Communication Models for Reconfigurable Intelligent Surfaces: From Surface Electromagnetics to Wireless Networks Optimization

A reconfigurable intelligent surface (RIS) is a planar structure that is engineered to dynamically control the electromagnetic waves. In wireless communications, RISs have recently emerged as a promising technology for realizing programmable and reconfigurable wireless propagation environments throu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the IEEE Ročník 110; číslo 9; s. 1164 - 1209
Hlavní autoři: Di Renzo, Marco, Danufane, Fadil H., Tretyakov, Sergei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9219, 1558-2256
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A reconfigurable intelligent surface (RIS) is a planar structure that is engineered to dynamically control the electromagnetic waves. In wireless communications, RISs have recently emerged as a promising technology for realizing programmable and reconfigurable wireless propagation environments through nearly passive signal transformations. With the aid of RISs, a wireless environment becomes part of the network design parameters that are subject to optimization. In this tutorial article, we focus our attention on communication models for RISs. First, we review the communication models that are most often employed in wireless communications and networks for analyzing and optimizing RISs and elaborate on their advantages and limitations. Then, we concentrate on models for RISs that are based on inhomogeneous sheets of surface impedance and offer a step-by-step tutorial on formulating electromagnetically consistent analytical models for optimizing the surface impedance. The differences between local and global designs are discussed and analytically formulated in terms of surface power efficiency and reradiated power flux through the Poynting vector. Finally, with the aid of numerical results, we discuss how approximate global designs can be realized by using locally passive RISs with zero electrical resistance (i.e., inhomogeneous reactance boundaries with no local power amplification) even for large angles of reflection and at high power efficiency.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2022.3195536