Bottom‐Up Quasi‐Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving High‐Efficiency Solar Cells via Template‐Guided Crystallization
Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which t...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 33; no. 22; pp. e2100009 - n/a |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.06.2021
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement.
A universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐FAPbI3 perovskite film is achieved through the synergetic effect of methylammonium chloride and a large‐organic cation. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. |
|---|---|
| AbstractList | Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up quasi-epitaxial growth of highly oriented α-formamidinium lead triiodide (α-FAPbI
) perovskite film via a two-step method is reported, in which the crystal orientation of α-FAPbI
film is precisely controlled through the synergetic effect of methylammonium chloride and the large-organic cation butylammonium bromide. In situ GIWAXS visualizes the BA-related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom-up quasi-epitaxial growth in the subsequent annealing process. The template-guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4-time operation condition lifetime enhancement. Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement. A universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐FAPbI3 perovskite film is achieved through the synergetic effect of methylammonium chloride and a large‐organic cation. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI 3 ) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI 3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement. Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up quasi-epitaxial growth of highly oriented α-formamidinium lead triiodide (α-FAPbI3 ) perovskite film via a two-step method is reported, in which the crystal orientation of α-FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large-organic cation butylammonium bromide. In situ GIWAXS visualizes the BA-related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom-up quasi-epitaxial growth in the subsequent annealing process. The template-guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4-time operation condition lifetime enhancement.Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up quasi-epitaxial growth of highly oriented α-formamidinium lead triiodide (α-FAPbI3 ) perovskite film via a two-step method is reported, in which the crystal orientation of α-FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large-organic cation butylammonium bromide. In situ GIWAXS visualizes the BA-related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom-up quasi-epitaxial growth in the subsequent annealing process. The template-guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4-time operation condition lifetime enhancement. Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement. |
| Author | Liu, Kuan Li, Gang Yu, Wei Huang, Jiaming Zhang, Hengkai Lu, Xinhui Zhang, Yaokang Zheng, Zijian Liang, Qiong Chandran, Hrisheekesh Thachoth Ren, Zhiwei Chen, Zhiliang Qin, Minchao Fong, Patrick W. K. |
| Author_xml | – sequence: 1 givenname: Hengkai surname: Zhang fullname: Zhang, Hengkai organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Minchao surname: Qin fullname: Qin, Minchao organization: The Chinese University of Hong Kong – sequence: 3 givenname: Zhiliang surname: Chen fullname: Chen, Zhiliang organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Wei surname: Yu fullname: Yu, Wei organization: Dalian National Laboratory for Clean Energy – sequence: 5 givenname: Zhiwei surname: Ren fullname: Ren, Zhiwei organization: The Hong Kong Polytechnic University – sequence: 6 givenname: Kuan surname: Liu fullname: Liu, Kuan organization: The Hong Kong Polytechnic University – sequence: 7 givenname: Jiaming surname: Huang fullname: Huang, Jiaming organization: The Hong Kong Polytechnic University – sequence: 8 givenname: Yaokang surname: Zhang fullname: Zhang, Yaokang organization: The Hong Kong Polytechnic University – sequence: 9 givenname: Qiong surname: Liang fullname: Liang, Qiong organization: The Hong Kong Polytechnic University – sequence: 10 givenname: Hrisheekesh Thachoth surname: Chandran fullname: Chandran, Hrisheekesh Thachoth organization: The Hong Kong Polytechnic University – sequence: 11 givenname: Patrick W. K. surname: Fong fullname: Fong, Patrick W. K. organization: The Hong Kong Polytechnic University – sequence: 12 givenname: Zijian surname: Zheng fullname: Zheng, Zijian organization: The Hong Kong Polytechnic University – sequence: 13 givenname: Xinhui surname: Lu fullname: Lu, Xinhui email: xhlu@phy.cuhk.edu.hk organization: The Chinese University of Hong Kong – sequence: 14 givenname: Gang orcidid: 0000-0001-8399-7771 surname: Li fullname: Li, Gang email: gang.w.li@polyu.edu.hk organization: The Hong Kong Polytechnic University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33893688$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAQhi1URLeFK0dkiQuXLE6cpPZxWcouUhFFtGfLcSZdFyfe2s6WcNo7Fw48AY-2T4KjbUGqhDjZHn__r5n5j9BBZztA6HlKpikh2WtZt3KakSw-COGP0CQtsjTJCS8O0IRwWiS8zNkhOvL-eiRKUj5Bh5QyTkvGJujXGxuCbXfbH5dr_KmXXsfr6VoH-VVLgxfO3oYVtg1eDpXTNT4HZzf-iw6AG2db_NmaPmjb4XNnFXi_2_6cqZWGje6u8FJfrUa7ptFKQ6eGEZcOz8EYjzda4gto10YG2G2_R3DR6xpqPHeDD9IY_U2O1k_R40YaD8_uzmN0-e70Yr5Mzj4u3s9nZ4nKKedJWnGQJYeTUklIOa2LSpGqqOuyICdSVYzJnMV_VYOsagq8KjnNOJVlymKF0WP0au-7dvamBx9Eq72KrcoObO9FVqQsy9Kc04i-fIBe2951sbtI0YJQlhd5pF7cUX3VQi3WTrfSDeJ--xHI94By1nsHjVBx8ePMwUltRErEGLIYQxZ_Qo6y6QPZvfM_BXwvuNUGhv_QYvb2w-yv9jetfsKI |
| CitedBy_id | crossref_primary_10_1002_solr_202101007 crossref_primary_10_1002_adma_202411982 crossref_primary_10_1002_adma_202305314 crossref_primary_10_1002_adom_202202982 crossref_primary_10_1002_ange_202425605 crossref_primary_10_1002_adma_202301115 crossref_primary_10_1002_adma_202301852 crossref_primary_10_1039_D5EE01294E crossref_primary_10_1016_j_cej_2022_139961 crossref_primary_10_1002_adma_202200276 crossref_primary_10_1002_solr_202200856 crossref_primary_10_1021_acs_jpclett_5c00471 crossref_primary_10_1002_smll_202410776 crossref_primary_10_1002_adma_202204098 crossref_primary_10_1039_D4EE04959D crossref_primary_10_1002_adfm_202314218 crossref_primary_10_1039_D1EE01695D crossref_primary_10_1039_D5EE04601G crossref_primary_10_1002_aenm_202204260 crossref_primary_10_1039_D4QM00560K crossref_primary_10_1002_aenm_202303666 crossref_primary_10_1016_j_jechem_2022_10_048 crossref_primary_10_1002_advs_202205072 crossref_primary_10_1002_aenm_202300451 crossref_primary_10_1039_D1EE03192A crossref_primary_10_1002_advs_202407401 crossref_primary_10_1039_D2EE03418B crossref_primary_10_1002_adfm_202513478 crossref_primary_10_1002_adma_202503699 crossref_primary_10_1002_advs_202202028 crossref_primary_10_1002_aenm_202200867 crossref_primary_10_3390_cryst12060815 crossref_primary_10_1002_aenm_202400021 crossref_primary_10_1002_smm2_1087 crossref_primary_10_1002_advs_202309668 crossref_primary_10_1002_sstr_202200048 crossref_primary_10_1039_D3QM00697B crossref_primary_10_3390_en17071629 crossref_primary_10_1002_adma_202200041 crossref_primary_10_1002_inf2_12369 crossref_primary_10_1002_adma_202204460 crossref_primary_10_1016_j_cej_2024_152773 crossref_primary_10_1002_aenm_202401721 crossref_primary_10_1002_solr_202300620 crossref_primary_10_1002_adfm_202313435 crossref_primary_10_1002_anie_202425605 crossref_primary_10_1038_s41586_023_06637_w crossref_primary_10_1002_adma_202109879 |
| Cites_doi | 10.1063/1.2113414 10.1016/0022-0248(88)90294-1 10.1021/acs.nanolett.7b04445 10.1103/PhysRevB.76.085303 10.1021/jacs.5b03796 10.1143/JJAP.16.1203 10.1126/science.aaw6184 10.1016/j.solmat.2009.03.027 10.1021/acsami.0c05894 10.1016/B978-1-4831-9854-5.50020-3 10.1002/adma.201703852 10.1016/j.joule.2020.09.011 10.1038/nature14133 10.1021/nl400349b 10.1038/s41467-020-19237-3 10.1039/D0MH00512F 10.1038/s41467-019-13856-1 10.1002/adma.202004630 10.1038/nphoton.2014.134 10.1016/j.jcrysgro.2012.11.008 10.1021/cm5028817 10.1039/C6NR04741F 10.1021/jacs.8b04604 10.1126/science.1254763 10.1016/j.nanoen.2016.06.041 10.1002/adma.201604113 10.1021/jz4020162 10.1002/adfm.201904913 10.1038/nenergy.2016.142 10.1002/adfm.202002358 10.1002/adma.201901284 10.1002/adma.201804771 10.1557/mrs.2016.25 10.1002/adma.201807689 10.1021/jacs.7b04949 10.1038/s41563-018-0154-x 10.1038/s41566-019-0398-2 10.1021/ja01848a010 10.1021/jacs.5b00321 10.1021/acsami.7b07071 10.1109/16.46385 10.1038/s41467-019-12056-1 10.1002/adfm.202004612 10.1038/s41467-018-05076-w 10.1002/adfm.201806482 10.1038/s41586-020-2219-7 10.1021/ja809598r 10.1103/PhysRevMaterials.2.076002 10.1038/s41586-019-1868-x 10.1039/C9EE02162K |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202100009 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 33893688 10_1002_adma_202100009 ADMA202100009 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Research Grants Council of Hong Kong funderid: 15246818; C5037‐18G; 24306318 – fundername: Hong Kong Polytechnic University funderid: 1‐ZE29; 1‐BBAS; 8‐8480 – fundername: Shenzhen Science and Technology Innovation Commission funderid: JCYJ20170413154602102 – fundername: Hong Kong Polytechnic University grantid: 1-ZE29 – fundername: Shenzhen Science and Technology Innovation Commission grantid: JCYJ20170413154602102 – fundername: Hong Kong Polytechnic University grantid: 1-BBAS – fundername: Hong Kong Polytechnic University grantid: 8-8480 – fundername: Research Grants Council of Hong Kong grantid: 15246818 – fundername: Research Grants Council of Hong Kong grantid: C5037-18G – fundername: Research Grants Council of Hong Kong grantid: 24306318 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4399-1b9ea69e76cae193d5bc0b5dd6507acb88a4869ecdeabd3e9b693293a618eab83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000643156000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 08:43:04 EDT 2025 Fri Jul 25 04:07:22 EDT 2025 Wed Feb 19 02:27:33 EST 2025 Sat Nov 29 07:20:35 EST 2025 Tue Nov 18 21:43:28 EST 2025 Wed Jan 22 16:30:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | self-assembly bottom-up growth perovskite solar cells quasi-epitaxial growth |
| Language | English |
| License | 2021 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4399-1b9ea69e76cae193d5bc0b5dd6507acb88a4869ecdeabd3e9b693293a618eab83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8399-7771 |
| PMID | 33893688 |
| PQID | 2535038454 |
| PQPubID | 2045203 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2518221493 proquest_journals_2535038454 pubmed_primary_33893688 crossref_citationtrail_10_1002_adma_202100009 crossref_primary_10_1002_adma_202100009 wiley_primary_10_1002_adma_202100009_ADMA202100009 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1941; 63 2013; 4 2001 1988; 90 2019 2020; 31 32 1975 2009 2016 1977 2005 1990 2013; 93 41 16 98 37 378 2013 2015; 13 517 2014; 26 2020; 13 2020; 12 2017; 29 2009; 131 2007; 76 2015 2019 2018 2016 2018; 137 29 140 8 30 2017 2017; 9 139 2019 2019 2020 2018 2020 2018 2019 2019 2020; 364 31 577 18 30 2 29 10 30 2018; 9 2018; 17 2020; 4 2016 2017; 27 29 2001 2015; 137 2017 2019; 29 13 2014; 8 2014; 345 2016 2020; 1 7 2020 2020 2020; 580 11 11 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_5 e_1_2_8_9_4 e_1_2_8_9_7 e_1_2_8_9_6 e_1_2_8_3_1 Ohring M. (e_1_2_8_8_1) 2001 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_4_5 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_10_8 e_1_2_8_10_9 e_1_2_8_18_1 e_1_2_8_10_4 e_1_2_8_12_2 e_1_2_8_10_5 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_10_6 e_1_2_8_10_7 e_1_2_8_16_1 Mullin J. W. (e_1_2_8_20_1) 2001 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_12_1 |
| References_xml | – volume: 31 32 year: 2019 2020 publication-title: Adv. Mater. Adv. Mater. – volume: 9 start-page: 2793 year: 2018 publication-title: Nat. Commun. – volume: 137 start-page: 4460 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 258 year: 2020 publication-title: Energy Environ. Sci. – volume: 4 start-page: 3623 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – year: 2001 – volume: 364 31 577 18 30 2 29 10 30 start-page: 166 209 994 4145 year: 2019 2019 2020 2018 2020 2018 2019 2019 2020 publication-title: Science Adv. Mater. Nature Nano Lett. Adv. Funct. Mater. Phys. Rev. Mater. Adv. Funct. Mater. Nat. Commun. Adv. Funct. Mater. – volume: 13 517 start-page: 1764 476 year: 2013 2015 publication-title: Nano Lett. Nature – volume: 4 start-page: 2404 year: 2020 publication-title: Joule – volume: 580 11 11 start-page: 614 582 5514 year: 2020 2020 2020 publication-title: Nature Nat. Commun. Nat. Commun. – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 137 29 140 8 30 start-page: 7843 year: 2015 2019 2018 2016 2018 publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. J. Am. Chem. Soc. Nanoscale Adv. Mater. – volume: 29 13 start-page: 460 year: 2017 2019 publication-title: Adv. Mater. Nat. Photonics – volume: 63 start-page: 667 year: 1941 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 900 year: 2018 publication-title: Nat. Mater. – volume: 9 139 year: 2017 2017 publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc. – volume: 93 41 16 98 37 378 start-page: 113 1488 202 1203 469 576 year: 1975 2009 2016 1977 2005 1990 2013 publication-title: Sol. Energy Mater. Sol. Cells MRS Bull. Jpn. J. Appl. Phys. J. Appl. Phys. IEEE Trans. Electron Devices J. Cryst. Growth – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 26 start-page: 6705 year: 2014 publication-title: Chem. Mater. – volume: 90 start-page: 14 year: 2001 1988 publication-title: J. Cryst. Growth – volume: 27 29 start-page: 17 year: 2016 2017 publication-title: Nano Energy Adv. Mater. – volume: 1 7 start-page: 1773 year: 2016 2020 publication-title: Nat. Energy Mater. Horiz. – volume: 345 start-page: 295 year: 2014 publication-title: Science – ident: e_1_2_8_9_5 doi: 10.1063/1.2113414 – ident: e_1_2_8_20_2 doi: 10.1016/0022-0248(88)90294-1 – ident: e_1_2_8_10_4 doi: 10.1021/acs.nanolett.7b04445 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevB.76.085303 – ident: e_1_2_8_4_1 doi: 10.1021/jacs.5b03796 – ident: e_1_2_8_9_4 doi: 10.1143/JJAP.16.1203 – ident: e_1_2_8_10_1 doi: 10.1126/science.aaw6184 – ident: e_1_2_8_9_2 doi: 10.1016/j.solmat.2009.03.027 – ident: e_1_2_8_18_1 doi: 10.1021/acsami.0c05894 – ident: e_1_2_8_9_1 doi: 10.1016/B978-1-4831-9854-5.50020-3 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201703852 – ident: e_1_2_8_24_1 doi: 10.1016/j.joule.2020.09.011 – ident: e_1_2_8_6_2 doi: 10.1038/nature14133 – ident: e_1_2_8_6_1 doi: 10.1021/nl400349b – ident: e_1_2_8_12_3 doi: 10.1038/s41467-020-19237-3 – ident: e_1_2_8_11_2 doi: 10.1039/D0MH00512F – ident: e_1_2_8_12_2 doi: 10.1038/s41467-019-13856-1 – ident: e_1_2_8_21_2 doi: 10.1002/adma.202004630 – ident: e_1_2_8_1_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_8_9_7 doi: 10.1016/j.jcrysgro.2012.11.008 – ident: e_1_2_8_15_1 doi: 10.1021/cm5028817 – ident: e_1_2_8_4_4 doi: 10.1039/C6NR04741F – ident: e_1_2_8_4_3 doi: 10.1021/jacs.8b04604 – ident: e_1_2_8_27_1 doi: 10.1126/science.1254763 – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2016.06.041 – ident: e_1_2_8_17_2 doi: 10.1002/adma.201604113 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201703852 – volume-title: Crystallization year: 2001 ident: e_1_2_8_20_1 – ident: e_1_2_8_3_1 doi: 10.1021/jz4020162 – ident: e_1_2_8_10_7 doi: 10.1002/adfm.201904913 – volume-title: Materials Science of Thin Films year: 2001 ident: e_1_2_8_8_1 – ident: e_1_2_8_11_1 doi: 10.1038/nenergy.2016.142 – ident: e_1_2_8_10_5 doi: 10.1002/adfm.202002358 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201901284 – ident: e_1_2_8_4_5 doi: 10.1002/adma.201804771 – ident: e_1_2_8_9_3 doi: 10.1557/mrs.2016.25 – ident: e_1_2_8_10_2 doi: 10.1002/adma.201807689 – ident: e_1_2_8_5_2 doi: 10.1021/jacs.7b04949 – ident: e_1_2_8_19_1 doi: 10.1038/s41563-018-0154-x – ident: e_1_2_8_13_2 doi: 10.1038/s41566-019-0398-2 – ident: e_1_2_8_16_1 doi: 10.1021/ja01848a010 – ident: e_1_2_8_7_1 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.5b00321 – ident: e_1_2_8_5_1 doi: 10.1021/acsami.7b07071 – ident: e_1_2_8_9_6 doi: 10.1109/16.46385 – ident: e_1_2_8_10_8 doi: 10.1038/s41467-019-12056-1 – ident: e_1_2_8_10_9 doi: 10.1002/adfm.202004612 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-018-05076-w – ident: e_1_2_8_4_2 doi: 10.1002/adfm.201806482 – ident: e_1_2_8_12_1 doi: 10.1038/s41586-020-2219-7 – ident: e_1_2_8_2_1 doi: 10.1021/ja809598r – ident: e_1_2_8_10_6 doi: 10.1103/PhysRevMaterials.2.076002 – ident: e_1_2_8_10_3 doi: 10.1038/s41586-019-1868-x – ident: e_1_2_8_23_1 doi: 10.1039/C9EE02162K |
| SSID | ssj0009606 |
| Score | 2.62092 |
| Snippet | Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up... Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2100009 |
| SubjectTerms | bottom‐up growth Crystal defects Crystal structure Crystallinity Crystallization Crystallography Energy conversion efficiency Epitaxial growth Materials science Optoelectronic devices perovskite solar cells Perovskites Photovoltaic cells quasi‐epitaxial growth self‐assembly Solar cells Thin films |
| Title | Bottom‐Up Quasi‐Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving High‐Efficiency Solar Cells via Template‐Guided Crystallization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100009 https://www.ncbi.nlm.nih.gov/pubmed/33893688 https://www.proquest.com/docview/2535038454 https://www.proquest.com/docview/2518221493 |
| Volume | 33 |
| WOSCitedRecordID | wos000643156000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbptAEB41Tg_tIf1vadNoK1XqCQUvsCxH14mTQxulVSz5hvbPChIxFmArufneSw99gj6an6SzgEmsqqrU3hZ2WBDMMN8MzDcA7yMuudKR58rA8zFAYdJFycg1UgbSx4CCRk2ziejsjE8m8fmdKv6GH6JLuFnLqN_X1sCFLA9vSUOFrnmDaJ2gjndgl6Lyhj3YPfo6Gn-6Jd5ldX9N-73PjVnAN8SNHj3cXmHbMf2GNrfBa-19Ro_-_7ofw16LPMmgUZUncM_MnsLDO3yEz-Dnx7yq8qv16vt4Tr4sRJni8Nj2FblGNSUnGLJXlySfktMbW-hFzk2RL0ub_yW2TIVscmykLT9Yr34M1GVqbNKC2D9K7HI1Z4Ut-LTioiBDk2UlWaaCXJireYbYd736hoIni1QbTYbFDQLYLGvrRZ_DeHR8MTx12yYOrrKhjtuXsREsNhFTwiBa1KFUngy1RmgYCSU5FwHHeaWNkNo3sWQIKWNfsD7HPdx_Ab1ZPjOvgEwjNZWGGnSgHipSKATzBJ166OelZrzvgLt5golqGc5to40sabiZaWLvfdLdewc-dPLzhtvjj5L7G4VIWhsvExr6lksnCAMH3nXTaJ32k4uYmXxhZTB-oxiF-g68bBSpO5VvsSLj3AFa68tfriEZHH0edFuv_-WgN_DAjps_3fahVxUL8xbuq2WVlsUB7EQTftDazy9EXiLE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BiwQ98CxgKLBISJysOn6s18eQNg0ijQpKpN6sfUW15MaR7UTtLXcuHPgF_LT8EmZsxyVCCAlxs73jh-wZzzezO98Q8i7kkisdOrb0HQ8CFCZtkAxtI6UvPQgo3LBuNhGORvz8PDprVhNiLUzND9Em3NAyqv81GjgmpA9vWEOFroiD3CpDHd0muz7oEij57tGX_mR4w7zLqgabOOFnR8znG-ZGxz3cvsK2Z_oNbm6j18r99B_8hwd_SO432JN2a2V5RG6Z2WOy9wsj4RPy40NWltnlevVtMqefF6JIYPMYO4tcgaLSEwjaywuaTengGku96JnJs2WBGWCKhSp0k2WjTQHCevW9qy4Sg2kLimtK8HIVawWWfKK4yGnPpGlBl4mgY3M5TwH9rldfQfBkkWijaS-_Bgibpk3F6D6Z9I_HvYHdtHGwFQY7dkdGRrDIhEwJA3hRB1I5MtAawGEolORc-BzGlTZCas9EkgGojDzBOhyOcO8p2ZllM_Oc0GmoptK4BlyoA6oUCMEc4U4d8PRSM96xiL35hLFqOM6x1UYa1-zMbozvPm7fvUXet_Lzmt3jj5IHG42IGysvYjfwkE3HD3yLvG2HwT5x0kXMTLZAGYjgXIhDPYs8qzWpvZWHaJFxbhG3Upi_PEPcPTrttnsv_uWkN-TuYHw6jIcfR59eknt4vF73dkB2ynxhXpE7alkmRf66MaOftw4lzA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BihAceD8MBRYJiZNVx4_1-hiSpkWUKKBG6s3al1VLbhzZTkRvuXPhwC_gp-WXMGM7LhFCSIib7R0_ZM94vpnd-YaQNyGXXOnQsaXveBCgMGmDZGgbKX3pQUDhhk2ziXAy4Wdn0bRdTYi1MA0_RJdwQ8uo_9do4Gahk4Mr1lCha-Igt85QR9fJno-dZHpkb_R5PDu5Yt5ldYNNnPCzI-bzLXOj4x7sXmHXM_0GN3fRa-1-xnf_w4PfI3da7EkHjbLcJ9fM_AG5_Qsj4UPy411eVfnFZv1ttqCflqJMYfMQO4t8AUWlRxC0V-c0T-jxJZZ60akp8lWJGWCKhSp0m2WjbQHCZv19oM5Tg2kLimtK8HI1awWWfKK4KOjQZFlJV6mgp-ZikQH63ay_guDRMtVG02FxCRA2y9qK0UdkNj48HR7bbRsHW2GwY_dlZASLTMiUMIAXdSCVIwOtARyGQknOhc9hXGkjpPZMJBmAysgTrM_hCPcek948n5unhCahSqRxDbhQB1QpEII5wk0c8PRSM963iL39hLFqOc6x1UYWN-zMbozvPu7evUXedvKLht3jj5L7W42IWysvYzfwkE3HD3yLvO6GwT5x0kXMTb5EGYjgXIhDPYs8aTSpu5WHaJFxbhG3Vpi_PEM8GH0cdHvP_uWkV-TmdDSOT95PPjwnt_Bws-xtn_SqYmlekBtqVaVl8bK1op8NbyVH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottom%E2%80%90Up+Quasi%E2%80%90Epitaxial+Growth+of+Hybrid+Perovskite+from+Solution+Process%E2%80%94Achieving+High%E2%80%90Efficiency+Solar+Cells+via+Template%E2%80%8B%E2%80%90Guided+Crystallization&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Hengkai&rft.au=Qin%2C+Minchao&rft.au=Chen%2C+Zhiliang&rft.au=Yu%2C+Wei&rft.date=2021-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202100009&rft.externalDBID=10.1002%252Fadma.202100009&rft.externalDocID=ADMA202100009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |