Pan‐HSP90 ligand binding reveals isoform‐specific differences in plasticity and water networks

Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA‐approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Protein science Ročník 32; číslo 5; s. e4629 - n/a
Hlavní autoři: Stachowski, Timothy R., Nithianantham, Stanley, Vanarotti, Murugendra, Lopez, Karlo, Fischer, Marcus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.05.2023
Wiley Subscription Services, Inc
Témata:
ISSN:0961-8368, 1469-896X, 1469-896X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA‐approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by pan‐HSP90 inhibition. Selective targeting of the four isoforms is challenging due to high sequence and structural similarity. Surprisingly, while decades of drug discovery efforts have produced almost 400 human HSP90 structures, no single ligand has been structurally characterized across all four human isoforms to date, which could reveal structural differences to achieve selectivity. To better understand the HSP90 landscape relevant for ligand binding and design we take a three‐pronged approach. First, we solved the first complete set of structures of a single ligand bound to all four human isoforms. This enabled a systematic comparison of how side‐chains and water networks respond to ligand binding across isoforms. Second, we expanded our analysis to publicly available, incomplete isoform‐ligand series with distinct ligand chemistry. This highlighted general trends of protein and water mobility that differ among isoforms and impact ligand binding. Third, we further probed the Hsp90α conformational landscape for accommodating a congeneric series containing the purine scaffold common to HSP90 inhibitors. This revealed how minor ligand modifications flip ligand poses and perturb water and protein conformations. Taken together, this work illustrates how a systematic approach can shed new light on an “old” target and reveal hidden isoform‐specific accommodations of congeneric ligands that may be exploited in ligand discovery and design. PDB Code(s): 7ULJ, 7ULL and 7ULK;
AbstractList Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA‐approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by pan‐HSP90 inhibition. Selective targeting of the four isoforms is challenging due to high sequence and structural similarity. Surprisingly, while decades of drug discovery efforts have produced almost 400 human HSP90 structures, no single ligand has been structurally characterized across all four human isoforms to date, which could reveal structural differences to achieve selectivity. To better understand the HSP90 landscape relevant for ligand binding and design we take a three‐pronged approach. First, we solved the first complete set of structures of a single ligand bound to all four human isoforms. This enabled a systematic comparison of how side‐chains and water networks respond to ligand binding across isoforms. Second, we expanded our analysis to publicly available, incomplete isoform‐ligand series with distinct ligand chemistry. This highlighted general trends of protein and water mobility that differ among isoforms and impact ligand binding. Third, we further probed the Hsp90α conformational landscape for accommodating a congeneric series containing the purine scaffold common to HSP90 inhibitors. This revealed how minor ligand modifications flip ligand poses and perturb water and protein conformations. Taken together, this work illustrates how a systematic approach can shed new light on an “old” target and reveal hidden isoform‐specific accommodations of congeneric ligands that may be exploited in ligand discovery and design. PDB Code(s): 7ULJ, 7ULL and 7ULK;
Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA‐approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by pan‐HSP90 inhibition. Selective targeting of the four isoforms is challenging due to high sequence and structural similarity. Surprisingly, while decades of drug discovery efforts have produced almost 400 human HSP90 structures, no single ligand has been structurally characterized across all four human isoforms to date, which could reveal structural differences to achieve selectivity. To better understand the HSP90 landscape relevant for ligand binding and design we take a three‐pronged approach. First, we solved the first complete set of structures of a single ligand bound to all four human isoforms. This enabled a systematic comparison of how side‐chains and water networks respond to ligand binding across isoforms. Second, we expanded our analysis to publicly available, incomplete isoform‐ligand series with distinct ligand chemistry. This highlighted general trends of protein and water mobility that differ among isoforms and impact ligand binding. Third, we further probed the Hsp90α conformational landscape for accommodating a congeneric series containing the purine scaffold common to HSP90 inhibitors. This revealed how minor ligand modifications flip ligand poses and perturb water and protein conformations. Taken together, this work illustrates how a systematic approach can shed new light on an “old” target and reveal hidden isoform‐specific accommodations of congeneric ligands that may be exploited in ligand discovery and design. PDB Code(s): 7ULJ , 7ULL and 7ULK ;
Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA‐approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by pan‐HSP90 inhibition. Selective targeting of the four isoforms is challenging due to high sequence and structural similarity. Surprisingly, while decades of drug discovery efforts have produced almost 400 human HSP90 structures, no single ligand has been structurally characterized across all four human isoforms to date, which could reveal structural differences to achieve selectivity. To better understand the HSP90 landscape relevant for ligand binding and design we take a three‐pronged approach. First, we solved the first complete set of structures of a single ligand bound to all four human isoforms. This enabled a systematic comparison of how side‐chains and water networks respond to ligand binding across isoforms. Second, we expanded our analysis to publicly available, incomplete isoform‐ligand series with distinct ligand chemistry. This highlighted general trends of protein and water mobility that differ among isoforms and impact ligand binding. Third, we further probed the Hsp90α conformational landscape for accommodating a congeneric series containing the purine scaffold common to HSP90 inhibitors. This revealed how minor ligand modifications flip ligand poses and perturb water and protein conformations. Taken together, this work illustrates how a systematic approach can shed new light on an “old” target and reveal hidden isoform‐specific accommodations of congeneric ligands that may be exploited in ligand discovery and design. PDB Code(s): 7ULJ, 7ULL and 7ULK;
Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA‐approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by pan‐HSP90 inhibition. Selective targeting of the four isoforms is challenging due to high sequence and structural similarity. Surprisingly, while decades of drug discovery efforts have produced almost 400 human HSP90 structures, no single ligand has been structurally characterized across all four human isoforms to date, which could reveal structural differences to achieve selectivity. To better understand the HSP90 landscape relevant for ligand binding and design we take a three‐pronged approach. First, we solved the first complete set of structures of a single ligand bound to all four human isoforms. This enabled a systematic comparison of how side‐chains and water networks respond to ligand binding across isoforms. Second, we expanded our analysis to publicly available, incomplete isoform‐ligand series with distinct ligand chemistry. This highlighted general trends of protein and water mobility that differ among isoforms and impact ligand binding. Third, we further probed the Hsp90α conformational landscape for accommodating a congeneric series containing the purine scaffold common to HSP90 inhibitors. This revealed how minor ligand modifications flip ligand poses and perturb water and protein conformations. Taken together, this work illustrates how a systematic approach can shed new light on an “old” target and reveal hidden isoform‐specific accommodations of congeneric ligands that may be exploited in ligand discovery and design.
Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA-approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by pan-HSP90 inhibition. Selective targeting of the four isoforms is challenging due to high sequence and structural similarity. Surprisingly, while decades of drug discovery efforts have produced almost 400 human HSP90 structures, no single ligand has been structurally characterized across all four human isoforms to date, which could reveal structural differences to achieve selectivity. To better understand the HSP90 landscape relevant for ligand binding and design we take a three-pronged approach. First, we solved the first complete set of structures of a single ligand bound to all four human isoforms. This enabled a systematic comparison of how side-chains and water networks respond to ligand binding across isoforms. Second, we expanded our analysis to publicly available, incomplete isoform-ligand series with distinct ligand chemistry. This highlighted general trends of protein and water mobility that differ among isoforms and impact ligand binding. Third, we further probed the Hsp90α conformational landscape for accommodating a congeneric series containing the purine scaffold common to HSP90 inhibitors. This revealed how minor ligand modifications flip ligand poses and perturb water and protein conformations. Taken together, this work illustrates how a systematic approach can shed new light on an "old" target and reveal hidden isoform-specific accommodations of congeneric ligands that may be exploited in ligand discovery and design.Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains unfulfilled as there is still no FDA-approved drug targeting HSP90 in disease. Among the reasons hindering progress are side effects caused by pan-HSP90 inhibition. Selective targeting of the four isoforms is challenging due to high sequence and structural similarity. Surprisingly, while decades of drug discovery efforts have produced almost 400 human HSP90 structures, no single ligand has been structurally characterized across all four human isoforms to date, which could reveal structural differences to achieve selectivity. To better understand the HSP90 landscape relevant for ligand binding and design we take a three-pronged approach. First, we solved the first complete set of structures of a single ligand bound to all four human isoforms. This enabled a systematic comparison of how side-chains and water networks respond to ligand binding across isoforms. Second, we expanded our analysis to publicly available, incomplete isoform-ligand series with distinct ligand chemistry. This highlighted general trends of protein and water mobility that differ among isoforms and impact ligand binding. Third, we further probed the Hsp90α conformational landscape for accommodating a congeneric series containing the purine scaffold common to HSP90 inhibitors. This revealed how minor ligand modifications flip ligand poses and perturb water and protein conformations. Taken together, this work illustrates how a systematic approach can shed new light on an "old" target and reveal hidden isoform-specific accommodations of congeneric ligands that may be exploited in ligand discovery and design.
Author Nithianantham, Stanley
Vanarotti, Murugendra
Stachowski, Timothy R.
Lopez, Karlo
Fischer, Marcus
AuthorAffiliation 1 Department of Chemical Biology and Therapeutics St. Jude Children's Research Hospital Memphis Tennessee USA
2 School of Natural Sciences, Mathematics, and Engineering California State University Bakersfield California 93311 USA
AuthorAffiliation_xml – name: 2 School of Natural Sciences, Mathematics, and Engineering California State University Bakersfield California 93311 USA
– name: 1 Department of Chemical Biology and Therapeutics St. Jude Children's Research Hospital Memphis Tennessee USA
Author_xml – sequence: 1
  givenname: Timothy R.
  orcidid: 0000-0002-6097-4857
  surname: Stachowski
  fullname: Stachowski, Timothy R.
  organization: St. Jude Children's Research Hospital
– sequence: 2
  givenname: Stanley
  orcidid: 0000-0001-6238-647X
  surname: Nithianantham
  fullname: Nithianantham, Stanley
  organization: St. Jude Children's Research Hospital
– sequence: 3
  givenname: Murugendra
  orcidid: 0000-0003-4355-0283
  surname: Vanarotti
  fullname: Vanarotti, Murugendra
  organization: St. Jude Children's Research Hospital
– sequence: 4
  givenname: Karlo
  orcidid: 0000-0002-6613-6547
  surname: Lopez
  fullname: Lopez, Karlo
  organization: California State University
– sequence: 5
  givenname: Marcus
  orcidid: 0000-0002-7179-2581
  surname: Fischer
  fullname: Fischer, Marcus
  email: marcus.fischer@stjude.org
  organization: St. Jude Children's Research Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36938943$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1KHDEUgINY6qoFn6AM9Mab2SaTmUxyJUW0FgQXa6F3IZOcrNHZZJrMuuxdH6HP2Cdptlq10l6Fw_nOl_Ozi7Z98IDQAcFTgnH1fohhWrNKbKEJqZkouWBft9EEC0ZKThnfQbsp3WCMa1LR12iHMkG5qOkEdTPlf37_cfZ5JnDRu7nypuicN87Piwh3oPpUuBRsiIuMpQG0s04XxlkLEbyGnPbF0Ks0Ou3GdbERrNQIsfAwrkK8Tfvolc0aePPw7qEvpydXx2fl-cXHT8cfzktdUyFK6KzRYCgnhqqmIaQmxIJqDW0xJ50lzHDREaY5w5a1ttON1qIFI6Az1Bq6h47uvcOyW0B2-TGqXg7RLVRcy6Cc_Dvj3bWchztJMMG8pm02HD4YYvi2hDTKhUsa-l55CMskq5ZznuGmyei7F-hNWEaf55MVx4xj0dA6U2-ft_TYy5_9P_2oY0gpgn1ECJab0-Y4yM1pMzp9geZ9q9GFzTCu_1dBeV-wcj2s_yuWs8uL3_wvu164pQ
CitedBy_id crossref_primary_10_1002_rcm_9960
crossref_primary_10_1107_S2052252525001332
crossref_primary_10_1002_pro_70082
crossref_primary_10_1038_s41592_025_02724_0
crossref_primary_10_3923_asb_2025_205_223
crossref_primary_10_1016_j_ejmech_2024_116934
crossref_primary_10_1002_slct_202403409
crossref_primary_10_3390_biology14050487
Cites_doi 10.1002/cmdc.200900011
10.1039/D0SC04938G
10.1073/pnas.2011350117
10.1021/acs.jmedchem.7b01608
10.1002/pro.423
10.1016/S0968-0004(02)02067-4
10.1021/acschembio.6b00747
10.1038/s41467-017-02013-1
10.1074/jbc.RA119.009960
10.1158/1078-0432.CCR-13-2571
10.1016/j.apsb.2020.11.015
10.1021/ja303477g
10.1107/S0907444912044423
10.1093/nar/28.1.235
10.7554/eLife.74114
10.1016/j.ejmech.2022.114516
10.1016/j.bmcl.2013.11.036
10.1021/ja511893n
10.1039/D1SC02751D
10.1002/chem.201703398
10.1002/anie.202112919
10.1002/jcc.20084
10.1021/jm500042s
10.1073/pnas.1703287114
10.1002/cbic.201500196
10.1074/jbc.M308661200
10.1124/mi.9.1.7
10.1016/j.tibs.2014.12.002
10.1107/S2059798319011471
10.2174/156802609789895737
10.1038/nature04716
10.7554/eLife.25235
10.1021/acs.jmedchem.2c00708
10.1021/jacs.9b06275
10.1107/S0021889807021206
10.2174/1568026616666160413141154
10.1107/S0907444909047337
10.1002/prot.25750
10.1038/nsmb.1565
10.1021/acschembio.5b00683
10.1007/978-3-030-40204-4_9
10.1007/128_2011_181
10.1016/S0076-6879(97)76066-X
10.1038/s41467-017-02258-w
10.1016/j.bbamcr.2011.09.003
10.1073/pnas.1500806112
10.1021/acs.jmedchem.8b00105
10.2174/1389450120666190829162544
10.1016/j.ejmech.2021.113604
10.1107/S0907444910007493
10.1017/S0033583520000128
10.1016/j.sbi.2015.07.003
10.1038/nchembio.1335
10.1021/jm060297x
10.1021/acs.jmedchem.0c01700
10.1021/jm200350g
10.1038/nrc2887
10.1002/anie.202015422
10.2174/138161213804143725
10.1016/j.jmb.2009.03.071
10.1016/bs.acr.2015.12.001
10.1021/acs.jmedchem.7b00057
10.1038/nrc1716
10.1021/acschembio.8b00443
10.1021/jm900357y
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of The Protein Society.
2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of The Protein Society.
– notice: 2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pro.4629
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

Genetics Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Stachowski et al
EISSN 1469-896X
EndPage n/a
ExternalDocumentID PMC10108437
36938943
10_1002_pro_4629
PRO4629
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Lebanese Syrian Associated Charities
– fundername: National Institute of General Medical Sciences
  funderid: R35GM142772
– fundername: NIGMS NIH HHS
  grantid: R35 GM142772
– fundername: ;
– fundername: ;
  grantid: R35GM142772
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T5
7TM
7U9
8FD
ESTFP
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4399-ebfdced381d3a5511411fea7d37081bf16d89b16c860f67fbc5cc97ed9ebd3fd3
IEDL.DBID 24P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000973169800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0961-8368
1469-896X
IngestDate Tue Sep 30 17:14:35 EDT 2025
Mon Sep 08 13:36:33 EDT 2025
Thu Dec 04 03:25:37 EST 2025
Mon Jul 21 06:04:03 EDT 2025
Tue Nov 18 20:59:31 EST 2025
Sat Nov 29 01:38:41 EST 2025
Wed Jan 22 16:23:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Hsp90 isoforms
conformational flexibility
pan-Hsp90 inhibitors
water networks
ligand binding
Language English
License Attribution-NonCommercial
2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-ebfdced381d3a5511411fea7d37081bf16d89b16c860f67fbc5cc97ed9ebd3fd3
Notes John Kuriyan
Review Editor
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Review Editor: John Kuriyan
ORCID 0000-0002-6097-4857
0000-0002-7179-2581
0000-0002-6613-6547
0000-0001-6238-647X
0000-0003-4355-0283
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.4629
PMID 36938943
PQID 2806809534
PQPubID 1016442
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10108437
proquest_miscellaneous_2788801055
proquest_journals_2806809534
pubmed_primary_36938943
crossref_primary_10_1002_pro_4629
crossref_citationtrail_10_1002_pro_4629
wiley_primary_10_1002_pro_4629_PRO4629
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Bethesda
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 6
2015; 34
2010; 10
2017; 8
2021; 64
2013; 69
2010; 19
2004; 25
1997; 276
2014; 24
2011; 54
2020; 12
2022; 65
2003; 278
2017; 114
2013; 9
2014; 20
2013; 19
2010; 66
2018; 9
2009; 52
2012; 134
2015; 137
2015; 40
2006; 440
2014; 57
2009; 16
2015; 16
2017; 60
2000; 28
2019; 75
2021; 223
2012; 1823
2016; 129
2015; 10
2017; 23
1993
2018; 61
2019; 141
2016; 16
2022; 238
2002; 27
2021; 54
2021; 12
2021; 11
2022; 61
2019; 87
2006; 49
2015; 112
2017; 12
2005; 5
2009; 9
2020; 117
2009; 388
2007; 40
2009; 4
2022; 11
2020; 21
2019; 294
2021; 60
2020; 1243
2012; 317
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Hubbard S (e_1_2_9_23_1) 1993
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 87
  start-page: 869
  year: 2019
  end-page: 77
  article-title: Structures of Hsp90alpha and Hsp90beta bound to a purine‐scaffold inhibitor reveal an exploitable residue for drug selectivity
  publication-title: Proteins
– volume: 11
  year: 2022
  article-title: Ligand binding remodels protein side‐chain conformational heterogeneity
  publication-title: elife
– volume: 54
  start-page: 3989
  year: 2011
  end-page: 4005
  article-title: How well can fragments explore accessed chemical space? A case study from heat shock protein 90
  publication-title: J Med Chem
– volume: 9
  start-page: 22
  year: 2009
  end-page: 30
  article-title: Fragment‐based ligand discovery
  publication-title: Mol Interv
– volume: 16
  start-page: 287
  year: 2009
  end-page: 93
  article-title: Dissection of the ATP‐induced conformational cycle of the molecular chaperone Hsp90
  publication-title: Nat Struct Mol Biol
– volume: 23
  start-page: 15775
  year: 2017
  end-page: 82
  article-title: Second generation Grp94‐selective inhibitors provide opportunities for the inhibition of metastatic cancer
  publication-title: Chemistry
– volume: 13
  start-page: 2522
  year: 2018
  end-page: 33
  article-title: The recognition of unrelated ligands by individual proteins
  publication-title: ACS Chem Biol
– volume: 12
  start-page: 960
  year: 2020
  end-page: 8
  article-title: Ligand design by targeting a binding site water
  publication-title: Chem Sci
– volume: 57
  start-page: 3382
  year: 2014
  end-page: 400
  article-title: Identification of novel HSP90alpha/beta isoform selective inhibitors using structure‐based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington's disease
  publication-title: J Med Chem
– volume: 10
  start-page: 2772
  year: 2015
  end-page: 84
  article-title: The recognition of identical ligands by unrelated proteins
  publication-title: ACS Chem Biol
– volume: 20
  start-page: 275
  year: 2014
  end-page: 7
  article-title: Stressing the development of small molecules targeting HSP90
  publication-title: Clin Cancer Res
– volume: 10
  start-page: 537
  year: 2010
  end-page: 49
  article-title: Targeting the dynamic HSP90 complex in cancer
  publication-title: Nat Rev Cancer
– volume: 12
  start-page: 11275
  year: 2021
  end-page: 93
  article-title: Temperature artifacts in protein structures bias ligand‐binding predictions
  publication-title: Chem Sci
– volume: 75
  start-page: 861
  year: 2019
  end-page: 77
  article-title: Macromolecular structure determination using X‐rays, neutrons and electrons: recent developments in Phenix
  publication-title: Acta Crystallogr D Struct Biol
– volume: 21
  start-page: 302
  year: 2020
  end-page: 17
  article-title: Recent advances in the discovery of novel HSP90 inhibitors: an update from 2014
  publication-title: Curr Drug Targets
– volume: 19
  start-page: 1420
  year: 2010
  end-page: 31
  article-title: Automated electron‐density sampling reveals widespread conformational polymorphism in proteins
  publication-title: Protein Sci
– volume: 40
  start-page: 658
  year: 2007
  end-page: 74
  article-title: Phaser crystallographic software
  publication-title: J Appl Crystallogr
– volume: 52
  start-page: 4794
  year: 2009
  end-page: 809
  article-title: Combining hit identification strategies: fragment‐based and in silico approaches to orally active 2‐aminothieno[2,3‐d]pyrimidine inhibitors of the Hsp90 molecular chaperone
  publication-title: J Med Chem
– volume: 60
  start-page: 10547
  year: 2021
  end-page: 51
  article-title: Selective inhibition of the Hsp90α isoform
  publication-title: Angew Chem Int Ed Engl
– volume: 114
  start-page: E6839
  year: 2017
  end-page: 46
  article-title: Testing inhomogeneous solvation theory in structure‐based ligand discovery
  publication-title: Proc Natl Acad Sci U S A
– volume: 294
  start-page: 16010
  year: 2019
  end-page: 9
  article-title: NECA derivatives exploit the paralog‐specific properties of the site 3 side pocket of Grp94, the endoplasmic reticulum Hsp90
  publication-title: J Biol Chem
– volume: 1823
  start-page: 624
  year: 2012
  end-page: 35
  article-title: The Hsp90 chaperone machinery: conformational dynamics and regulation by co‐chaperones
  publication-title: Biochim Biophys Acta
– volume: 61
  start-page: 2793
  year: 2018
  end-page: 805
  article-title: Structure based design of a Grp94‐selective inhibitor: exploiting a key residue in Grp94 to optimize paralog‐selective binding
  publication-title: J Med Chem
– volume: 61
  year: 2022
  article-title: Water networks repopulate protein‐ligand interfaces with temperature
  publication-title: Angew Chem Int Ed Engl
– volume: 54
  year: 2021
  article-title: Macromolecular room temperature crystallography
  publication-title: Q Rev Biophys
– volume: 9
  start-page: 425
  year: 2018
  article-title: Structure‐guided design of an Hsp90β N‐terminal isoform‐selective inhibitor
  publication-title: Nat Commun
– volume: 16
  start-page: 1560
  year: 2015
  end-page: 4
  article-title: One crystal, two temperatures: Cryocooling penalties Alter ligand binding to transient protein sites
  publication-title: Chembiochem
– volume: 61
  start-page: 5922
  year: 2018
  end-page: 5933
  article-title: Paradoxically, most flexible ligand binds most entropy‐favored: intriguing impact of ligand flexibility and solvation on drug–kinase binding
  publication-title: J Med Chem
– volume: 6
  year: 2017
  article-title: Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1
  publication-title: elife
– volume: 60
  start-page: 6781
  year: 2017
  end-page: 827
  article-title: The roles of water in the protein matrix: a largely untapped resource for drug discovery
  publication-title: J Med Chem
– volume: 24
  start-page: 204
  year: 2014
  end-page: 8
  article-title: Correlation between chemotype‐dependent binding conformations of HSP90alpha/beta and isoform selectivity‐implications for the structure‐based design of HSP90alpha/beta selective inhibitors for treating neurodegenerative diseases
  publication-title: Bioorg Med Chem Lett
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 69
  start-page: 150
  year: 2013
  end-page: 67
  article-title: Techniques, tools and best practices for ligand electron‐density analysis and results from their application to deposited crystal structures
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 49
  start-page: 4953
  year: 2006
  end-page: 60
  article-title: Structural and quantum chemical studies of 8‐aryl‐sulfanyl adenine class Hsp90 inhibitors
  publication-title: J Med Chem
– volume: 16
  start-page: 2779
  year: 2016
  end-page: 91
  article-title: Paralog specific Hsp90 inhibitors—a brief history and a bright future
  publication-title: Curr Top Med Chem
– year: 1993
– volume: 65
  start-page: 13692
  year: 2022
  end-page: 704
  article-title: Large‐scale ligand perturbations of the protein conformational landscape reveal state‐specific interaction hotspots
  publication-title: J Med Chem
– volume: 238
  year: 2022
  article-title: Pan‐ and isoform‐specific inhibition of Hsp90: design strategy and recent advances
  publication-title: Eur J Med Chem
– volume: 223
  year: 2021
  article-title: Design and synthesis of Grp94 selective inhibitors based on Phe199 induced fit mechanism and their anti‐inflammatory effects
  publication-title: Eur J Med Chem
– volume: 19
  start-page: 347
  year: 2013
  end-page: 65
  article-title: The therapeutic target Hsp90 and cancer hallmarks
  publication-title: Curr Pharm Des
– volume: 276
  start-page: 307
  year: 1997
  end-page: 26
  article-title: Processing of X‐ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
– volume: 9
  start-page: 1436
  year: 2009
  end-page: 46
  article-title: Purine‐scaffold Hsp90 inhibitors
  publication-title: Curr Top Med Chem
– volume: 134
  start-page: 9796
  year: 2012
  end-page: 804
  article-title: Development of a Grp94 inhibitor
  publication-title: J Am Chem Soc
– volume: 278
  start-page: 48330
  year: 2003
  end-page: 8
  article-title: Structure of the N‐terminal domain of GRP94. Basis for ligand specificity and regulation
  publication-title: J Biol Chem
– volume: 1243
  start-page: 135
  year: 2020
  end-page: 46
  article-title: The right tool for the job: an overview of Hsp90 inhibitors
  publication-title: Adv Exp Med Biol
– volume: 12
  start-page: 244
  year: 2017
  end-page: 53
  article-title: Transformation of the non‐selective Aminocyclohexanol‐based Hsp90 inhibitor into a Grp94‐Seletive scaffold
  publication-title: ACS Chem Biol
– volume: 5
  start-page: 761
  year: 2005
  end-page: 72
  article-title: HSP90 and the chaperoning of cancer
  publication-title: Nat Rev Cancer
– volume: 129
  start-page: 51
  year: 2016
  end-page: 88
  article-title: Anticancer inhibitors of Hsp90 function: beyond the usual suspects
  publication-title: Adv Cancer Res
– volume: 137
  start-page: 4358
  year: 2015
  end-page: 67
  article-title: Development of a mitochondria‐targeted Hsp90 inhibitor based on the crystal structures of human TRAP1
  publication-title: J Am Chem Soc
– volume: 34
  start-page: 60
  year: 2015
  end-page: 8
  article-title: Assessing and maximizing data quality in macromolecular crystallography
  publication-title: Curr Opin Struct Biol
– volume: 11
  start-page: 1446
  year: 2021
  end-page: 68
  article-title: The disruption of protein‐protein interactions with co‐chaperones and client substrates as a strategy towards Hsp90 inhibition
  publication-title: Acta Pharm Sin B
– volume: 28
  start-page: 235
  year: 2000
  end-page: 42
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 203
  year: 2002
  end-page: 8
  article-title: Protein‐water interactions in a dynamic world
  publication-title: Trends Biochem Sci
– volume: 64
  start-page: 1545
  year: 2021
  end-page: 57
  article-title: The development of Hsp90β‐selective inhibitors to overcome detriments associated with
  publication-title: J Med Chem
– volume: 317
  start-page: 61
  year: 2012
  end-page: 82
  article-title: Hsp90 inhibitors and drugs from fragment and virtual screening
  publication-title: Top Curr Chem
– volume: 117
  start-page: 33204
  year: 2020
  end-page: 15
  article-title: Assessment of enzyme active site positioning and tests of catalytic mechanisms through X‐ray‐derived conformational ensembles
  publication-title: Proc Natl Acad Sci U S A
– volume: 112
  start-page: 5039
  year: 2015
  end-page: 44
  article-title: Homologous ligands accommodated by discrete conformations of a buried cavity
  publication-title: Proc Natl Acad Sci U S A
– volume: 440
  start-page: 1013
  year: 2006
  end-page: 7
  article-title: Crystal structure of an Hsp90‐nucleotide‐p23/Sba1 closed chaperone complex
  publication-title: Nature
– volume: 8
  start-page: 2276
  year: 2017
  article-title: Protein conformational flexibility modulates kinetics and thermodynamics of drug binding
  publication-title: Nat Commun
– volume: 141
  start-page: 15818
  year: 2019
  end-page: 26
  article-title: Water networks can determine the affinity of ligand binding to proteins
  publication-title: J Am Chem Soc
– volume: 40
  start-page: 117
  year: 2015
  end-page: 25
  article-title: Hsp90 interaction with clients
  publication-title: Trends Biochem Sci
– volume: 66
  start-page: 125
  year: 2010
  end-page: 32
  article-title: XDS
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 12
  article-title: UCSF chimera—A visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 388
  start-page: 1033
  year: 2009
  end-page: 42
  article-title: Different poses for ligand and chaperone in inhibitor‐bound Hsp90 and GRP94: implications for paralog‐specific drug design
  publication-title: J Mol Biol
– volume: 4
  start-page: 963
  year: 2009
  end-page: 6
  article-title: Fragment‐based identification of Hsp90 inhibitors
  publication-title: ChemMedChem
– volume: 9
  start-page: 677
  year: 2013
  end-page: 84
  article-title: Paralog‐selective Hsp90 inhibitors define tumor‐specific regulation of HER2
  publication-title: Nat Chem Biol
– ident: e_1_2_9_6_1
  doi: 10.1002/cmdc.200900011
– ident: e_1_2_9_37_1
  doi: 10.1039/D0SC04938G
– ident: e_1_2_9_66_1
  doi: 10.1073/pnas.2011350117
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.jmedchem.7b01608
– ident: e_1_2_9_33_1
  doi: 10.1002/pro.423
– ident: e_1_2_9_38_1
  doi: 10.1016/S0968-0004(02)02067-4
– ident: e_1_2_9_41_1
  doi: 10.1021/acschembio.6b00747
– ident: e_1_2_9_31_1
  doi: 10.1038/s41467-017-02013-1
– ident: e_1_2_9_24_1
  doi: 10.1074/jbc.RA119.009960
– ident: e_1_2_9_45_1
  doi: 10.1158/1078-0432.CCR-13-2571
– ident: e_1_2_9_54_1
  doi: 10.1016/j.apsb.2020.11.015
– ident: e_1_2_9_12_1
  doi: 10.1021/ja303477g
– ident: e_1_2_9_50_1
  doi: 10.1107/S0907444912044423
– ident: e_1_2_9_7_1
  doi: 10.1093/nar/28.1.235
– ident: e_1_2_9_61_1
  doi: 10.7554/eLife.74114
– ident: e_1_2_9_67_1
  doi: 10.1016/j.ejmech.2022.114516
– ident: e_1_2_9_15_1
  doi: 10.1016/j.bmcl.2013.11.036
– ident: e_1_2_9_34_1
  doi: 10.1021/ja511893n
– ident: e_1_2_9_8_1
  doi: 10.1039/D1SC02751D
– ident: e_1_2_9_10_1
  doi: 10.1002/chem.201703398
– ident: e_1_2_9_58_1
  doi: 10.1002/anie.202112919
– ident: e_1_2_9_48_1
  doi: 10.1002/jcc.20084
– ident: e_1_2_9_16_1
  doi: 10.1021/jm500042s
– ident: e_1_2_9_4_1
  doi: 10.1073/pnas.1703287114
– ident: e_1_2_9_19_1
  doi: 10.1002/cbic.201500196
– ident: e_1_2_9_55_1
  doi: 10.1074/jbc.M308661200
– ident: e_1_2_9_18_1
  doi: 10.1124/mi.9.1.7
– ident: e_1_2_9_29_1
  doi: 10.1016/j.tibs.2014.12.002
– ident: e_1_2_9_36_1
  doi: 10.1107/S2059798319011471
– ident: e_1_2_9_59_1
  doi: 10.2174/156802609789895737
– ident: e_1_2_9_2_1
  doi: 10.1038/nature04716
– ident: e_1_2_9_13_1
  doi: 10.7554/eLife.25235
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.jmedchem.2c00708
– ident: e_1_2_9_11_1
  doi: 10.1021/jacs.9b06275
– ident: e_1_2_9_39_1
  doi: 10.1107/S0021889807021206
– ident: e_1_2_9_21_1
  doi: 10.2174/1568026616666160413141154
– ident: e_1_2_9_28_1
  doi: 10.1107/S0907444909047337
– ident: e_1_2_9_25_1
  doi: 10.1002/prot.25750
– ident: e_1_2_9_22_1
  doi: 10.1038/nsmb.1565
– ident: e_1_2_9_5_1
  doi: 10.1021/acschembio.5b00683
– ident: e_1_2_9_32_1
  doi: 10.1007/978-3-030-40204-4_9
– ident: e_1_2_9_52_1
  doi: 10.1007/128_2011_181
– ident: e_1_2_9_46_1
  doi: 10.1016/S0076-6879(97)76066-X
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-017-02258-w
– ident: e_1_2_9_35_1
  doi: 10.1016/j.bbamcr.2011.09.003
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.1500806112
– ident: e_1_2_9_63_1
  doi: 10.1021/acs.jmedchem.8b00105
– ident: e_1_2_9_64_1
  doi: 10.2174/1389450120666190829162544
– ident: e_1_2_9_65_1
  doi: 10.1016/j.ejmech.2021.113604
– ident: e_1_2_9_14_1
  doi: 10.1107/S0907444910007493
– ident: e_1_2_9_17_1
  doi: 10.1017/S0033583520000128
– volume-title: NACCESS, computer program
  year: 1993
  ident: e_1_2_9_23_1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.sbi.2015.07.003
– ident: e_1_2_9_47_1
  doi: 10.1038/nchembio.1335
– ident: e_1_2_9_26_1
  doi: 10.1021/jm060297x
– ident: e_1_2_9_43_1
  doi: 10.1021/acs.jmedchem.0c01700
– ident: e_1_2_9_53_1
  doi: 10.1021/jm200350g
– ident: e_1_2_9_60_1
  doi: 10.1038/nrc2887
– ident: e_1_2_9_42_1
  doi: 10.1002/anie.202015422
– ident: e_1_2_9_44_1
  doi: 10.2174/138161213804143725
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jmb.2009.03.071
– ident: e_1_2_9_20_1
  doi: 10.1016/bs.acr.2015.12.001
– ident: e_1_2_9_56_1
  doi: 10.1021/acs.jmedchem.7b00057
– ident: e_1_2_9_62_1
  doi: 10.1038/nrc1716
– ident: e_1_2_9_49_1
  doi: 10.1021/acschembio.8b00443
– ident: e_1_2_9_9_1
  doi: 10.1021/jm900357y
SSID ssj0004123
Score 2.4534051
Snippet Isoforms of heat shock protein 90 (HSP90) fold oncoproteins that facilitate all 10 hallmarks of cancer. However, its promise as a therapeutic target remains...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e4629
SubjectTerms Antineoplastic Agents - chemistry
Binding
conformational flexibility
Heat shock proteins
HSP90 Heat-Shock Proteins - chemistry
Hsp90 isoforms
Hsp90 protein
Humans
Isoforms
ligand binding
Ligands
pan‐Hsp90 inhibitors
Protein Binding
Protein Conformation
Protein folding
Protein Isoforms - chemistry
Proteins
Side effects
Therapeutic targets
water networks
Title Pan‐HSP90 ligand binding reveals isoform‐specific differences in plasticity and water networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.4629
https://www.ncbi.nlm.nih.gov/pubmed/36938943
https://www.proquest.com/docview/2806809534
https://www.proquest.com/docview/2788801055
https://pubmed.ncbi.nlm.nih.gov/PMC10108437
Volume 32
WOSCitedRecordID wos000973169800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-896X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004123
  issn: 0961-8368
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-896X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004123
  issn: 0961-8368
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagRaIXflqggVIZCZVTaBIb2zlWhVWR0BIVKvYW2Y5TIhVvtdmCeuMReEaehBnnp6wKEhKXRJEniWWP7W_smW8Iec5h1ZcYjaO1cDF3YKBo6F2wUiyvwfyQ1lUh2YScTtVslhe9VyXGwnT8EOOGG46MMF_jANem3b8iDYUJ5iUXWX6TrKcpU5i2IePFVUxkmnVp5EUaKybUQDybZPvDm6tL0TV8ed1N8nf4Gtafyd3_qfk9cqdHnfSgU5P75Ibzm2TrwIPF_eWS7tHgBxo22DfJ7cMhB9wWMYX2P7__OPpQ5Ak9a061r6hpQiAMRe4n0F3atHMEviCGUZvoeUSHrCswB9HG03NA6Oi8vbyk-IFvAG8X1Hf-5-0DcjJ58_HwKO6zMsQWbZfYmRpapIKVvmIa8FbK07R2WlZMArwwdSoqlZtUWCWSWsja2FfW5tJVuTMVqyv2kKz5uXfbhEqkgzPMZExynjupjNE5QH5uhU6csBF5MXRQaXvKcsyccVZ2ZMtZCU1ZYlNG5Nkoed7RdPxBZmfo47IfqG2JB8sKOfc4fGIshlbGcxPt3fwCZHCbIGQSjcijTiXGnzCRM6Swj4haUZZRAOm7V0t88znQeMNkmCjOZET2grb8teJlcfwe74__VfAJ2cgAi3V-mTtkbbm4cE_JLft12bSL3TBO4Cpnapesvz6enLyDp09vp78Ag8gehw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFqlcCrT8BAoYCZVT2iQ2diJOVUW1FWVZQRG9RbbjQKTirXa3Rb3xCDwjT8KMs0m7KkhInHLwxLbssf2NPfMNwAuBp76iaBytpYuFQwNF4-yilWJFjeaHsq4KySbUcJgfHxejJXjdxcK0_BD9hRutjLBf0wKnC-mdS9ZQ3GG2hcyKG7BCLVLehs8Hw8ugyDRr88jLNM65zDvm2STb6f5cPIuuAczrfpJX8Ws4gPZv_1fX78DaHHey3VZR7sKS8-uwsevR5v52wbZY8AQNV-zrsLrXZYHbADPS_tePn4OPoyJhJ80X7StmmhAKw4j9CbWXNdMxQV8Uo7hN8j1iXd4V3IVY49kpYnRy355dMKrgOwLcCfOtB_r0Hnzaf3O0N4jneRliS9ZL7EyNQ1LhWV9xjYgrFWlaO60qrhBgmDqVVV6YVNpcJrVUtbGvrC2UqwpnKl5X_D4s-7F3D4EpIoQz3GRcCVE4lRujCwT9wkqdOGkjeNnNUGnnpOWUO-OkbOmWsxKHsqShjOB5L3naEnX8QWazm-RyvlSnJT0t58S6J7CKvhhHmV5OtHfjM5Shi4KQSzSCB61O9I1wWXAisY8gX9CWXoAIvBdLfPM1EHnjdpjkgqsItoK6_LXj5ejDe_o--lfBZ7A6OHp3WB4eDN8-hlsZIrPWS3MTlmeTM_cEbtrzWTOdPA2L5je3oh9I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLQIuPFoegQJGQuUUmoexE3GqWlZFVEtUqNRb5FcgUvGudreg3vgJ_EZ-CTN5lVVBQuKUgydONB7b39gz3wA857jrS8rGUUq4kDt0UBSOLnophlfofkjjbFNsQk4m2clJXqzB6z4XpuWHGA7caGY06zVNcDez1c4FayiuMC-5SPIrsM6phswI1vePxseHF2mRcdJWkhdxmKUi67lno2Snf3d1N7oEMS9HSv6OYJstaHzrv37-NtzskCfbbU3lDqw5vwGbux697i_nbJs1saDNIfsGXN_r68Btgi6U__n9x8GHIo_Yaf1Ject03STDMOJ_Qvtl9WJK4BfFKHOToo9YX3kF1yFWezZDlE4B3MtzRh18Q4g7Z76NQV_chePxm497B2FXmSE05L-ETleoEou7vU0VYq6Yx3HllLSpRIihq1jYLNexMJmIKiErbV4Zk0tnc6dtWtn0Hoz81LsHwCRRwulUJ6nkPHcy01rlCPu5ESpywgTwoh-h0nS05VQ947RsCZeTElVZkioDeDZIzlqqjj_IbPWDXHaTdVHS5XJGvHscuxiaUct0d6K8m56hDB0VNNVEA7jf2sTwkVTkKdHYB5CtWMsgQBTeqy2-_txQeeOCGGU8lQFsN-by1x8vi6P39Hz4r4JP4VqxPy4P307ePYIbCUKzNkxzC0bL-Zl7DFfN12W9mD_pZs0vlPsf8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pan%E2%80%90HSP90+ligand+binding+reveals+isoform%E2%80%90specific+differences+in+plasticity+and+water+networks&rft.jtitle=Protein+science&rft.au=Stachowski%2C+Timothy+R&rft.au=Nithianantham%2C+Stanley&rft.au=Vanarotti%2C+Murugendra&rft.au=Lopez%2C+Karlo&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=32&rft.issue=5&rft_id=info:doi/10.1002%2Fpro.4629&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon