Engineering Dual Single‐Atom Sites on 2D Ultrathin N‐doped Carbon Nanosheets Attaining Ultra‐Low‐Temperature Zinc‐Air Battery

Herein, a novel dual single‐atom catalyst comprising adjacent Fe‐N4 and Mn‐N4 sites on 2D ultrathin N‐doped carbon nanosheets with porous structure (FeMn‐DSAC) was constructed as the cathode for a flexible low‐temperature Zn‐air battery (ZAB). FeMn‐DSAC exhibits remarkable bifunctional activities fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 61; H. 12; S. e202115219 - n/a
Hauptverfasser: Cui, Tingting, Wang, Yun‐Peng, Ye, Tong, Wu, Jiao, Chen, Zhiqiang, Li, Jiong, Lei, Yongpeng, Wang, Dingsheng, Li, Yadong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 14.03.2022
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Herein, a novel dual single‐atom catalyst comprising adjacent Fe‐N4 and Mn‐N4 sites on 2D ultrathin N‐doped carbon nanosheets with porous structure (FeMn‐DSAC) was constructed as the cathode for a flexible low‐temperature Zn‐air battery (ZAB). FeMn‐DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual‐sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn‐DSAC enables the ZAB to operate efficiently at ultra‐low temperature of −40 °C, delivering 30 mW cm−2 peak power density and retaining up to 86 % specific capacity from the room temperature counterpart. A Fe/Mn dual single‐atom catalyst with an excellent bifunctional activity is prepared as the cathode for a flexible low‐temperature Zn‐air battery (ZAB). Profiting from the combined Fe/Mn dual‐site effect as well as the porous 2D nanosheet structure, the ZAB could operate efficiently at the ultra‐low temperature of −40 °C.
AbstractList Herein, a novel dual single-atom catalyst comprising adjacent Fe-N4 and Mn-N4 sites on 2D ultrathin N-doped carbon nanosheets with porous structure (FeMn-DSAC) was constructed as the cathode for a flexible low-temperature Zn-air battery (ZAB). FeMn-DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual-sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn-DSAC enables the ZAB to operate efficiently at ultra-low temperature of -40 °C, delivering 30 mW cm-2 peak power density and retaining up to 86 % specific capacity from the room temperature counterpart.Herein, a novel dual single-atom catalyst comprising adjacent Fe-N4 and Mn-N4 sites on 2D ultrathin N-doped carbon nanosheets with porous structure (FeMn-DSAC) was constructed as the cathode for a flexible low-temperature Zn-air battery (ZAB). FeMn-DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual-sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn-DSAC enables the ZAB to operate efficiently at ultra-low temperature of -40 °C, delivering 30 mW cm-2 peak power density and retaining up to 86 % specific capacity from the room temperature counterpart.
Herein, a novel dual single‐atom catalyst comprising adjacent Fe‐N4 and Mn‐N4 sites on 2D ultrathin N‐doped carbon nanosheets with porous structure (FeMn‐DSAC) was constructed as the cathode for a flexible low‐temperature Zn‐air battery (ZAB). FeMn‐DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual‐sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn‐DSAC enables the ZAB to operate efficiently at ultra‐low temperature of −40 °C, delivering 30 mW cm−2 peak power density and retaining up to 86 % specific capacity from the room temperature counterpart. A Fe/Mn dual single‐atom catalyst with an excellent bifunctional activity is prepared as the cathode for a flexible low‐temperature Zn‐air battery (ZAB). Profiting from the combined Fe/Mn dual‐site effect as well as the porous 2D nanosheet structure, the ZAB could operate efficiently at the ultra‐low temperature of −40 °C.
Herein, a novel dual single-atom catalyst comprising adjacent Fe-N and Mn-N sites on 2D ultrathin N-doped carbon nanosheets with porous structure (FeMn-DSAC) was constructed as the cathode for a flexible low-temperature Zn-air battery (ZAB). FeMn-DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual-sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn-DSAC enables the ZAB to operate efficiently at ultra-low temperature of -40 °C, delivering 30 mW cm peak power density and retaining up to 86 % specific capacity from the room temperature counterpart.
Herein, a novel dual single‐atom catalyst comprising adjacent Fe‐N 4 and Mn‐N 4 sites on 2D ultrathin N‐doped carbon nanosheets with porous structure (FeMn‐DSAC) was constructed as the cathode for a flexible low‐temperature Zn‐air battery (ZAB). FeMn‐DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual‐sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn‐DSAC enables the ZAB to operate efficiently at ultra‐low temperature of −40 °C, delivering 30 mW cm −2 peak power density and retaining up to 86 % specific capacity from the room temperature counterpart.
Herein, a novel dual single‐atom catalyst comprising adjacent Fe‐N4 and Mn‐N4 sites on 2D ultrathin N‐doped carbon nanosheets with porous structure (FeMn‐DSAC) was constructed as the cathode for a flexible low‐temperature Zn‐air battery (ZAB). FeMn‐DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual‐sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn‐DSAC enables the ZAB to operate efficiently at ultra‐low temperature of −40 °C, delivering 30 mW cm−2 peak power density and retaining up to 86 % specific capacity from the room temperature counterpart.
Author Li, Yadong
Wu, Jiao
Li, Jiong
Wang, Dingsheng
Lei, Yongpeng
Cui, Tingting
Wang, Yun‐Peng
Ye, Tong
Chen, Zhiqiang
Author_xml – sequence: 1
  givenname: Tingting
  surname: Cui
  fullname: Cui, Tingting
  organization: Tsinghua University
– sequence: 2
  givenname: Yun‐Peng
  surname: Wang
  fullname: Wang, Yun‐Peng
  organization: Central South University
– sequence: 3
  givenname: Tong
  surname: Ye
  fullname: Ye, Tong
  organization: Central South University
– sequence: 4
  givenname: Jiao
  surname: Wu
  fullname: Wu, Jiao
  organization: Central South University
– sequence: 5
  givenname: Zhiqiang
  surname: Chen
  fullname: Chen, Zhiqiang
  organization: Tsinghua University
– sequence: 6
  givenname: Jiong
  surname: Li
  fullname: Li, Jiong
  organization: Chinese Academy of Science
– sequence: 7
  givenname: Yongpeng
  surname: Lei
  fullname: Lei, Yongpeng
  email: lypkd@163.com
  organization: Central South University
– sequence: 8
  givenname: Dingsheng
  orcidid: 0000-0003-0074-7633
  surname: Wang
  fullname: Wang, Dingsheng
  email: wangdingsheng@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 9
  givenname: Yadong
  surname: Li
  fullname: Li, Yadong
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34994045$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhUcoiDygpUSWaNLM4teMPeWyWSDSailYGhrL472TOJqxF9ujaDs6Wn5jfkk8bAJSJETje637nWPrntPiyHkHRfGa4BnBmL7TzsKMYkpIRUnzrDiZasmEYEe554yVQlbkuDiN8SbzUuL6RXHMeNNwzKuT4ufSXVkHEKy7Qhej7tGX3PVw9-PXPPkh3xJE5B2iF-hrn4JO19ahdR5v_Q62aKFDm6dr7Xy8BkgRzVPS1k12v_lMrvxtPjcw7CDrxwDom3VmesEG9F6nBGH_snje6T7Cq4d6Vmw-LDeLT-Xq88fLxXxVGs6aptRGyrojhjYt77TpWpC44UQzoAS4AFoLQzGvt4CrRssWgHKRQS0FNpKws-L8YLsL_vsIManBRgN9rx34MSpaE0mZIFhk9O0T9MaPweXPZYrVjEtR8Uy9eaDGdoCt2gU76LBXjxvOAD8AJvgYA3TK2KST9S4vx_aKYDUFqaYg1Z8gs2z2RPbo_E9BcxDc2h72_6HVfH25_Ku9B3QXtck
CitedBy_id crossref_primary_10_1002_smll_202205228
crossref_primary_10_1016_j_cej_2023_143641
crossref_primary_10_1016_j_joule_2024_03_017
crossref_primary_10_1016_j_est_2024_112318
crossref_primary_10_1039_D3QI00502J
crossref_primary_10_1002_smtd_202200408
crossref_primary_10_1016_j_jallcom_2022_165130
crossref_primary_10_1007_s12274_023_6317_3
crossref_primary_10_1002_anie_202301114
crossref_primary_10_1007_s12274_024_6495_7
crossref_primary_10_1007_s12274_022_5197_2
crossref_primary_10_1016_j_jcis_2023_06_016
crossref_primary_10_1007_s10853_025_11003_4
crossref_primary_10_1007_s12274_023_5593_2
crossref_primary_10_1016_j_checat_2024_101007
crossref_primary_10_1016_j_compositesb_2025_112877
crossref_primary_10_1016_j_jechem_2023_01_048
crossref_primary_10_1016_j_jelechem_2025_119461
crossref_primary_10_1039_D2NR06092B
crossref_primary_10_1007_s12274_023_5637_7
crossref_primary_10_1007_s12274_022_4289_3
crossref_primary_10_1016_j_apcatb_2024_123866
crossref_primary_10_1002_aenm_202200493
crossref_primary_10_1007_s12274_022_4243_4
crossref_primary_10_1002_smll_202410028
crossref_primary_10_3390_nano13111788
crossref_primary_10_1002_adfm_202206513
crossref_primary_10_1016_j_jcis_2025_02_101
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1039_D4SE00197D
crossref_primary_10_1002_cssc_202500929
crossref_primary_10_1002_adfm_202300815
crossref_primary_10_1021_acsaem_4c02951
crossref_primary_10_1002_ange_202505268
crossref_primary_10_1002_smll_202307110
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1016_j_jallcom_2022_166445
crossref_primary_10_3390_molecules28052147
crossref_primary_10_1002_adma_202501960
crossref_primary_10_1007_s12274_023_6318_2
crossref_primary_10_1016_j_chphma_2022_04_002
crossref_primary_10_1007_s12274_022_4823_3
crossref_primary_10_1007_s40843_022_2272_2
crossref_primary_10_1016_j_nanoen_2022_107927
crossref_primary_10_1007_s12274_023_5823_7
crossref_primary_10_1007_s10853_024_09428_4
crossref_primary_10_1016_j_jcis_2024_03_097
crossref_primary_10_1002_adma_202303492
crossref_primary_10_1039_D5TA00369E
crossref_primary_10_1016_j_fuel_2025_134924
crossref_primary_10_1007_s12274_022_4979_x
crossref_primary_10_1002_adfm_202405908
crossref_primary_10_1002_smll_202310637
crossref_primary_10_1016_j_jcis_2022_12_128
crossref_primary_10_1016_j_jallcom_2025_181132
crossref_primary_10_1002_cssc_202401186
crossref_primary_10_1007_s40242_025_5053_5
crossref_primary_10_1007_s12274_022_4495_z
crossref_primary_10_1002_smtd_202301219
crossref_primary_10_1007_s11426_023_1863_8
crossref_primary_10_1021_prechem_3c00022
crossref_primary_10_1002_smll_202202394
crossref_primary_10_1038_s41524_024_01432_1
crossref_primary_10_59717_j_xinn_mater_2025_100131
crossref_primary_10_1002_anie_202415216
crossref_primary_10_1002_adfm_202308762
crossref_primary_10_1002_smll_202310224
crossref_primary_10_1002_anie_202214988
crossref_primary_10_1002_advs_202308923
crossref_primary_10_1002_sstr_202200059
crossref_primary_10_1002_smll_202304901
crossref_primary_10_1002_smll_202302727
crossref_primary_10_1016_j_apcatb_2023_123438
crossref_primary_10_1002_adfm_202408257
crossref_primary_10_1016_j_chempr_2022_10_028
crossref_primary_10_1016_j_matt_2023_03_034
crossref_primary_10_1007_s12274_022_4429_9
crossref_primary_10_1002_smll_202502102
crossref_primary_10_1002_ange_202314933
crossref_primary_10_1002_advs_202206165
crossref_primary_10_1016_j_apcatb_2024_123939
crossref_primary_10_1016_j_chempr_2023_01_003
crossref_primary_10_1002_advs_202411928
crossref_primary_10_1002_anie_202212335
crossref_primary_10_1016_j_cej_2025_159888
crossref_primary_10_1039_D4CY00036F
crossref_primary_10_1038_s41467_022_35598_3
crossref_primary_10_1016_j_jallcom_2024_173590
crossref_primary_10_1002_adma_202304130
crossref_primary_10_1016_j_jpowsour_2025_238124
crossref_primary_10_1016_j_cej_2024_148798
crossref_primary_10_1016_j_jhazmat_2022_129009
crossref_primary_10_1002_anie_202219188
crossref_primary_10_1021_acscatal_5c00527
crossref_primary_10_1007_s12274_023_5571_8
crossref_primary_10_1016_j_apcatb_2022_122163
crossref_primary_10_1016_j_jallcom_2024_175688
crossref_primary_10_1016_j_carbon_2025_120098
crossref_primary_10_1002_ange_202415216
crossref_primary_10_1002_adfm_202314176
crossref_primary_10_1002_smll_202307384
crossref_primary_10_1007_s12274_022_4977_z
crossref_primary_10_1007_s12274_022_4855_8
crossref_primary_10_1002_anie_202219191
crossref_primary_10_1016_j_jcat_2023_115186
crossref_primary_10_1002_cssc_202301213
crossref_primary_10_3390_batteries8110202
crossref_primary_10_1002_aenm_202500796
crossref_primary_10_1016_j_microc_2023_108556
crossref_primary_10_1038_s41565_024_01716_z
crossref_primary_10_1007_s12274_023_5450_3
crossref_primary_10_1016_j_apcatb_2023_122694
crossref_primary_10_1021_acsami_5c06540
crossref_primary_10_1002_celc_202300695
crossref_primary_10_1073_pnas_2319525121
crossref_primary_10_1016_j_carbon_2024_119481
crossref_primary_10_1002_ange_202219191
crossref_primary_10_1002_smll_202311356
crossref_primary_10_1039_D3MH00079F
crossref_primary_10_1016_j_jallcom_2024_174805
crossref_primary_10_1002_cey2_194
crossref_primary_10_1016_j_chempr_2023_08_014
crossref_primary_10_1016_j_jpowsour_2024_235229
crossref_primary_10_1002_advs_202301656
crossref_primary_10_3390_molecules29235721
crossref_primary_10_1007_s12274_022_5118_4
crossref_primary_10_1016_j_cej_2023_144693
crossref_primary_10_1016_j_apcatb_2023_122783
crossref_primary_10_1002_ange_202422920
crossref_primary_10_1002_anie_202201007
crossref_primary_10_1007_s12274_023_6281_y
crossref_primary_10_1016_j_cej_2025_164872
crossref_primary_10_1002_smll_202504846
crossref_primary_10_1002_ange_202219188
crossref_primary_10_1088_1361_6528_ad12e7
crossref_primary_10_1002_anie_202319983
crossref_primary_10_1039_D2QI02564G
crossref_primary_10_1016_j_apcatb_2023_123645
crossref_primary_10_1007_s12274_024_6633_2
crossref_primary_10_1007_s12274_022_5314_2
crossref_primary_10_26599_NR_2025_94907297
crossref_primary_10_1002_adma_202308653
crossref_primary_10_1007_s12274_022_4499_8
crossref_primary_10_1007_s12274_023_5898_1
crossref_primary_10_1016_j_nanoms_2024_09_008
crossref_primary_10_1016_j_mseb_2024_117628
crossref_primary_10_1016_j_jallcom_2022_166602
crossref_primary_10_1039_D3NR06386K
crossref_primary_10_1007_s12598_024_02786_7
crossref_primary_10_1016_j_jclepro_2024_142685
crossref_primary_10_1016_j_matt_2024_08_005
crossref_primary_10_1038_s41467_024_47209_4
crossref_primary_10_1016_j_ces_2025_121249
crossref_primary_10_1016_j_cej_2024_153671
crossref_primary_10_1002_aenm_202403817
crossref_primary_10_1021_acscatal_5c03049
crossref_primary_10_1007_s12274_022_4297_3
crossref_primary_10_3390_catal14120849
crossref_primary_10_1039_D5TA00482A
crossref_primary_10_1002_anie_202213318
crossref_primary_10_1016_j_jallcom_2022_167826
crossref_primary_10_1039_D5CP02111A
crossref_primary_10_1007_s40242_025_4207_9
crossref_primary_10_1007_s12274_023_5657_3
crossref_primary_10_1007_s40843_023_2483_x
crossref_primary_10_1002_elt2_26
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1002_adma_202417516
crossref_primary_10_1007_s12274_022_4891_4
crossref_primary_10_1002_anie_202313099
crossref_primary_10_1016_j_coche_2023_100926
crossref_primary_10_1002_cctc_202201579
crossref_primary_10_1016_j_jallcom_2023_172108
crossref_primary_10_1002_smll_202302739
crossref_primary_10_1007_s12274_022_4550_9
crossref_primary_10_1002_aenm_202301378
crossref_primary_10_1002_cnma_202200482
crossref_primary_10_1007_s12598_025_03506_5
crossref_primary_10_1007_s42823_024_00693_6
crossref_primary_10_1016_j_asems_2023_100089
crossref_primary_10_1002_adfm_202307390
crossref_primary_10_1002_smll_202206477
crossref_primary_10_1002_sus2_148
crossref_primary_10_1002_ange_202501649
crossref_primary_10_1039_D3EY00050H
crossref_primary_10_1002_adfm_202212299
crossref_primary_10_1039_D3EE00840A
crossref_primary_10_1039_D4EE03240C
crossref_primary_10_1002_adfm_202205637
crossref_primary_10_1002_adfm_202301840
crossref_primary_10_1002_anie_202505268
crossref_primary_10_1021_acsmaterialslett_5c00242
crossref_primary_10_1002_adma_202404659
crossref_primary_10_1007_s00226_022_01389_8
crossref_primary_10_1021_jacs_4c12601
crossref_primary_10_1016_j_jpowsour_2022_231902
crossref_primary_10_1016_j_matlet_2023_134481
crossref_primary_10_1002_smll_202311268
crossref_primary_10_1002_ppsc_202300039
crossref_primary_10_1002_smll_202207675
crossref_primary_10_1002_advs_202401187
crossref_primary_10_1016_j_nanoen_2022_107815
crossref_primary_10_1039_D3SC00250K
crossref_primary_10_1016_j_jcis_2024_06_066
crossref_primary_10_1016_j_cej_2024_155822
crossref_primary_10_1007_s12274_022_5339_6
crossref_primary_10_1002_adma_202414343
crossref_primary_10_1016_j_jcis_2025_138319
crossref_primary_10_1002_adfm_202504059
crossref_primary_10_1002_advs_202301566
crossref_primary_10_1016_j_apmt_2025_102716
crossref_primary_10_1002_ange_202301114
crossref_primary_10_1007_s12598_022_02078_y
crossref_primary_10_1016_j_mtchem_2024_101962
crossref_primary_10_1002_anie_202413657
crossref_primary_10_1039_D3EE03183G
crossref_primary_10_1007_s12274_023_5700_4
crossref_primary_10_1093_nsr_nwae193
crossref_primary_10_1002_ange_202208238
crossref_primary_10_1002_ange_202504935
crossref_primary_10_1016_S1872_5805_24_60863_2
crossref_primary_10_1021_jacs_4c06173
crossref_primary_10_1002_ange_202301483
crossref_primary_10_1002_adfm_202301947
crossref_primary_10_1002_adma_202403549
crossref_primary_10_1007_s12274_022_4790_8
crossref_primary_10_1016_j_comptc_2025_115215
crossref_primary_10_1016_j_nanoen_2024_109268
crossref_primary_10_1002_adfm_202423476
crossref_primary_10_1016_j_ces_2025_122368
crossref_primary_10_1002_cssc_202300637
crossref_primary_10_1021_acssuschemeng_5c05910
crossref_primary_10_1007_s12274_023_5428_6
crossref_primary_10_1007_s12274_023_5625_y
crossref_primary_10_1016_j_apcatb_2023_122851
crossref_primary_10_1021_acscatal_5c05138
crossref_primary_10_1002_anie_202213366
crossref_primary_10_1016_j_jallcom_2024_173659
crossref_primary_10_1007_s12274_022_5338_7
crossref_primary_10_1002_smll_202207695
crossref_primary_10_1016_j_scib_2023_07_049
crossref_primary_10_1002_batt_202200487
crossref_primary_10_1155_2023_6645822
crossref_primary_10_1002_smll_202301324
crossref_primary_10_1016_j_cej_2023_141591
crossref_primary_10_1007_s10562_024_04728_5
crossref_primary_10_1021_jacs_4c00652
crossref_primary_10_1002_ange_202407380
crossref_primary_10_1016_j_cej_2022_138574
crossref_primary_10_1002_ange_202313099
crossref_primary_10_1038_s44160_024_00545_1
crossref_primary_10_1007_s12274_023_5457_9
crossref_primary_10_1002_ange_202213366
crossref_primary_10_1002_aenm_202400368
crossref_primary_10_1002_ange_202413933
crossref_primary_10_1007_s12274_023_5578_1
crossref_primary_10_1021_acs_jpclett_5c02229
crossref_primary_10_1002_smtd_202501359
crossref_primary_10_1002_ange_202303185
crossref_primary_10_1016_j_cej_2022_137490
crossref_primary_10_1007_s12274_022_4939_5
crossref_primary_10_1002_aenm_202302719
crossref_primary_10_1038_s41467_022_31383_4
crossref_primary_10_1002_ange_202319983
crossref_primary_10_1002_idm2_12141
crossref_primary_10_1016_j_jallcom_2023_170222
crossref_primary_10_1002_adfm_202416215
crossref_primary_10_1039_D4EE03148B
crossref_primary_10_1016_j_est_2023_107239
crossref_primary_10_1016_j_ccr_2024_215726
crossref_primary_10_1007_s40242_022_2245_0
crossref_primary_10_1016_j_checat_2022_12_001
crossref_primary_10_1016_j_apcatb_2023_122917
crossref_primary_10_1016_j_ccr_2024_215961
crossref_primary_10_1002_ange_202201007
crossref_primary_10_1093_chemle_upae197
crossref_primary_10_1007_s12274_023_5531_3
crossref_primary_10_1002_cjoc_70221
crossref_primary_10_1002_smll_202302464
crossref_primary_10_1016_j_ensm_2024_103945
crossref_primary_10_1002_anie_202306469
crossref_primary_10_1007_s40820_022_00927_0
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1002_anie_202308344
crossref_primary_10_1002_smll_202300289
crossref_primary_10_1016_j_ijhydene_2024_08_470
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1016_j_cattod_2024_114619
crossref_primary_10_1021_jacs_3c08616
crossref_primary_10_1039_D3EE02196C
crossref_primary_10_1016_j_mtphys_2023_101288
crossref_primary_10_1039_D4EE00823E
crossref_primary_10_1016_j_jechem_2023_04_010
crossref_primary_10_1016_j_apsusc_2024_161613
crossref_primary_10_1016_j_enchem_2023_100114
crossref_primary_10_1016_j_apenergy_2025_125925
crossref_primary_10_1002_adma_202311434
crossref_primary_10_1016_j_matlet_2022_133368
crossref_primary_10_1016_j_mattod_2023_10_007
crossref_primary_10_1002_ange_202306469
crossref_primary_10_1002_smll_202507379
crossref_primary_10_1021_jacs_4c11326
crossref_primary_10_1039_D5TA03017J
crossref_primary_10_3390_molecules29081812
crossref_primary_10_1002_anie_202303185
crossref_primary_10_1002_adfm_202209283
crossref_primary_10_1039_D3EE03383J
crossref_primary_10_26599_NRE_2025_9120169
crossref_primary_10_1002_adma_202209654
crossref_primary_10_1016_j_jpowsour_2024_234063
crossref_primary_10_1002_anie_202420481
crossref_primary_10_1002_cplu_202200328
crossref_primary_10_1007_s40843_023_2776_5
crossref_primary_10_1016_j_apcatb_2024_124123
crossref_primary_10_1002_adma_202313406
crossref_primary_10_1016_j_jcis_2024_11_115
crossref_primary_10_1007_s12274_022_4903_4
crossref_primary_10_1021_acscatal_4c08027
crossref_primary_10_3390_batteries11080315
crossref_primary_10_1002_anie_202407380
crossref_primary_10_1002_adma_202413658
crossref_primary_10_1002_cjoc_202200488
crossref_primary_10_1016_j_cej_2023_147510
crossref_primary_10_1021_acsnano_5c08610
crossref_primary_10_1002_anie_202411543
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1002_cssc_202200498
crossref_primary_10_1007_s12274_023_6037_8
crossref_primary_10_1016_j_jhazmat_2023_131083
crossref_primary_10_1016_j_jcis_2023_10_134
crossref_primary_10_1039_D3QM00732D
crossref_primary_10_1007_s12274_023_5798_4
crossref_primary_10_1016_j_est_2024_115230
crossref_primary_10_1002_ange_202213318
crossref_primary_10_1002_smll_202206067
crossref_primary_10_26599_NR_2025_94907016
crossref_primary_10_1016_j_cej_2023_142184
crossref_primary_10_1002_cctc_202301516
crossref_primary_10_1002_smsc_202200036
crossref_primary_10_1016_j_apcatb_2023_123090
crossref_primary_10_1002_anie_202314933
crossref_primary_10_1002_anie_202413933
crossref_primary_10_1073_pnas_2404013121
crossref_primary_10_1016_j_apcatb_2022_121991
crossref_primary_10_26599_NR_2025_94907244
crossref_primary_10_1007_s12274_023_5864_y
crossref_primary_10_1016_j_cej_2024_155537
crossref_primary_10_1002_aenm_202501091
crossref_primary_10_1002_smll_202303473
crossref_primary_10_1007_s12274_023_5510_8
crossref_primary_10_1002_ange_202212335
crossref_primary_10_1039_D2NJ01697D
crossref_primary_10_26599_NR_2025_94907249
crossref_primary_10_1016_j_ensm_2024_103985
crossref_primary_10_1002_ange_202420481
crossref_primary_10_1002_adma_202408285
crossref_primary_10_1007_s40242_023_3001_9
crossref_primary_10_3390_ijms242316813
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_1002_adma_202210975
crossref_primary_10_1039_D5DT00844A
crossref_primary_10_1016_j_scib_2023_10_013
crossref_primary_10_1002_ange_202411543
crossref_primary_10_1007_s12274_022_5335_x
crossref_primary_10_1002_adfm_202316100
crossref_primary_10_1002_adma_202402747
crossref_primary_10_1002_ange_202214988
crossref_primary_10_1002_anie_202217449
crossref_primary_10_1039_D3EE03059H
crossref_primary_10_1007_s12274_022_4382_7
crossref_primary_10_1002_ange_202308344
crossref_primary_10_1016_j_jcis_2025_01_269
crossref_primary_10_1007_s12274_022_4502_4
crossref_primary_10_1002_ange_202413657
crossref_primary_10_1039_D2NR06794C
crossref_primary_10_1007_s12274_022_5133_5
crossref_primary_10_1002_ange_202217449
crossref_primary_10_1016_j_micron_2024_103686
crossref_primary_10_1002_anie_202501649
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1007_s11581_025_06098_3
crossref_primary_10_1016_j_cej_2024_157247
crossref_primary_10_1016_j_cej_2022_139831
crossref_primary_10_1016_j_susmat_2025_e01497
crossref_primary_10_1002_adma_202210550
crossref_primary_10_1039_D5QI00130G
crossref_primary_10_1002_adma_202301477
crossref_primary_10_1007_s12274_023_5475_7
crossref_primary_10_1002_adma_202411404
crossref_primary_10_1002_smll_202303151
crossref_primary_10_1007_s12274_023_5661_7
crossref_primary_10_1016_j_carbon_2024_119025
crossref_primary_10_1039_D3EE00037K
crossref_primary_10_1021_acscatal_5c03710
crossref_primary_10_1002_adma_202412978
crossref_primary_10_1016_j_cej_2023_141607
crossref_primary_10_1002_cctc_202301392
crossref_primary_10_1016_j_ijhydene_2024_03_293
crossref_primary_10_1080_02603594_2024_2377125
crossref_primary_10_1016_j_fuel_2025_134521
crossref_primary_10_1016_j_mser_2024_100886
crossref_primary_10_1002_adfm_202418022
crossref_primary_10_1016_j_jcis_2022_08_088
crossref_primary_10_1002_advs_202205975
crossref_primary_10_1016_j_jcis_2024_09_235
crossref_primary_10_1002_adfm_202409794
crossref_primary_10_1016_j_coelec_2022_101197
crossref_primary_10_1039_D5CY00483G
crossref_primary_10_1002_smll_202406075
crossref_primary_10_1016_j_apcatb_2024_124450
crossref_primary_10_1021_jacs_4c15408
crossref_primary_10_1002_inf2_70032
crossref_primary_10_1007_s12274_022_4448_6
crossref_primary_10_1002_ifm2_19
crossref_primary_10_1007_s12274_022_4862_9
crossref_primary_10_1016_j_ces_2025_121820
crossref_primary_10_1002_adma_202418258
crossref_primary_10_1002_inc2_12014
crossref_primary_10_1007_s40820_023_01056_y
crossref_primary_10_1016_j_apsusc_2023_156906
crossref_primary_10_1016_j_apcatb_2023_123156
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1007_s40843_023_2464_8
crossref_primary_10_1016_j_mtchem_2024_102491
crossref_primary_10_1002_anie_202208238
crossref_primary_10_20517_energymater_2024_247
crossref_primary_10_1016_j_tsf_2024_140412
crossref_primary_10_1016_j_apenergy_2023_120691
crossref_primary_10_1016_j_jcis_2024_01_171
crossref_primary_10_1016_j_jallcom_2023_168792
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1002_smll_202311817
crossref_primary_10_1016_j_jpcs_2023_111256
crossref_primary_10_1016_j_apsusc_2022_155764
crossref_primary_10_26599_NR_2025_94907654
crossref_primary_10_1016_j_cej_2025_167663
crossref_primary_10_1007_s12598_024_02911_6
crossref_primary_10_1007_s11426_022_1427_0
crossref_primary_10_1002_smll_202400327
crossref_primary_10_1002_adfm_202407335
crossref_primary_10_1002_anie_202422920
crossref_primary_10_1007_s12274_022_4424_1
crossref_primary_10_1016_j_jcis_2024_02_097
crossref_primary_10_1021_jacs_5c04321
crossref_primary_10_1021_acsami_5c09789
crossref_primary_10_1016_j_est_2024_113463
crossref_primary_10_1016_j_jallcom_2025_178835
crossref_primary_10_1038_s41467_024_51022_4
crossref_primary_10_1007_s40820_024_01328_1
crossref_primary_10_1016_j_jallcom_2024_178435
crossref_primary_10_1016_j_jcis_2023_07_156
crossref_primary_10_1016_j_ijhydene_2024_01_203
crossref_primary_10_1007_s12274_022_4874_7
crossref_primary_10_1016_j_cej_2023_146004
crossref_primary_10_1016_j_jre_2025_03_015
crossref_primary_10_1002_adma_202303109
crossref_primary_10_1002_smll_202507733
crossref_primary_10_1016_j_jcis_2023_08_182
crossref_primary_10_1016_j_cej_2022_137112
crossref_primary_10_1002_anie_202504935
crossref_primary_10_1039_D3EE04410F
crossref_primary_10_1016_j_pmatsci_2024_101356
crossref_primary_10_1002_sstr_202200340
crossref_primary_10_1016_j_fuel_2024_134021
crossref_primary_10_1002_anie_202301483
crossref_primary_10_1007_s12274_022_5168_7
crossref_primary_10_1002_aenm_202300884
Cites_doi 10.1002/anie.202105186
10.1038/s41929-018-0164-8
10.1021/acscatal.8b02624
10.1021/jacs.8b04647
10.1002/ange.202012798
10.1039/C9EE03634B
10.1016/j.apmate.2021.10.004
10.1002/adfm.201802564
10.1002/aenm.201802856
10.1002/adma.202104718
10.1016/0022-2860(82)87227-X
10.1002/sstr.202000051
10.1038/nmat4367
10.1002/anie.201702473
10.1002/anie.201706467
10.1007/s12274-020-3244-4
10.1021/jacs.1c03135
10.1007/s12274-021-3794-0
10.1002/cctc.201901634
10.1002/ange.202110433
10.1002/ange.201903879
10.1021/ja511539a
10.1002/ange.202105186
10.1002/anie.202100526
10.1039/c1cs15228a
10.1021/jacs.1c06349
10.1088/2053-1591/ab36c4
10.1063/1.2260821
10.1002/adma.201905622
10.1039/C8EE02656D
10.1002/adma.201203422
10.1002/ange.202104171
10.1002/aenm.202101749
10.1063/1.1329672
10.1016/j.apcatb.2017.03.014
10.1016/j.carbon.2014.12.048
10.1002/ange.201702473
10.1002/ange.201706467
10.1021/acsenergylett.8b00303
10.1002/anie.201903879
10.1016/j.apmate.2021.10.002
10.1002/ange.202100526
10.1039/D1EE01134K
10.1002/aenm.201801396
10.1002/adma.202001651
10.1016/j.apcatb.2018.10.034
10.1002/ange.201915836
10.1038/s41467-021-21919-5
10.1021/jacs.1c02328
10.1039/C3CS60159E
10.1002/anie.202104171
10.1021/acssuschemeng.0c01111
10.1021/acsnano.0c02783
10.1002/adma.202007090
10.1038/s41929-021-00650-w
10.1039/C7CC02848B
10.1002/aenm.201000010
10.1016/j.ensm.2021.07.026
10.1016/j.fuel.2021.122774
10.1002/smll.201300812
10.1002/anie.201915836
10.1002/anie.202012798
10.1039/C7TA08423D
10.1016/j.compositesb.2021.109228
10.1002/adfm.201908486
10.1021/acscatal.6b01581
10.1039/C9CS00163H
10.1016/j.scib.2018.04.003
10.1002/adma.202003134
10.1002/aenm.202003018
10.1021/jacs.9b08362
10.1016/j.cej.2019.122588
10.1002/batt.202000243
10.1021/acsami.0c00325
10.1002/anie.202110433
10.1021/jacs.9b07712
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202115219
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34994045
10_1002_anie_202115219
ANIE202115219
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22171157
– fundername: National Natural Science Foundation of China
  grantid: 22171157
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4399-ac886f1c29b4facfbe80941a3e21e47e267c2046de059a8bee247faca870c813
IEDL.DBID DRFUL
ISICitedReferencesCount 595
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748150900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:52:33 EDT 2025
Tue Oct 07 07:10:15 EDT 2025
Thu Apr 03 07:08:32 EDT 2025
Sat Nov 29 02:36:34 EST 2025
Tue Nov 18 21:18:32 EST 2025
Wed Jan 22 16:25:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Bifunctional electrocatalyst
Nanosheets
Zn-air battery
Dual single-atom catalyst
Low-temperature
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-ac886f1c29b4facfbe80941a3e21e47e267c2046de059a8bee247faca870c813
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0074-7633
PMID 34994045
PQID 2636348754
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_2618237107
proquest_journals_2636348754
pubmed_primary_34994045
crossref_citationtrail_10_1002_anie_202115219
crossref_primary_10_1002_anie_202115219
wiley_primary_10_1002_anie_202115219_ANIE202115219
PublicationCentury 2000
PublicationDate March 14, 2022
PublicationDateYYYYMMDD 2022-03-14
PublicationDate_xml – month: 03
  year: 2022
  text: March 14, 2022
  day: 14
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 25
2019; 11
2020 2020; 59 132
2020; 14
2020; 13
2020; 12
2020; 10
2019; 243
2020; 8
2018; 6
2017; 209
2018; 8
2018; 3
2021; 33
2015; 137
2018; 1
2015; 84
2014; 10
2018; 28
2019; 9
2015; 14
2021; 4
2021; 42
2018; 140
2019; 6
2011; 1
2021; 2
2019; 31
2000; 113
2021; 224
2020; 381
2013; 42
2018; 63
2020; 32
2021; 143
2017 2017; 56 129
1982; 80
2019; 141
2019 2019; 58 131
2021; 14
2017; 53
2016; 6
2021; 12
2021; 11
2020; 30
2021
2019; 48
2021; 19
2021 2021; 60 133
2018; 11
2006; 100
2012; 41
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_81_2
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_41_3
e_1_2_7_43_2
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_71_3
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_75_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_2
Ma J. (e_1_2_7_11_2) 2021; 19
e_1_2_7_8_2
e_1_2_7_18_1
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_16_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_2
e_1_2_7_67_3
e_1_2_7_69_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_2
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_2
e_1_2_7_24_3
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_2
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_32_3
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 7840
  year: 2017
  end-page: 7843
  publication-title: Chem. Commun.
– volume: 59 132
  start-page: 4793 4823
  year: 2020 2020
  end-page: 4799 4829
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 14115
  year: 2019
  end-page: 14119
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 10757
  year: 2018
  end-page: 10763
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 6002
  year: 2019
  end-page: 6007
  publication-title: ChemCatChem
– volume: 100
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 19
  year: 2021
  publication-title: Mater. Today
– volume: 1
  start-page: 935
  year: 2018
  publication-title: Nat. Catal.
– volume: 60 133
  start-page: 19262 19411
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 11778
  year: 2020
  end-page: 11788
  publication-title: ACS Appl. Mater. Interfaces
– year: 2021
  publication-title: Nano Res.
– volume: 4
  start-page: 389
  year: 2021
  end-page: 406
  publication-title: Batteries Supercaps
– volume: 12
  start-page: 1734
  year: 2021
  publication-title: Nat. Commun.
– volume: 63
  start-page: 548
  year: 2018
  end-page: 555
  publication-title: Sci. Bull.
– volume: 60 133
  start-page: 23614 23806
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 15281 15409
  year: 2021 2021
  end-page: 15285 15413
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 143
  start-page: 9429
  year: 2021
  end-page: 9439
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 9929
  year: 2020
  end-page: 9937
  publication-title: ACS Nano
– volume: 48
  start-page: 5310
  year: 2019
  end-page: 5349
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 193
  year: 2014
  end-page: 200
  publication-title: Small
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 615
  year: 2021
  end-page: 622
  publication-title: Nat. Catal.
– volume: 224
  year: 2021
  publication-title: Composites Part B
– volume: 42
  start-page: 88
  year: 2021
  end-page: 96
  publication-title: Energy Storage Mater.
– volume: 209
  start-page: 447
  year: 2017
  end-page: 454
  publication-title: Appl. Catal. B
– volume: 58 131
  start-page: 9459 9559
  year: 2019 2019
  end-page: 9463 9563
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express
– volume: 137
  start-page: 1572
  year: 2015
  end-page: 1580
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 9078 9160
  year: 2021 2021
  end-page: 9085 9167
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 516
  year: 2018
  end-page: 526
  publication-title: J. Mater. Chem. A
– volume: 84
  start-page: 500
  year: 2015
  end-page: 508
  publication-title: Carbon
– volume: 60 133
  start-page: 3212 3249
  year: 2021 2021
  end-page: 3221 3258
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 8
  start-page: 10004
  year: 2018
  end-page: 10011
  publication-title: ACS Catal.
– volume: 1
  start-page: 34
  year: 2011
  end-page: 50
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 11501
  year: 2020
  end-page: 11511
  publication-title: ACS Sustainable Chem. Eng.
– volume: 243
  start-page: 195
  year: 2019
  end-page: 203
  publication-title: Appl. Catal. B
– volume: 56 129
  start-page: 12191 12359
  year: 2017 2017
  end-page: 12196 12364
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 75
  year: 2013
  end-page: 79
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1183
  year: 2018
  end-page: 1191
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 143
  start-page: 16068
  year: 2021
  end-page: 16077
  publication-title: J. Am. Chem. Soc.
– volume: 80
  start-page: 181
  year: 1982
  end-page: 186
  publication-title: J. Mol. Struct.
– volume: 42
  start-page: 8237
  year: 2013
  end-page: 8265
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 1132
  year: 2020
  end-page: 1153
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2418
  year: 2021
  end-page: 2423
  publication-title: Nano Res.
– volume: 56 129
  start-page: 6937 7041
  year: 2017 2017
  end-page: 6941 7045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 17763
  year: 2019
  end-page: 17770
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3375
  year: 2018
  end-page: 3379
  publication-title: Energy Environ. Sci.
– year: 2021
  publication-title: Fuel
– volume: 14
  start-page: 937
  year: 2015
  publication-title: Nat. Mater.
– volume: 41
  start-page: 2172
  year: 2012
  end-page: 2192
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 4720
  year: 2016
  end-page: 4728
  publication-title: ACS Catal.
– year: 2021
  publication-title: Advanced Powder Materials
– volume: 14
  start-page: 4451
  year: 2021
  end-page: 4462
  publication-title: Energy Environ. Sci.
– volume: 143
  start-page: 7819
  year: 2021
  end-page: 7827
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_41_2
  doi: 10.1002/anie.202105186
– ident: e_1_2_7_79_1
– ident: e_1_2_7_77_1
  doi: 10.1038/s41929-018-0164-8
– ident: e_1_2_7_63_1
  doi: 10.1021/acscatal.8b02624
– ident: e_1_2_7_40_2
  doi: 10.1021/jacs.8b04647
– ident: e_1_2_7_32_3
  doi: 10.1002/ange.202012798
– ident: e_1_2_7_10_2
  doi: 10.1039/C9EE03634B
– ident: e_1_2_7_25_1
– ident: e_1_2_7_33_2
  doi: 10.1016/j.apmate.2021.10.004
– ident: e_1_2_7_3_2
  doi: 10.1002/adfm.201802564
– ident: e_1_2_7_47_2
  doi: 10.1002/aenm.201802856
– ident: e_1_2_7_66_2
  doi: 10.1002/adma.202104718
– ident: e_1_2_7_73_1
  doi: 10.1016/0022-2860(82)87227-X
– ident: e_1_2_7_44_2
  doi: 10.1002/sstr.202000051
– ident: e_1_2_7_70_2
  doi: 10.1038/nmat4367
– ident: e_1_2_7_71_2
  doi: 10.1002/anie.201702473
– ident: e_1_2_7_74_1
  doi: 10.1002/anie.201706467
– ident: e_1_2_7_49_2
  doi: 10.1007/s12274-020-3244-4
– ident: e_1_2_7_60_1
– ident: e_1_2_7_31_2
  doi: 10.1021/jacs.1c03135
– ident: e_1_2_7_2_2
  doi: 10.1007/s12274-021-3794-0
– ident: e_1_2_7_28_2
  doi: 10.1002/cctc.201901634
– ident: e_1_2_7_52_1
– ident: e_1_2_7_56_2
  doi: 10.1002/ange.202110433
– ident: e_1_2_7_26_3
  doi: 10.1002/ange.201903879
– ident: e_1_2_7_58_1
  doi: 10.1021/ja511539a
– ident: e_1_2_7_41_3
  doi: 10.1002/ange.202105186
– ident: e_1_2_7_67_2
  doi: 10.1002/anie.202100526
– ident: e_1_2_7_8_2
  doi: 10.1039/c1cs15228a
– ident: e_1_2_7_55_2
  doi: 10.1021/jacs.1c06349
– ident: e_1_2_7_57_1
  doi: 10.1088/2053-1591/ab36c4
– ident: e_1_2_7_30_1
– ident: e_1_2_7_64_1
  doi: 10.1063/1.2260821
– ident: e_1_2_7_37_2
  doi: 10.1002/adma.201905622
– ident: e_1_2_7_46_2
  doi: 10.1039/C8EE02656D
– ident: e_1_2_7_35_1
– ident: e_1_2_7_61_2
  doi: 10.1002/adma.201203422
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.202104171
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.202101749
– ident: e_1_2_7_78_1
  doi: 10.1063/1.1329672
– ident: e_1_2_7_43_2
  doi: 10.1016/j.apcatb.2017.03.014
– ident: e_1_2_7_80_2
  doi: 10.1016/j.carbon.2014.12.048
– ident: e_1_2_7_71_3
  doi: 10.1002/ange.201702473
– ident: e_1_2_7_74_2
  doi: 10.1002/ange.201706467
– ident: e_1_2_7_65_1
– ident: e_1_2_7_12_2
  doi: 10.1021/acsenergylett.8b00303
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.201903879
– ident: e_1_2_7_15_1
  doi: 10.1016/j.apmate.2021.10.002
– ident: e_1_2_7_67_3
  doi: 10.1002/ange.202100526
– ident: e_1_2_7_20_2
  doi: 10.1039/D1EE01134K
– ident: e_1_2_7_4_2
  doi: 10.1002/aenm.201801396
– ident: e_1_2_7_29_2
  doi: 10.1002/adma.202001651
– ident: e_1_2_7_45_1
– ident: e_1_2_7_81_2
  doi: 10.1016/j.apcatb.2018.10.034
– ident: e_1_2_7_27_3
  doi: 10.1002/ange.201915836
– ident: e_1_2_7_39_2
  doi: 10.1038/s41467-021-21919-5
– ident: e_1_2_7_48_2
  doi: 10.1021/jacs.1c02328
– ident: e_1_2_7_59_1
  doi: 10.1039/C3CS60159E
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.202104171
– ident: e_1_2_7_19_2
  doi: 10.1021/acssuschemeng.0c01111
– ident: e_1_2_7_72_1
  doi: 10.1021/acsnano.0c02783
– ident: e_1_2_7_1_1
– ident: e_1_2_7_68_1
  doi: 10.1002/adma.202007090
– ident: e_1_2_7_38_2
  doi: 10.1038/s41929-021-00650-w
– ident: e_1_2_7_53_2
  doi: 10.1039/C7CC02848B
– ident: e_1_2_7_7_2
  doi: 10.1002/aenm.201000010
– ident: e_1_2_7_23_2
  doi: 10.1016/j.ensm.2021.07.026
– ident: e_1_2_7_50_2
  doi: 10.1016/j.fuel.2021.122774
– volume: 19
  year: 2021
  ident: e_1_2_7_11_2
  publication-title: Mater. Today
– ident: e_1_2_7_62_2
  doi: 10.1002/smll.201300812
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.201915836
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.202012798
– ident: e_1_2_7_69_1
– ident: e_1_2_7_13_2
  doi: 10.1039/C7TA08423D
– ident: e_1_2_7_22_2
  doi: 10.1016/j.compositesb.2021.109228
– ident: e_1_2_7_18_1
– ident: e_1_2_7_54_2
  doi: 10.1002/adfm.201908486
– ident: e_1_2_7_75_1
  doi: 10.1021/acscatal.6b01581
– ident: e_1_2_7_6_1
– ident: e_1_2_7_51_1
  doi: 10.1039/C9CS00163H
– ident: e_1_2_7_14_2
  doi: 10.1016/j.scib.2018.04.003
– ident: e_1_2_7_36_2
  doi: 10.1002/adma.202003134
– ident: e_1_2_7_9_2
  doi: 10.1002/aenm.202003018
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.9b08362
– ident: e_1_2_7_5_2
  doi: 10.1016/j.cej.2019.122588
– ident: e_1_2_7_42_1
– ident: e_1_2_7_17_1
  doi: 10.1002/batt.202000243
– ident: e_1_2_7_21_2
  doi: 10.1021/acsami.0c00325
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.202110433
– ident: e_1_2_7_76_1
  doi: 10.1021/jacs.9b07712
SSID ssj0028806
Score 2.7407126
Snippet Herein, a novel dual single‐atom catalyst comprising adjacent Fe‐N4 and Mn‐N4 sites on 2D ultrathin N‐doped carbon nanosheets with porous structure (FeMn‐DSAC)...
Herein, a novel dual single‐atom catalyst comprising adjacent Fe‐N 4 and Mn‐N 4 sites on 2D ultrathin N‐doped carbon nanosheets with porous structure...
Herein, a novel dual single-atom catalyst comprising adjacent Fe-N and Mn-N sites on 2D ultrathin N-doped carbon nanosheets with porous structure (FeMn-DSAC)...
Herein, a novel dual single-atom catalyst comprising adjacent Fe-N4 and Mn-N4 sites on 2D ultrathin N-doped carbon nanosheets with porous structure (FeMn-DSAC)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202115219
SubjectTerms Air temperature
Bifunctional electrocatalyst
Carbon
Catalysts
Catalytic activity
Chemical reduction
Density functional theory
Dual single-atom catalyst
Low temperature
Manganese
Mass transfer
Metal air batteries
Nanosheets
Oxygen
Oxygen evolution reactions
Oxygen reduction reactions
Room temperature
Specific capacity
Zinc
Zn-air battery
Title Engineering Dual Single‐Atom Sites on 2D Ultrathin N‐doped Carbon Nanosheets Attaining Ultra‐Low‐Temperature Zinc‐Air Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115219
https://www.ncbi.nlm.nih.gov/pubmed/34994045
https://www.proquest.com/docview/2636348754
https://www.proquest.com/docview/2618237107
Volume 61
WOSCitedRecordID wos000748150900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH6s6WC7dL9Xb13RYLCTaSQrtnwMScMGIYwtHWEXI8kvNJDZJXY6duut1_6N-0v2FDlewxiD7WIs9GwJ6Un6Plv6HsAbYxU62aww6UoiKFzHodI9HRqjscuNmNvNJprP42QyUbNZ-uHWKX6vD9F-cHMjYzNfuwGuTXXySzTUncAmfkcEhlagdA_2BTlvrwP7w4-js3FLusg__QmjKApdIPqtcGNXnOy-YXdh-g1t7oLXzeozevD_9X4IBw3yZH3vKo_gDhaP4d5gG_DtCVzf0iZkwzXZfqK7Jf64uunX5VdKESxlZcHEkJ0tnart-aJgE8rOywvM2UCvDOXSfF1W54h1xfp17QNQeHuyHJff6DpFAutezJl9WRTWlbBYMa_1-f0pTEen08G7sInTEFrHZkJtlYrn3IrUyLm2c4OKSCPXEQqOMkERJ1YQD8-RsJxWBlHIhAw1zRVW8egZdIqywENgShOcIcBBPEdJiXmaC5F3uU7zXPa4jQIIt32U2UbD3IXSWGZefVlkrnWztnUDeNvaX3j1jj9aHm27PGtGcZWJOIojx-hkAK_bbOoV91NFF1iunQ13ej_EogN47l2lLSoiOikJMwcgNh7xlzpk_cn70zb14l8eegn3hTuf4TYcyiPo1Ks1voK79rJeVKtj2Etm6rgZIT8B5twUiw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CDWlcGL8G2QYYCYlTtMbxEudYtas2ESIEHZq4RI7zqlUqydSmIG7cuO5v5C_hvToNVAghIS5RIr_Elv1sf59jfw_gRWE1smyWH_cUEZTARL42x8YvCoO9oJATu9pE8z6Ns0xfXCRv2t2EfBbG6UN0C27cM1bjNXdwXpA--qkaykewieARg6EpKLkJ24p8iZx8e_h2dJ52rIsc1B0xCkOfI9GvlRt78mjzC5sz029wcxO9rqaf0e5_KPhduNNiT9F3znIPbmB1H3YG65BvD-DbL-qEYrgk23d0N8PvX6_7Tf2RngiYiroScijOZ6xrezmtREbJZX2FpRiYeUGpNGLXi0vEZiH6TeNCUDh7skzrz3QdI8F1J-csPkwryzlM58KpfX55COPRyXhw6reRGnzLfMY3VutoEliZFGpi7KRATbQxMCHKAFWMMoqtJCZeIqE5owtEqWIyNDRaWB2Ee7BV1RU-BqENARqCHMR0tFJYJqWUZS8wSVmq48CGHvjrRsptq2LOwTRmudNfljnXbt7VrgcvO_srp9_xR8vDdZvnbT9e5DIKo5A5nfLgeZdMrcK_VUyF9ZJtAlb8IR7twSPnK11WIRFKRajZA7lyib-UIe9nZyfd0_6_vPQMdk7Hr9M8PcteHcBtyac1ePuhOoStZr7EJ3DLfmqmi_nTtqP8AOXpF5M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9NAFH5oV9SLv12jq44geArbmcwmk2Npt7hYwqJdWbyEycwLW6hJadMVb968-jf6l_imk0aLiCBeQoZ5yQzz8_uSed8DeFkYhU42K0z6kggK13Go9JEOi0JjnxeiNJtDNO8nSZap8_P0tD1N6HxhvD5E98HNzYzNeu0mOC5sefhTNdS5YBPBIwZDW1B6FfakiyTTg73R2_HZpGNdNEC9i1EUhS4S_Va5sS8Od9-wuzP9Bjd30etm-xnf_g8VvwO3WuzJBn6w3IUrWN2DG8NtyLf78PUXdUI2WpPtO7qb4_cv3wZN_ZFSBExZXTExYmdzp2t7MatYRtm2XqBlQ70sKJdW7Hp1gdis2KBpfAgKb0-Wk_oTXadIcN3LObMPs8q4EmZL5tU-Pz-A6fh4OnwdtpEaQuP4TKiNUnHJjUgLWWpTFqiINnIdoeAoExRxYgQxcYuE5rQqEIVMyFDTamEUjx5Cr6orfARMaQI0BDmI6Sgp0aZWCNvnOrVWHnETBRBuOyk3rYq5C6Yxz73-sshd6-Zd6wbwqrNfeP2OP1oebPs8b-fxKhdxFEeO08kAXnTZ1Cvut4qusF47G-4Uf4hHB7Dvx0pXVESEUhJqDkBshsRf6pAPspPjLvX4Xx56DtdPR-N8cpK9eQI3hXPWcKcP5QH0muUan8I1c9nMVstn7Tz5AU9TFw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Dual+Single-Atom+Sites+on+2D+Ultrathin+N-doped+Carbon+Nanosheets+Attaining+Ultra-Low-Temperature+Zinc-Air+Battery&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cui%2C+Tingting&rft.au=Wang%2C+Yun-Peng&rft.au=Ye%2C+Tong&rft.au=Wu%2C+Jiao&rft.date=2022-03-14&rft.eissn=1521-3773&rft.volume=61&rft.issue=12&rft.spage=e202115219&rft_id=info:doi/10.1002%2Fanie.202115219&rft_id=info%3Apmid%2F34994045&rft.externalDocID=34994045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon