James
  organization: Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415, United States
– sequence: 3
  givenname: Minghui
  surname: Chen
  fullname: Chen, Minghui
  organization: Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, United States
– sequence: 4
  givenname: Piyush
  surname: Sabharwall
  fullname: Sabharwall, Piyush
  organization: Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415, United States
– sequence: 5
  givenname: Xiaodong
  surname: Sun
  fullname: Sun, Xiaodong
  organization: Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, United States
BackLink https://www.osti.gov/biblio/1550134$$D View this record in Osti.gov
BookMark eNqNUU1v1DAUtFCRaBf-gwVcE-wkzofEBQoFpAoucLYezvOuV44dbGcL_TX8VJwsFzj1ZOt5Zjxv5opcOO-QkJeclZzx9tWxhHm26YBhAotuX1aMdyUTJa_FI3LJ-64uRMvai3yvxVA0NedPyFWMR8Z41XfNJfn9Dk9o_TyhSxTcSE9gzQjJeEe9pp-XGNEm6pbpO4YNoINR27MGlXygyoeAdmNEqvPAwmQcBKqtv6PG0YiTKZQJarF5em_297Cn6gDOoV3_mINxCUe6QUyiB4RE8eeK2GN4Sh5rsBGf_T135NvN-6_XH4vbLx8-Xb-5LVRTD6moALHXSnWCQwvAdMsHbBs28JpXQ9-1rGn7sRqhqkcFfVdhK5TGBvq-wkaLekeen3V9TEZGZRKqg_LZpEqSC8F43WTQizNoDv7HgjHJo1-Cy74kH-qeN8Oa-Y68PqNU8DEG1DKvOEH4JTmTa3HyKP8tTq7FSSZkrinT3_5Hz2a2fFMAYx8qcnMWwZzZyWBYV0KncDRh3Wj05mFCfwCPtccK
CitedBy_id crossref_primary_10_1016_j_tsep_2020_100543
crossref_primary_10_3390_en15062099
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125982
crossref_primary_10_1016_j_applthermaleng_2018_10_027
crossref_primary_10_1016_j_applthermaleng_2024_122779
crossref_primary_10_1016_j_energy_2019_03_082
crossref_primary_10_1016_j_cep_2025_110168
crossref_primary_10_3390_en12030548
crossref_primary_10_1039_D4SE00257A
crossref_primary_10_1016_j_rser_2021_111933
crossref_primary_10_1016_j_applthermaleng_2025_126455
crossref_primary_10_1016_j_tsep_2022_101430
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_045
crossref_primary_10_1016_j_cryogenics_2021_103415
crossref_primary_10_1016_j_icheatmasstransfer_2025_108765
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122434
crossref_primary_10_1155_2023_6444614
crossref_primary_10_1002_apj_2843
crossref_primary_10_1007_s11630_022_1675_9
crossref_primary_10_3390_en17051133
crossref_primary_10_1016_j_applthermaleng_2018_09_082
crossref_primary_10_1016_j_ijrefrig_2021_04_023
crossref_primary_10_3390_en14196056
crossref_primary_10_1016_j_applthermaleng_2022_118989
crossref_primary_10_1108_HFF_07_2021_0490
crossref_primary_10_1016_j_ijthermalsci_2020_106645
crossref_primary_10_1080_01457632_2021_1905322
crossref_primary_10_1016_j_applthermaleng_2019_02_131
crossref_primary_10_1016_j_supflu_2019_104560
crossref_primary_10_1016_j_applthermaleng_2022_119198
crossref_primary_10_1016_j_tsep_2019_100383
crossref_primary_10_3390_en15218205
crossref_primary_10_1016_j_ijthermalsci_2021_106831
crossref_primary_10_1016_j_applthermaleng_2020_116447
crossref_primary_10_1016_j_applthermaleng_2023_120321
crossref_primary_10_1016_j_rser_2024_115051
crossref_primary_10_1007_s11630_021_1490_8
crossref_primary_10_1016_j_applthermaleng_2021_116597
crossref_primary_10_1016_j_applthermaleng_2022_119741
crossref_primary_10_1007_s12206_025_0323_1
crossref_primary_10_1016_j_applthermaleng_2023_121346
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121089
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_025
crossref_primary_10_1016_j_pnucene_2022_104190
crossref_primary_10_1080_01457632_2020_1735779
crossref_primary_10_1016_j_enconman_2021_114029
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119272
crossref_primary_10_1016_j_ijheatfluidflow_2025_109953
crossref_primary_10_1016_j_ijthermalsci_2025_109678
crossref_primary_10_1002_aic_18695
crossref_primary_10_1016_j_matpr_2019_11_077
crossref_primary_10_1016_j_rser_2020_110290
crossref_primary_10_1016_j_supflu_2025_106537
crossref_primary_10_1016_j_rser_2020_110091
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120712
crossref_primary_10_1016_j_applthermaleng_2025_127681
crossref_primary_10_1016_j_ijheatfluidflow_2024_109395
crossref_primary_10_1016_j_applthermaleng_2022_119216
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118922
crossref_primary_10_1016_j_csite_2025_106446
crossref_primary_10_3390_en14144252
crossref_primary_10_1016_j_applthermaleng_2022_118406
crossref_primary_10_1016_j_applthermaleng_2023_120104
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125896
crossref_primary_10_1016_j_rser_2022_113044
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125179
crossref_primary_10_1002_er_7290
crossref_primary_10_1016_j_enconman_2019_112309
crossref_primary_10_1016_j_applthermaleng_2018_02_051
crossref_primary_10_1016_j_applthermaleng_2025_125478
crossref_primary_10_1080_01457632_2020_1834205
crossref_primary_10_1007_s11630_023_1911_y
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_031
crossref_primary_10_1016_j_applthermaleng_2024_122466
crossref_primary_10_1016_j_icheatmasstransfer_2024_108279
crossref_primary_10_1016_j_applthermaleng_2020_116108
crossref_primary_10_1016_j_energy_2019_01_148
crossref_primary_10_1002_ese3_70022
crossref_primary_10_1016_j_pnucene_2024_105333
crossref_primary_10_1016_j_est_2022_105777
Cites_doi 10.1016/j.expthermflusci.2007.06.006
10.1016/j.applthermaleng.2011.08.012
10.1007/s00231-010-0727-y
10.1016/j.enconman.2015.03.016
10.1016/j.applthermaleng.2016.05.033
10.3390/e17053438
10.1146/annurev.fluid.29.1.123
10.1080/00223131.2012.660012
10.1115/1.4004252
10.1016/j.applthermaleng.2016.07.149
10.6110/KJACR.2015.27.9.475
10.1007/s00231-013-1149-4
ContentType Journal Article
Copyright 2017
Copyright Elsevier BV Aug 2017
Copyright_xml – notice: 2017
– notice: Copyright Elsevier BV Aug 2017
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
OTOTI
DOI 10.1016/j.applthermaleng.2017.05.135
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
EndPage 1344
ExternalDocumentID 1550134
10_1016_j_applthermaleng_2017_05_135
S1359431116342740
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7TB
8FD
FR3
KR7
AAIAV
AALMO
AAPBV
ABPIF
ABYKQ
AJBFU
OTOTI
ID FETCH-LOGICAL-c439t-2aee8fcc751a6aa0f619e6409131298760468d2da23dca872e65cfe4a882e4f53
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406564600123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Fri May 19 02:09:09 EDT 2023
Sun Oct 05 00:30:59 EDT 2025
Tue Nov 18 21:51:00 EST 2025
Sat Nov 29 07:07:48 EST 2025
Mon Oct 07 06:11:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c439t-2aee8fcc751a6aa0f619e6409131298760468d2da23dca872e65cfe4a882e4f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Nuclear Energy (NE)
OpenAccessLink https://www.osti.gov/biblio/1550134
PQID 1938149187
PQPubID 2045278
PageCount 18
ParticipantIDs osti_scitechconnect_1550134
proquest_journals_1938149187
crossref_primary_10_1016_j_applthermaleng_2017_05_135
crossref_citationtrail_10_1016_j_applthermaleng_2017_05_135
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2017_05_135
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United Kingdom
PublicationTitle Applied thermal engineering
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Meshram, Jaiswal, Khivsara, Ortega, Ho, Bapat, Dutta (b0085) 2016; 109
Ngo, Kato, Nikitin, Ishizuka (b0030) 2007; 32
(accessed on July 20, 2016).
D. Southall, R.L. Pierres and S.J. Dewson, Design Considerations for Compact Heat Exchangers, Proceedings of ICAPP’08, June 8-12, Anaheim, CA, USA, 2008.
S.K. Mylavarapu, Design, Fabrication, Performance Testing, and Modeling of Diffusion Bonded Compact Heat Exchangers in a High-Temperature Helium Test Facility, Doctoral Dissertation, The Ohio State University, 2011.
Lee, Kim (b0020) 2012; 49
Lee, Kim (b0025) 2013; 49
Ma, Li, Xu, Chen, Wang (b0080) 2015; 104
Kim (b0060) 2012
Berbish, Moawed, Ammar, Afifi (b0050) 2011; 47
Kurizenga, Anderson, Fatima, Corradini (b0040) 2011; 3
Kar (b0055) 2007
Kim, No (b0065) 2011; 31
Kwon, Choi, Choi (b0070) 2009; 21
INCONEL 617 Technical Bulletin, Publication Number SMC-029, Special Metals Corporation, Huntington, WV, 2005.
Chen, Sun, Christensen, Skavdahl, Utgikar, Sabharwall (b0120) 2016; 108
Van Abel, Anderson, Corradini (b0090) 2011
Roma Fatima, Alan Kruizenga, Mark Anderson and Devesh Ranjan, Numerical Investigation of Thermal Hydraulic Behavior of Supercritical Carbon Dioxide in Compact Heat Exchangers, 2014 Supercritical CO2 Power Cycle Symposium, Sept. 9-10, Pittsburgh, PA, USA, 2014.
Idelchik (b0095) 1996
Seo, Kim, Kim, Choi, Lee (b0075) 2015; 17
D. Southall and S.J. Dewson, Innovative Compact Heat Exchangers, Proceedings of ICAPP’10, June 13-17, San Diego, CA, USA, 2010.
Sang-Moon Lee and Kwang-Yong Kim, A Parametric Study of the Thermal-Hydraulic Performance of a Zigzag Printed Circuit Heat Exchanger, Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, March 13-17, Honolulu, Hawaii, USA, 2011.
Roache (b0110) 1997; 29
H. Song, J. Van Meter, S. Lomperski, D. Cho, H.Y. Kim and A.Tokuhiro, Experimental Investigations of a printed circuit heat exchanger for supercritical CO2 and water heat exchange, NTHAS5-N002, Nov. 26-29, Jeju, South Korea, 2006.
National Institute of Standards and Technology, NIST Chemistry WebBook: NIST Standard Reference Database Number 69.
Chen (10.1016/j.applthermaleng.2017.05.135_b0120) 2016; 108
Van Abel (10.1016/j.applthermaleng.2017.05.135_b0090) 2011
Roache (10.1016/j.applthermaleng.2017.05.135_b0110) 1997; 29
10.1016/j.applthermaleng.2017.05.135_b0015
Ma (10.1016/j.applthermaleng.2017.05.135_b0080) 2015; 104
10.1016/j.applthermaleng.2017.05.135_b0045
10.1016/j.applthermaleng.2017.05.135_b0100
Lee (10.1016/j.applthermaleng.2017.05.135_b0020) 2012; 49
10.1016/j.applthermaleng.2017.05.135_b0035
10.1016/j.applthermaleng.2017.05.135_b0010
Kar (10.1016/j.applthermaleng.2017.05.135_b0055) 2007
Berbish (10.1016/j.applthermaleng.2017.05.135_b0050) 2011; 47
Meshram (10.1016/j.applthermaleng.2017.05.135_b0085) 2016; 109
10.1016/j.applthermaleng.2017.05.135_b0005
10.1016/j.applthermaleng.2017.05.135_b0115
Kim (10.1016/j.applthermaleng.2017.05.135_b0065) 2011; 31
10.1016/j.applthermaleng.2017.05.135_b0105
Seo (10.1016/j.applthermaleng.2017.05.135_b0075) 2015; 17
Kim (10.1016/j.applthermaleng.2017.05.135_b0060) 2012
Idelchik (10.1016/j.applthermaleng.2017.05.135_b0095) 1996
Kurizenga (10.1016/j.applthermaleng.2017.05.135_b0040) 2011; 3
Lee (10.1016/j.applthermaleng.2017.05.135_b0025) 2013; 49
Ngo (10.1016/j.applthermaleng.2017.05.135_b0030) 2007; 32
Kwon (10.1016/j.applthermaleng.2017.05.135_b0070) 2009; 21
References_xml – reference: > (accessed on July 20, 2016).
– reference: D. Southall and S.J. Dewson, Innovative Compact Heat Exchangers, Proceedings of ICAPP’10, June 13-17, San Diego, CA, USA, 2010.
– reference: Sang-Moon Lee and Kwang-Yong Kim, A Parametric Study of the Thermal-Hydraulic Performance of a Zigzag Printed Circuit Heat Exchanger, Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, March 13-17, Honolulu, Hawaii, USA, 2011.
– reference: INCONEL 617 Technical Bulletin, Publication Number SMC-029, Special Metals Corporation, Huntington, WV, 2005.
– volume: 17
  start-page: 3438
  year: 2015
  end-page: 3457
  ident: b0075
  article-title: Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers
  publication-title: Entropy
– volume: 31
  start-page: 4064
  year: 2011
  end-page: 4073
  ident: b0065
  article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations
  publication-title: Appl. Therm. Eng.
– volume: 109
  start-page: 861
  year: 2016
  end-page: 870
  ident: b0085
  article-title: Modeling and analysis of a printed circuit heat exchanger for supercritical CO
  publication-title: Appl. Therm. Eng.
– volume: 104
  start-page: 55
  year: 2015
  end-page: 66
  ident: b0080
  article-title: Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature
  publication-title: Energy Convers. Manage.
– volume: 49
  start-page: 343
  year: 2012
  end-page: 351
  ident: b0020
  article-title: Optimization of Zigzag Flow Channels of a Printed Circuit Heat Exchanger for Nuclear Power Plant Application
  publication-title: J. Nuc. Sci. Tech.
– volume: 21
  start-page: 475
  year: 2009
  end-page: 482
  ident: b0070
  article-title: Heat transfer and pressure drop characteristics in zigzag channel angles of printed circuit heat exchangers
  publication-title: Korean J. Air-Condition. Refrigerat. Eng.
– volume: 108
  year: 2016
  ident: b0120
  article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 29
  start-page: 123
  year: 1997
  end-page: 160
  ident: b0110
  article-title: Quantification of uncertainty in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
– year: 1996
  ident: b0095
  article-title: Handbook of Hydraulic Resistance
– reference: H. Song, J. Van Meter, S. Lomperski, D. Cho, H.Y. Kim and A.Tokuhiro, Experimental Investigations of a printed circuit heat exchanger for supercritical CO2 and water heat exchange, NTHAS5-N002, Nov. 26-29, Jeju, South Korea, 2006.
– reference: National Institute of Standards and Technology, NIST Chemistry WebBook: NIST Standard Reference Database Number 69. <
– year: 2012
  ident: b0060
  article-title: Experimental and numerical investigations of thermal-hydraulic characteristics for the design of a printed circuit heat exchanger (PCHE) in HTGRs
– volume: 3
  start-page: 031002
  year: 2011
  ident: b0040
  article-title: Aaron towne devesh ranjan heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 47
  start-page: 377
  year: 2011
  end-page: 384
  ident: b0050
  article-title: Heat Transfer and friction factor of turbulent flow through a horizontal semi-circular duct
  publication-title: Heat Mass Trans.
– volume: 32
  start-page: 560
  year: 2007
  end-page: 570
  ident: b0030
  article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with s-shaped and zigzag fins for carbon dioxide cycles
  publication-title: Exper. Therm. Fluid Sci.
– reference: Roma Fatima, Alan Kruizenga, Mark Anderson and Devesh Ranjan, Numerical Investigation of Thermal Hydraulic Behavior of Supercritical Carbon Dioxide in Compact Heat Exchangers, 2014 Supercritical CO2 Power Cycle Symposium, Sept. 9-10, Pittsburgh, PA, USA, 2014.
– year: 2007
  ident: b0055
  article-title: CFD Analysis of Printed Circuit Heat Exchanger
– reference: D. Southall, R.L. Pierres and S.J. Dewson, Design Considerations for Compact Heat Exchangers, Proceedings of ICAPP’08, June 8-12, Anaheim, CA, USA, 2008.
– volume: 49
  start-page: 1021
  year: 2013
  end-page: 1028
  ident: b0025
  article-title: comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations
  publication-title: Heat Mass Trans.
– year: 2011
  ident: b0090
  article-title: Numerical investigation of pressure drop and local heat transfer of supercritical CO
  publication-title: in printed circuit heat exchanger, supercritical CO
– reference: S.K. Mylavarapu, Design, Fabrication, Performance Testing, and Modeling of Diffusion Bonded Compact Heat Exchangers in a High-Temperature Helium Test Facility, Doctoral Dissertation, The Ohio State University, 2011.
– ident: 10.1016/j.applthermaleng.2017.05.135_b0015
– volume: 32
  start-page: 560
  year: 2007
  ident: 10.1016/j.applthermaleng.2017.05.135_b0030
  article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with s-shaped and zigzag fins for carbon dioxide cycles
  publication-title: Exper. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2007.06.006
– volume: 31
  start-page: 4064
  year: 2011
  ident: 10.1016/j.applthermaleng.2017.05.135_b0065
  article-title: Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.08.012
– ident: 10.1016/j.applthermaleng.2017.05.135_b0100
– volume: 47
  start-page: 377
  year: 2011
  ident: 10.1016/j.applthermaleng.2017.05.135_b0050
  article-title: Heat Transfer and friction factor of turbulent flow through a horizontal semi-circular duct
  publication-title: Heat Mass Trans.
  doi: 10.1007/s00231-010-0727-y
– volume: 104
  start-page: 55
  year: 2015
  ident: 10.1016/j.applthermaleng.2017.05.135_b0080
  article-title: Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.03.016
– volume: 109
  start-page: 861
  issue: Part B
  year: 2016
  ident: 10.1016/j.applthermaleng.2017.05.135_b0085
  article-title: Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.05.033
– year: 2011
  ident: 10.1016/j.applthermaleng.2017.05.135_b0090
  article-title: Numerical investigation of pressure drop and local heat transfer of supercritical CO
– year: 1996
  ident: 10.1016/j.applthermaleng.2017.05.135_b0095
– ident: 10.1016/j.applthermaleng.2017.05.135_b0045
– year: 2007
  ident: 10.1016/j.applthermaleng.2017.05.135_b0055
– volume: 17
  start-page: 3438
  year: 2015
  ident: 10.1016/j.applthermaleng.2017.05.135_b0075
  article-title: Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers
  publication-title: Entropy
  doi: 10.3390/e17053438
– ident: 10.1016/j.applthermaleng.2017.05.135_b0115
– volume: 29
  start-page: 123
  year: 1997
  ident: 10.1016/j.applthermaleng.2017.05.135_b0110
  article-title: Quantification of uncertainty in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.29.1.123
– ident: 10.1016/j.applthermaleng.2017.05.135_b0005
– volume: 49
  start-page: 343
  issue: 3
  year: 2012
  ident: 10.1016/j.applthermaleng.2017.05.135_b0020
  article-title: Optimization of Zigzag Flow Channels of a Printed Circuit Heat Exchanger for Nuclear Power Plant Application
  publication-title: J. Nuc. Sci. Tech.
  doi: 10.1080/00223131.2012.660012
– volume: 3
  start-page: 031002
  issue: 3
  year: 2011
  ident: 10.1016/j.applthermaleng.2017.05.135_b0040
  article-title: Aaron towne devesh ranjan heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4004252
– volume: 108
  year: 2016
  ident: 10.1016/j.applthermaleng.2017.05.135_b0120
  article-title: Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.149
– ident: 10.1016/j.applthermaleng.2017.05.135_b0010
– ident: 10.1016/j.applthermaleng.2017.05.135_b0105
– ident: 10.1016/j.applthermaleng.2017.05.135_b0035
– volume: 21
  start-page: 475
  issue: 9
  year: 2009
  ident: 10.1016/j.applthermaleng.2017.05.135_b0070
  article-title: Heat transfer and pressure drop characteristics in zigzag channel angles of printed circuit heat exchangers
  publication-title: Korean J. Air-Condition. Refrigerat. Eng.
  doi: 10.6110/KJACR.2015.27.9.475
– volume: 49
  start-page: 1021
  issue: 7
  year: 2013
  ident: 10.1016/j.applthermaleng.2017.05.135_b0025
  article-title: comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations
  publication-title: Heat Mass Trans.
  doi: 10.1007/s00231-013-1149-4
– year: 2012
  ident: 10.1016/j.applthermaleng.2017.05.135_b0060
SSID ssj0012874
Score 2.533021
Snippet Friction factor and heat transfer correlations have been developed for printed circuit heat exchangers (PCHEs) as a function of geometric parameters. These...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1327
SubjectTerms Bend radius
Channels
Computational fluid dynamics
Fluid dynamics
Fluid flow
Friction
Friction factor
Heat exchangers
Heat transfer
Laminar flow
Least squares method
Mathematical models
Nusselt number
Pressure loss
Printed circuits
Radius of curvature
Temperature effects
Title Development and validation of Nusselt number and friction factor correlations for laminar flow in semi-circular zigzag channel of printed circuit heat exchanger
URI https://dx.doi.org/10.1016/j.applthermaleng.2017.05.135
https://www.proquest.com/docview/1938149187
https://www.osti.gov/biblio/1550134
Volume 123
WOSCitedRecordID wos000406564600123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB5qV0QfxCvWXWUe9q1EmnsGH2SVFV2kCK7QtzCdTNos3XRp0t26v8af58_wnLkkqctCFXwJJcxMk5wvZ745-eYcQg5FGMecjzJHhII5AX4pnDImnVwI5mYsB5KuLP0lHo-TyYR97fV-2b0wl4u4LJPNhl38V1PDOTA2bp39C3M3g8IJ-A1GhyOYHY47Gb4jA1JfBmDsImuI4XhdVXJRD3UlENUAKwVpxaGqvTMUWLDDSuRQhQigwV27w3yxvML4SCXPC0cUKy1hvS5m13ymdhCXUjFbjBUikVVNihrJaD2UG7PHuEuHLQdGFnoOYJFtdsTWHWldwLe1c7JsT6NI5z3maG6kvq1QQZoNAeVsvi6aEBKfzvnqipuazcWPdTXvhjxgGrWCO-ul_RBxZby0deOe33HEsMiOO5O66-sskzcmDB27OHuDcgFzr3CrKPlTGV1dnUtlO0_3H_Nno2q0grmzdHu0FEdLR2EKo90he14csqRP9o4-H09Omi9eWHdABQfMrd0jh60W8faru41O9ZcwQ9zgF4o0nT4iD81qhx5plD4mPVk-IQ86OTCfkp8dvFKAI23xSpc5NXilGq-qgcUr1XilXbxSwCs1eKWIV1qUdAuvVOOVGrzifxi8UoNXinilDV6fke8fj08_fHJM2RBHALuuHY9LmYCviUOXR-CH8shlMgowAS6QW_A9oyBKMi_jnp8JnsSejEKRy4DDYlMGeeg_J_1yWcoXhHI5SrI8jtgU8CMCmQQyyPJQcjcPIs6CAXlrn34qTE59LO2ySHfBwoCETe8LnVtmx37vrKFTw5M1_00B1TuOsI_4wN6YKlqgpg66Y7gC3pQBObCwSY1jq1JY6CVuwNwkfvmPl71P7rcv8wHp16u1fEXuisu6qFavzfvwG5SXCM0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+Nusselt+number+and+friction+factor+correlations+for+laminar+flow+in+semi-circular+zigzag+channel+of+printed+circuit+heat+exchanger&rft.jtitle=Applied+thermal+engineering&rft.au=Yoon%2C+Su-Jong&rft.au=O%27Brien%2C+James&rft.au=Chen%2C+Minghui&rft.au=Sabharwall%2C+Piyush&rft.date=2017-08-01&rft.issn=1359-4311&rft.volume=123&rft.spage=1327&rft.epage=1344&rft_id=info:doi/10.1016%2Fj.applthermaleng.2017.05.135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2017_05_135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon