Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis
In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an inte...
Uloženo v:
| Vydáno v: | Cancer research (Chicago, Ill.) Ročník 77; číslo 21; s. e91 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.11.2017
|
| Témata: | |
| ISSN: | 1538-7445, 1538-7445 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (
= 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers.
. |
|---|---|
| AbstractList | In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. Cancer Res; 77(21); e91-100. ©2017 AACR.In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. Cancer Res; 77(21); e91-100. ©2017 AACR. In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas ( = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. . |
| Author | Han, Yatong Han, Zhi Wang, Xusheng Ye, Xiufen Feng, Qianjin Zhang, Jie Parwani, Anil Cheng, Jun Meng, Yuebo Huang, Kun |
| Author_xml | – sequence: 1 givenname: Jun surname: Cheng fullname: Cheng, Jun organization: Guangdong Province Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 2 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana – sequence: 3 givenname: Yatong surname: Han fullname: Han, Yatong organization: College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China – sequence: 4 givenname: Xusheng surname: Wang fullname: Wang, Xusheng organization: Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio – sequence: 5 givenname: Xiufen surname: Ye fullname: Ye, Xiufen organization: College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China – sequence: 6 givenname: Yuebo surname: Meng fullname: Meng, Yuebo organization: College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, China – sequence: 7 givenname: Anil surname: Parwani fullname: Parwani, Anil organization: Department of Pathology, The Ohio State University, Columbus, Ohio – sequence: 8 givenname: Zhi surname: Han fullname: Han, Zhi organization: Department of Pathology, The Ohio State University, Columbus, Ohio – sequence: 9 givenname: Qianjin surname: Feng fullname: Feng, Qianjin email: kunhuang@iu.edu, 1271992826@qq.com organization: Guangdong Province Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China. kunhuang@iu.edu 1271992826@qq.com – sequence: 10 givenname: Kun surname: Huang fullname: Huang, Kun email: kunhuang@iu.edu, 1271992826@qq.com organization: Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29092949$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLw0AUhQep2If-BGWWblLnmWSWJWpbKCqi63A7M4kjSaZmpkL_vZFWcHXP4jsfhztFo853FqFrSuaUyvyOEJInUmRsXiyeEpolhFN-hiZU8jzJhJCjf3mMpiF8DhVJibxAY6aIYkqoCYrrLtq6h-i-LV500ByCC9hXeOVC9DuIH77xtdPQ4HULtQ0YOoOXtvOt0_geIuCX3hqnY8BFY6HHhW0a_GoH1TEW0Gs34L-grzs_-C_ReQVNsFenO0Pvjw9vxSrZPC_XxWKTaMFVTFjKU6MzAWmmidyqvBJQVQDM5FxqnRnIqcnStAKRasYqkxlJubJbTpUkRrAZuj16d73_2tsQy9YFPYyCzvp9KAdMcSZFng_ozQndb1tryl3vWugP5d-n2A9HE26v |
| CitedBy_id | crossref_primary_10_3389_fgene_2019_00166 crossref_primary_10_1016_j_gpb_2019_05_006 crossref_primary_10_1016_j_compbiomed_2018_06_030 crossref_primary_10_7717_peerj_15674 crossref_primary_10_1016_j_compbiomed_2022_105980 crossref_primary_10_1002_widm_1410 crossref_primary_10_3389_fmed_2025_1510793 crossref_primary_10_3389_fonc_2025_1516264 crossref_primary_10_1016_j_cmpb_2021_106291 crossref_primary_10_1038_s41416_023_02329_4 crossref_primary_10_1109_TMI_2021_3108802 crossref_primary_10_1186_s12967_024_04915_3 crossref_primary_10_1016_j_ygyno_2021_07_015 crossref_primary_10_3389_fgene_2023_1090847 crossref_primary_10_1007_s00414_021_02690_0 crossref_primary_10_1016_j_media_2025_103661 crossref_primary_10_5306_wjco_v13_i7_616 crossref_primary_10_1016_j_media_2020_101795 crossref_primary_10_1002_cam4_3965 crossref_primary_10_1038_s43018_020_0085_8 crossref_primary_10_3390_nu17020335 crossref_primary_10_1007_s12672_024_01694_7 crossref_primary_10_1007_s11060_024_04665_8 crossref_primary_10_1038_s42256_023_00633_5 crossref_primary_10_1016_j_jpi_2023_100339 crossref_primary_10_3389_fonc_2022_842759 crossref_primary_10_3390_cancers14133215 crossref_primary_10_1016_j_gpb_2020_06_026 crossref_primary_10_3389_fcell_2020_553099 crossref_primary_10_3390_cancers12010085 crossref_primary_10_7717_peerj_8668 crossref_primary_10_1038_s43856_023_00276_y crossref_primary_10_1016_j_artmed_2024_102972 crossref_primary_10_1016_j_heliyon_2023_e15461 crossref_primary_10_1109_TMI_2024_3450855 crossref_primary_10_1109_TCBB_2021_3080295 crossref_primary_10_1158_2159_8290_CD_21_1443 crossref_primary_10_1186_s12957_020_01907_7 crossref_primary_10_1038_s43018_024_00793_2 crossref_primary_10_1038_s41598_019_46718_3 crossref_primary_10_3389_fonc_2021_623382 crossref_primary_10_1016_j_neucom_2023_126736 crossref_primary_10_1038_s41467_020_15671_5 crossref_primary_10_1109_JBHI_2024_3363161 crossref_primary_10_1371_journal_pone_0305268 crossref_primary_10_1016_j_mpdhp_2025_04_005 crossref_primary_10_1109_JBHI_2024_3481310 crossref_primary_10_1038_s41467_022_34703_w crossref_primary_10_3390_cancers15092410 crossref_primary_10_1016_j_urolonc_2024_03_016 crossref_primary_10_3390_diagnostics13132294 crossref_primary_10_1038_s41551_020_0578_x crossref_primary_10_1109_JBHI_2023_3249354 crossref_primary_10_1109_LSP_2025_3528861 crossref_primary_10_1109_TMI_2019_2920608 crossref_primary_10_1109_TNNLS_2021_3112194 crossref_primary_10_3389_fcell_2021_720110 crossref_primary_10_1016_j_artmed_2022_102260 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_3390_cancers14194856 crossref_primary_10_3390_cancers15204934 crossref_primary_10_1016_j_jbi_2024_104684 crossref_primary_10_1186_s12967_022_03473_w crossref_primary_10_1016_j_bspc_2025_108489 crossref_primary_10_1016_j_heliyon_2024_e33107 crossref_primary_10_1016_j_compbiomed_2023_107796 crossref_primary_10_3389_fmed_2022_1029227 crossref_primary_10_2147_CMAR_S250126 crossref_primary_10_3389_fonc_2021_636451 crossref_primary_10_1038_s41698_023_00352_5 crossref_primary_10_1038_s41551_024_01223_5 crossref_primary_10_1016_j_eswa_2023_122430 crossref_primary_10_1109_TMI_2023_3274652 crossref_primary_10_3390_biomimetics8060496 crossref_primary_10_1016_j_breast_2022_10_004 crossref_primary_10_3390_genes13101770 |
| ContentType | Journal Article |
| Copyright | 2017 American Association for Cancer Research. |
| Copyright_xml | – notice: 2017 American Association for Cancer Research. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1158/0008-5472.CAN-17-0313 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1538-7445 |
| ExternalDocumentID | 29092949 |
| Genre | Journal Article |
| GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAJMC ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 EBS ECM EIF EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO NPM OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ 7X8 AAFWJ ABUFD |
| ID | FETCH-LOGICAL-c439t-2636dc74a67c05b98f4affaa2d835cc7da81d766fa46c22fd7d5139eb31950d42 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414248300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-7445 |
| IngestDate | Sun Nov 09 09:17:45 EST 2025 Thu Apr 03 07:02:12 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | 2017 American Association for Cancer Research. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-2636dc74a67c05b98f4affaa2d835cc7da81d766fa46c22fd7d5139eb31950d42 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7262576 |
| PMID | 29092949 |
| PQID | 1959325488 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1959325488 pubmed_primary_29092949 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Nov-01 20171101 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cancer research (Chicago, Ill.) |
| PublicationTitleAlternate | Cancer Res |
| PublicationYear | 2017 |
| SSID | ssj0005105 |
| Score | 2.5772233 |
| Snippet | In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | e91 |
| SubjectTerms | Adult Aged Aged, 80 and over Biomarkers, Tumor - genetics Carcinoma, Renal Cell - diagnosis Carcinoma, Renal Cell - genetics Female Gene Expression Profiling - methods Gene Expression Profiling - statistics & numerical data Gene Expression Regulation, Neoplastic Genomics - methods Humans Kaplan-Meier Estimate Kidney - metabolism Kidney - pathology Kidney Neoplasms - diagnosis Kidney Neoplasms - genetics Male Middle Aged Neoplasm Staging Prognosis Proportional Hazards Models |
| Title | Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29092949 https://www.proquest.com/docview/1959325488 |
| Volume | 77 |
| WOSCitedRecordID | wos000414248300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qRHzxfpk3Ivga7dK0aZ9kVKcDN4Yo7K1kucBgtnOt_n7PaTv2JAi-lD6kF5KTk-_k5HwfITeYmRGB67DQSY8JazoslmbCjK9iixxLXq1a8iKHw2g8jkfNhlvRHKtc-sTKUZtc4x75HZKg-BDNRNH9_JOhahRmVxsJjXXS8gHKoFXL8YotPKiPMFaTWgoRNBU8nSDCAoaIBULy26Q7ZOCpkcPwd5RZrTa93f_-5x7ZaXAm7daGsU_WbHZAtgZNJv2QlP2GJwK8HV0yk9Dc0Yo3BHWKl16R9j_A5xRUZYY-2aqKmT6oUtHRAt9WFjRB6Qma2NmMvlr8anWboEoRNMeGOR7nmxZH5L33-JY8s0aBgWkAKiXjoR8aLYUKpfaCSRw5oZxTihsAblpLowDuyjB0SoSac2ekCWAcIEBHdVkj-DHZyPLMnhLqCw0NVYT898KFfBJrCM2chngHQi6h2uR62Z8pWDimLVRm868iXfVom5zUg5LOayqOlMce4DsRn_3h6XOyzXFNrgoJL0jLwfy2l2RTf5fTYnFVmQ5ch6PBD9TtzLg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Analysis+of+Histopathological+Images+and+Genomic+Data+Predicts+Clear+Cell+Renal+Cell+Carcinoma+Prognosis&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Cheng%2C+Jun&rft.au=Zhang%2C+Jie&rft.au=Han%2C+Yatong&rft.au=Wang%2C+Xusheng&rft.date=2017-11-01&rft.issn=1538-7445&rft.eissn=1538-7445&rft.volume=77&rft.issue=21&rft.spage=e91&rft_id=info:doi/10.1158%2F0008-5472.CAN-17-0313&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7445&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7445&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7445&client=summon |