Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis

In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an inte...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Vol. 77; no. 21; p. e91
Main Authors: Cheng, Jun, Zhang, Jie, Han, Yatong, Wang, Xusheng, Ye, Xiufen, Meng, Yuebo, Parwani, Anil, Han, Zhi, Feng, Qianjin, Huang, Kun
Format: Journal Article
Language:English
Published: United States 01.11.2017
Subjects:
ISSN:1538-7445, 1538-7445
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas ( = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. .
AbstractList In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. Cancer Res; 77(21); e91-100. ©2017 AACR.In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. Cancer Res; 77(21); e91-100. ©2017 AACR.
In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas ( = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. .
Author Han, Yatong
Han, Zhi
Wang, Xusheng
Ye, Xiufen
Feng, Qianjin
Zhang, Jie
Parwani, Anil
Cheng, Jun
Meng, Yuebo
Huang, Kun
Author_xml – sequence: 1
  givenname: Jun
  surname: Cheng
  fullname: Cheng, Jun
  organization: Guangdong Province Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 2
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
– sequence: 3
  givenname: Yatong
  surname: Han
  fullname: Han, Yatong
  organization: College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
– sequence: 4
  givenname: Xusheng
  surname: Wang
  fullname: Wang, Xusheng
  organization: Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
– sequence: 5
  givenname: Xiufen
  surname: Ye
  fullname: Ye, Xiufen
  organization: College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
– sequence: 6
  givenname: Yuebo
  surname: Meng
  fullname: Meng, Yuebo
  organization: College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, China
– sequence: 7
  givenname: Anil
  surname: Parwani
  fullname: Parwani, Anil
  organization: Department of Pathology, The Ohio State University, Columbus, Ohio
– sequence: 8
  givenname: Zhi
  surname: Han
  fullname: Han, Zhi
  organization: Department of Pathology, The Ohio State University, Columbus, Ohio
– sequence: 9
  givenname: Qianjin
  surname: Feng
  fullname: Feng, Qianjin
  email: kunhuang@iu.edu, 1271992826@qq.com
  organization: Guangdong Province Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China. kunhuang@iu.edu 1271992826@qq.com
– sequence: 10
  givenname: Kun
  surname: Huang
  fullname: Huang, Kun
  email: kunhuang@iu.edu, 1271992826@qq.com
  organization: Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29092949$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AUhQep2If-BGWWblLnmWSWJWpbKCqi63A7M4kjSaZmpkL_vZFWcHXP4jsfhztFo853FqFrSuaUyvyOEJInUmRsXiyeEpolhFN-hiZU8jzJhJCjf3mMpiF8DhVJibxAY6aIYkqoCYrrLtq6h-i-LV500ByCC9hXeOVC9DuIH77xtdPQ4HULtQ0YOoOXtvOt0_geIuCX3hqnY8BFY6HHhW0a_GoH1TEW0Gs34L-grzs_-C_ReQVNsFenO0Pvjw9vxSrZPC_XxWKTaMFVTFjKU6MzAWmmidyqvBJQVQDM5FxqnRnIqcnStAKRasYqkxlJubJbTpUkRrAZuj16d73_2tsQy9YFPYyCzvp9KAdMcSZFng_ozQndb1tryl3vWugP5d-n2A9HE26v
CitedBy_id crossref_primary_10_3389_fgene_2019_00166
crossref_primary_10_1016_j_gpb_2019_05_006
crossref_primary_10_1016_j_compbiomed_2018_06_030
crossref_primary_10_7717_peerj_15674
crossref_primary_10_1016_j_compbiomed_2022_105980
crossref_primary_10_1002_widm_1410
crossref_primary_10_3389_fmed_2025_1510793
crossref_primary_10_3389_fonc_2025_1516264
crossref_primary_10_1016_j_cmpb_2021_106291
crossref_primary_10_1038_s41416_023_02329_4
crossref_primary_10_1109_TMI_2021_3108802
crossref_primary_10_1186_s12967_024_04915_3
crossref_primary_10_1016_j_ygyno_2021_07_015
crossref_primary_10_3389_fgene_2023_1090847
crossref_primary_10_1007_s00414_021_02690_0
crossref_primary_10_1016_j_media_2025_103661
crossref_primary_10_5306_wjco_v13_i7_616
crossref_primary_10_1016_j_media_2020_101795
crossref_primary_10_1002_cam4_3965
crossref_primary_10_1038_s43018_020_0085_8
crossref_primary_10_3390_nu17020335
crossref_primary_10_1007_s12672_024_01694_7
crossref_primary_10_1007_s11060_024_04665_8
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1016_j_jpi_2023_100339
crossref_primary_10_3389_fonc_2022_842759
crossref_primary_10_3390_cancers14133215
crossref_primary_10_1016_j_gpb_2020_06_026
crossref_primary_10_3389_fcell_2020_553099
crossref_primary_10_3390_cancers12010085
crossref_primary_10_7717_peerj_8668
crossref_primary_10_1038_s43856_023_00276_y
crossref_primary_10_1016_j_artmed_2024_102972
crossref_primary_10_1016_j_heliyon_2023_e15461
crossref_primary_10_1109_TMI_2024_3450855
crossref_primary_10_1109_TCBB_2021_3080295
crossref_primary_10_1158_2159_8290_CD_21_1443
crossref_primary_10_1186_s12957_020_01907_7
crossref_primary_10_1038_s43018_024_00793_2
crossref_primary_10_1038_s41598_019_46718_3
crossref_primary_10_3389_fonc_2021_623382
crossref_primary_10_1016_j_neucom_2023_126736
crossref_primary_10_1038_s41467_020_15671_5
crossref_primary_10_1109_JBHI_2024_3363161
crossref_primary_10_1371_journal_pone_0305268
crossref_primary_10_1016_j_mpdhp_2025_04_005
crossref_primary_10_1109_JBHI_2024_3481310
crossref_primary_10_1038_s41467_022_34703_w
crossref_primary_10_3390_cancers15092410
crossref_primary_10_1016_j_urolonc_2024_03_016
crossref_primary_10_3390_diagnostics13132294
crossref_primary_10_1038_s41551_020_0578_x
crossref_primary_10_1109_JBHI_2023_3249354
crossref_primary_10_1109_LSP_2025_3528861
crossref_primary_10_1109_TMI_2019_2920608
crossref_primary_10_1109_TNNLS_2021_3112194
crossref_primary_10_3389_fcell_2021_720110
crossref_primary_10_1016_j_artmed_2022_102260
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_3390_cancers14194856
crossref_primary_10_3390_cancers15204934
crossref_primary_10_1016_j_jbi_2024_104684
crossref_primary_10_1186_s12967_022_03473_w
crossref_primary_10_1016_j_bspc_2025_108489
crossref_primary_10_1016_j_heliyon_2024_e33107
crossref_primary_10_1016_j_compbiomed_2023_107796
crossref_primary_10_3389_fmed_2022_1029227
crossref_primary_10_2147_CMAR_S250126
crossref_primary_10_3389_fonc_2021_636451
crossref_primary_10_1038_s41698_023_00352_5
crossref_primary_10_1038_s41551_024_01223_5
crossref_primary_10_1016_j_eswa_2023_122430
crossref_primary_10_1109_TMI_2023_3274652
crossref_primary_10_3390_biomimetics8060496
crossref_primary_10_1016_j_breast_2022_10_004
crossref_primary_10_3390_genes13101770
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright_xml – notice: 2017 American Association for Cancer Research.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-17-0313
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
ExternalDocumentID 29092949
Genre Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAJMC
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
NPM
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
7X8
AAFWJ
ABUFD
ID FETCH-LOGICAL-c439t-2636dc74a67c05b98f4affaa2d835cc7da81d766fa46c22fd7d5139eb31950d42
IEDL.DBID 7X8
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414248300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-7445
IngestDate Sun Nov 09 09:17:45 EST 2025
Thu Apr 03 07:02:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License 2017 American Association for Cancer Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-2636dc74a67c05b98f4affaa2d835cc7da81d766fa46c22fd7d5139eb31950d42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7262576
PMID 29092949
PQID 1959325488
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1959325488
pubmed_primary_29092949
PublicationCentury 2000
PublicationDate 2017-Nov-01
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2017
SSID ssj0005105
Score 2.5772233
Snippet In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage e91
SubjectTerms Adult
Aged
Aged, 80 and over
Biomarkers, Tumor - genetics
Carcinoma, Renal Cell - diagnosis
Carcinoma, Renal Cell - genetics
Female
Gene Expression Profiling - methods
Gene Expression Profiling - statistics & numerical data
Gene Expression Regulation, Neoplastic
Genomics - methods
Humans
Kaplan-Meier Estimate
Kidney - metabolism
Kidney - pathology
Kidney Neoplasms - diagnosis
Kidney Neoplasms - genetics
Male
Middle Aged
Neoplasm Staging
Prognosis
Proportional Hazards Models
Title Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis
URI https://www.ncbi.nlm.nih.gov/pubmed/29092949
https://www.proquest.com/docview/1959325488
Volume 77
WOSCitedRecordID wos000414248300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uiBf3fSGC1-g0TZv0JFLXw5RBFOY2pFlA0FZt9ff7XtphToLgpfSQpCV5eflekvd9hJxFvrSRthDkKFUyIZ1hpZSalal3gJZLrspBEJuQRaHG42zUb7g1_bXKqU8MjtrWBvfIL5AEJYZoRqnL9w-GqlF4utpLaMyTxRigDFq1HM_YwpPuCmOY1FKIpM_giRKFCQyKJULy8_yqYOCpkcPwd5QZVpvbtf_-5zpZ7XEmveoMY4PMuWqTLA_7k_Qt0j70PBHg7eiUmYTWngbeENQpnnpF-vAGPqehurL0zoUsZnqtW01Hn9ha29AcpSdo7l5f6aPDr4bXHFWKoDgWrPE630uzTZ5vb57ye9YrMDADQKVlPI1Ta6TQqTSDpMyUF9p7rbkF4GaMtBrgrkxTr0VqOPdW2gTGAQJ0VJe1gu-Qhaqu3B6hCYdoT2VWegjQ4jTJIuO4hNbAUsrI6X1yOu3PCVg4HlvoytVfzWTWo_tktxuUyXtHxTHh2QDwncgO_lD7kKxwXJNDIuERWfQwv90xWTLf7UvzeRJMB57FaPgDFE3Obg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Analysis+of+Histopathological+Images+and+Genomic+Data+Predicts+Clear+Cell+Renal+Cell+Carcinoma+Prognosis&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Cheng%2C+Jun&rft.au=Zhang%2C+Jie&rft.au=Han%2C+Yatong&rft.au=Wang%2C+Xusheng&rft.date=2017-11-01&rft.eissn=1538-7445&rft.volume=77&rft.issue=21&rft.spage=e91&rft_id=info:doi/10.1158%2F0008-5472.CAN-17-0313&rft_id=info%3Apmid%2F29092949&rft_id=info%3Apmid%2F29092949&rft.externalDocID=29092949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7445&client=summon