Bottom‐Up Quasi‐Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving High‐Efficiency Solar Cells via Template​‐Guided Crystallization

Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 33; H. 22; S. e2100009 - n/a
Hauptverfasser: Zhang, Hengkai, Qin, Minchao, Chen, Zhiliang, Yu, Wei, Ren, Zhiwei, Liu, Kuan, Huang, Jiaming, Zhang, Yaokang, Liang, Qiong, Chandran, Hrisheekesh Thachoth, Fong, Patrick W. K., Zheng, Zijian, Lu, Xinhui, Li, Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.06.2021
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement. A universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐FAPbI3 perovskite film is achieved through the synergetic effect of methylammonium chloride and a large‐organic cation. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process.
AbstractList Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up quasi-epitaxial growth of highly oriented α-formamidinium lead triiodide (α-FAPbI ) perovskite film via a two-step method is reported, in which the crystal orientation of α-FAPbI film is precisely controlled through the synergetic effect of methylammonium chloride and the large-organic cation butylammonium bromide. In situ GIWAXS visualizes the BA-related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom-up quasi-epitaxial growth in the subsequent annealing process. The template-guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4-time operation condition lifetime enhancement.
Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement. A universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐FAPbI3 perovskite film is achieved through the synergetic effect of methylammonium chloride and a large‐organic cation. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process.
Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI 3 ) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI 3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement.
Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up quasi-epitaxial growth of highly oriented α-formamidinium lead triiodide (α-FAPbI3 ) perovskite film via a two-step method is reported, in which the crystal orientation of α-FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large-organic cation butylammonium bromide. In situ GIWAXS visualizes the BA-related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom-up quasi-epitaxial growth in the subsequent annealing process. The template-guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4-time operation condition lifetime enhancement.Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up quasi-epitaxial growth of highly oriented α-formamidinium lead triiodide (α-FAPbI3 ) perovskite film via a two-step method is reported, in which the crystal orientation of α-FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large-organic cation butylammonium bromide. In situ GIWAXS visualizes the BA-related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom-up quasi-epitaxial growth in the subsequent annealing process. The template-guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4-time operation condition lifetime enhancement.
Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up quasi‐epitaxial growth of highly oriented α‐formamidinium lead triiodide (α‐FAPbI3) perovskite film via a two‐step method is reported, in which the crystal orientation of α‐FAPbI3 film is precisely controlled through the synergetic effect of methylammonium chloride and the large‐organic cation butylammonium bromide. In situ GIWAXS visualizes the BA‐related intermediate phase formation at the bottom of film, which serves as a guiding template for the bottom‐up quasi‐epitaxial growth in the subsequent annealing process. The template‐guided epitaxially grown BAFAMA perovskite film exhibits increased crystallinity, preferred crystallographic orientation, and reduced defects. Moreover, the BAFAMA perovskite solar cells demonstrate decent stability, maintaining 95% of their initial power conversion efficiency after 2600 h ambient storage, and 4‐time operation condition lifetime enhancement.
Author Liu, Kuan
Li, Gang
Yu, Wei
Huang, Jiaming
Zhang, Hengkai
Lu, Xinhui
Zhang, Yaokang
Zheng, Zijian
Liang, Qiong
Chandran, Hrisheekesh Thachoth
Ren, Zhiwei
Chen, Zhiliang
Qin, Minchao
Fong, Patrick W. K.
Author_xml – sequence: 1
  givenname: Hengkai
  surname: Zhang
  fullname: Zhang, Hengkai
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Minchao
  surname: Qin
  fullname: Qin, Minchao
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Zhiliang
  surname: Chen
  fullname: Chen, Zhiliang
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Wei
  surname: Yu
  fullname: Yu, Wei
  organization: Dalian National Laboratory for Clean Energy
– sequence: 5
  givenname: Zhiwei
  surname: Ren
  fullname: Ren, Zhiwei
  organization: The Hong Kong Polytechnic University
– sequence: 6
  givenname: Kuan
  surname: Liu
  fullname: Liu, Kuan
  organization: The Hong Kong Polytechnic University
– sequence: 7
  givenname: Jiaming
  surname: Huang
  fullname: Huang, Jiaming
  organization: The Hong Kong Polytechnic University
– sequence: 8
  givenname: Yaokang
  surname: Zhang
  fullname: Zhang, Yaokang
  organization: The Hong Kong Polytechnic University
– sequence: 9
  givenname: Qiong
  surname: Liang
  fullname: Liang, Qiong
  organization: The Hong Kong Polytechnic University
– sequence: 10
  givenname: Hrisheekesh Thachoth
  surname: Chandran
  fullname: Chandran, Hrisheekesh Thachoth
  organization: The Hong Kong Polytechnic University
– sequence: 11
  givenname: Patrick W. K.
  surname: Fong
  fullname: Fong, Patrick W. K.
  organization: The Hong Kong Polytechnic University
– sequence: 12
  givenname: Zijian
  surname: Zheng
  fullname: Zheng, Zijian
  organization: The Hong Kong Polytechnic University
– sequence: 13
  givenname: Xinhui
  surname: Lu
  fullname: Lu, Xinhui
  email: xhlu@phy.cuhk.edu.hk
  organization: The Chinese University of Hong Kong
– sequence: 14
  givenname: Gang
  orcidid: 0000-0001-8399-7771
  surname: Li
  fullname: Li, Gang
  email: gang.w.li@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33893688$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFK0dkiQuXLE6cpPZxWcouUhFFtGfLcSZdFyfe2s6WcNo7Fw48AY-2T4KjbUGqhDjZHn__r5n5j9BBZztA6HlKpikh2WtZt3KakSw-COGP0CQtsjTJCS8O0IRwWiS8zNkhOvL-eiRKUj5Bh5QyTkvGJujXGxuCbXfbH5dr_KmXXsfr6VoH-VVLgxfO3oYVtg1eDpXTNT4HZzf-iw6AG2db_NmaPmjb4XNnFXi_2_6cqZWGje6u8FJfrUa7ptFKQ6eGEZcOz8EYjzda4gto10YG2G2_R3DR6xpqPHeDD9IY_U2O1k_R40YaD8_uzmN0-e70Yr5Mzj4u3s9nZ4nKKedJWnGQJYeTUklIOa2LSpGqqOuyICdSVYzJnMV_VYOsagq8KjnNOJVlymKF0WP0au-7dvamBx9Eq72KrcoObO9FVqQsy9Kc04i-fIBe2951sbtI0YJQlhd5pF7cUX3VQi3WTrfSDeJ--xHI94By1nsHjVBx8ePMwUltRErEGLIYQxZ_Qo6y6QPZvfM_BXwvuNUGhv_QYvb2w-yv9jetfsKI
CitedBy_id crossref_primary_10_1002_solr_202101007
crossref_primary_10_1002_adma_202411982
crossref_primary_10_1002_adma_202305314
crossref_primary_10_1002_adom_202202982
crossref_primary_10_1002_ange_202425605
crossref_primary_10_1002_adma_202301115
crossref_primary_10_1002_adma_202301852
crossref_primary_10_1039_D5EE01294E
crossref_primary_10_1016_j_cej_2022_139961
crossref_primary_10_1002_adma_202200276
crossref_primary_10_1002_solr_202200856
crossref_primary_10_1021_acs_jpclett_5c00471
crossref_primary_10_1002_smll_202410776
crossref_primary_10_1002_adma_202204098
crossref_primary_10_1039_D4EE04959D
crossref_primary_10_1002_adfm_202314218
crossref_primary_10_1039_D1EE01695D
crossref_primary_10_1039_D5EE04601G
crossref_primary_10_1002_aenm_202204260
crossref_primary_10_1039_D4QM00560K
crossref_primary_10_1002_aenm_202303666
crossref_primary_10_1016_j_jechem_2022_10_048
crossref_primary_10_1002_advs_202205072
crossref_primary_10_1002_aenm_202300451
crossref_primary_10_1039_D1EE03192A
crossref_primary_10_1002_advs_202407401
crossref_primary_10_1039_D2EE03418B
crossref_primary_10_1002_adfm_202513478
crossref_primary_10_1002_adma_202503699
crossref_primary_10_1002_advs_202202028
crossref_primary_10_1002_aenm_202200867
crossref_primary_10_3390_cryst12060815
crossref_primary_10_1002_aenm_202400021
crossref_primary_10_1002_smm2_1087
crossref_primary_10_1002_advs_202309668
crossref_primary_10_1002_sstr_202200048
crossref_primary_10_1039_D3QM00697B
crossref_primary_10_3390_en17071629
crossref_primary_10_1002_adma_202200041
crossref_primary_10_1002_inf2_12369
crossref_primary_10_1002_adma_202204460
crossref_primary_10_1016_j_cej_2024_152773
crossref_primary_10_1002_aenm_202401721
crossref_primary_10_1002_solr_202300620
crossref_primary_10_1002_adfm_202313435
crossref_primary_10_1002_anie_202425605
crossref_primary_10_1038_s41586_023_06637_w
crossref_primary_10_1002_adma_202109879
Cites_doi 10.1063/1.2113414
10.1016/0022-0248(88)90294-1
10.1021/acs.nanolett.7b04445
10.1103/PhysRevB.76.085303
10.1021/jacs.5b03796
10.1143/JJAP.16.1203
10.1126/science.aaw6184
10.1016/j.solmat.2009.03.027
10.1021/acsami.0c05894
10.1016/B978-1-4831-9854-5.50020-3
10.1002/adma.201703852
10.1016/j.joule.2020.09.011
10.1038/nature14133
10.1021/nl400349b
10.1038/s41467-020-19237-3
10.1039/D0MH00512F
10.1038/s41467-019-13856-1
10.1002/adma.202004630
10.1038/nphoton.2014.134
10.1016/j.jcrysgro.2012.11.008
10.1021/cm5028817
10.1039/C6NR04741F
10.1021/jacs.8b04604
10.1126/science.1254763
10.1016/j.nanoen.2016.06.041
10.1002/adma.201604113
10.1021/jz4020162
10.1002/adfm.201904913
10.1038/nenergy.2016.142
10.1002/adfm.202002358
10.1002/adma.201901284
10.1002/adma.201804771
10.1557/mrs.2016.25
10.1002/adma.201807689
10.1021/jacs.7b04949
10.1038/s41563-018-0154-x
10.1038/s41566-019-0398-2
10.1021/ja01848a010
10.1021/jacs.5b00321
10.1021/acsami.7b07071
10.1109/16.46385
10.1038/s41467-019-12056-1
10.1002/adfm.202004612
10.1038/s41467-018-05076-w
10.1002/adfm.201806482
10.1038/s41586-020-2219-7
10.1021/ja809598r
10.1103/PhysRevMaterials.2.076002
10.1038/s41586-019-1868-x
10.1039/C9EE02162K
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202100009
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33893688
10_1002_adma_202100009
ADMA202100009
Genre article
Journal Article
GrantInformation_xml – fundername: Research Grants Council of Hong Kong
  funderid: 15246818; C5037‐18G; 24306318
– fundername: Hong Kong Polytechnic University
  funderid: 1‐ZE29; 1‐BBAS; 8‐8480
– fundername: Shenzhen Science and Technology Innovation Commission
  funderid: JCYJ20170413154602102
– fundername: Hong Kong Polytechnic University
  grantid: 1-ZE29
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: JCYJ20170413154602102
– fundername: Hong Kong Polytechnic University
  grantid: 1-BBAS
– fundername: Hong Kong Polytechnic University
  grantid: 8-8480
– fundername: Research Grants Council of Hong Kong
  grantid: 15246818
– fundername: Research Grants Council of Hong Kong
  grantid: C5037-18G
– fundername: Research Grants Council of Hong Kong
  grantid: 24306318
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4399-1b9ea69e76cae193d5bc0b5dd6507acb88a4869ecdeabd3e9b693293a618eab83
IEDL.DBID DRFUL
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000643156000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:43:04 EDT 2025
Fri Jul 25 04:07:22 EDT 2025
Wed Feb 19 02:27:33 EST 2025
Sat Nov 29 07:20:35 EST 2025
Tue Nov 18 21:43:28 EST 2025
Wed Jan 22 16:30:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords self-assembly
bottom-up growth
perovskite solar cells
quasi-epitaxial growth
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4399-1b9ea69e76cae193d5bc0b5dd6507acb88a4869ecdeabd3e9b693293a618eab83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8399-7771
PMID 33893688
PQID 2535038454
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2518221493
proquest_journals_2535038454
pubmed_primary_33893688
crossref_citationtrail_10_1002_adma_202100009
crossref_primary_10_1002_adma_202100009
wiley_primary_10_1002_adma_202100009_ADMA202100009
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1941; 63
2013; 4
2001 1988; 90
2019 2020; 31 32
1975 2009 2016 1977 2005 1990 2013; 93 41 16 98 37 378
2013 2015; 13 517
2014; 26
2020; 13
2020; 12
2017; 29
2009; 131
2007; 76
2015 2019 2018 2016 2018; 137 29 140 8 30
2017 2017; 9 139
2019 2019 2020 2018 2020 2018 2019 2019 2020; 364 31 577 18 30 2 29 10 30
2018; 9
2018; 17
2020; 4
2016 2017; 27 29
2001
2015; 137
2017 2019; 29 13
2014; 8
2014; 345
2016 2020; 1 7
2020 2020 2020; 580 11 11
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_5
e_1_2_8_9_4
e_1_2_8_9_7
e_1_2_8_9_6
e_1_2_8_3_1
Ohring M. (e_1_2_8_8_1) 2001
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_4_5
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_10_8
e_1_2_8_10_9
e_1_2_8_18_1
e_1_2_8_10_4
e_1_2_8_12_2
e_1_2_8_10_5
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_10_6
e_1_2_8_10_7
e_1_2_8_16_1
Mullin J. W. (e_1_2_8_20_1) 2001
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_10_3
e_1_2_8_12_1
References_xml – volume: 31 32
  year: 2019 2020
  publication-title: Adv. Mater. Adv. Mater.
– volume: 9
  start-page: 2793
  year: 2018
  publication-title: Nat. Commun.
– volume: 137
  start-page: 4460
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 258
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 3623
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– year: 2001
– volume: 364 31 577 18 30 2 29 10 30
  start-page: 166 209 994 4145
  year: 2019 2019 2020 2018 2020 2018 2019 2019 2020
  publication-title: Science Adv. Mater. Nature Nano Lett. Adv. Funct. Mater. Phys. Rev. Mater. Adv. Funct. Mater. Nat. Commun. Adv. Funct. Mater.
– volume: 13 517
  start-page: 1764 476
  year: 2013 2015
  publication-title: Nano Lett. Nature
– volume: 4
  start-page: 2404
  year: 2020
  publication-title: Joule
– volume: 580 11 11
  start-page: 614 582 5514
  year: 2020 2020 2020
  publication-title: Nature Nat. Commun. Nat. Commun.
– volume: 8
  start-page: 506
  year: 2014
  publication-title: Nat. Photonics
– volume: 137 29 140 8 30
  start-page: 7843
  year: 2015 2019 2018 2016 2018
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. J. Am. Chem. Soc. Nanoscale Adv. Mater.
– volume: 29 13
  start-page: 460
  year: 2017 2019
  publication-title: Adv. Mater. Nat. Photonics
– volume: 63
  start-page: 667
  year: 1941
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 900
  year: 2018
  publication-title: Nat. Mater.
– volume: 9 139
  year: 2017 2017
  publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc.
– volume: 93 41 16 98 37 378
  start-page: 113 1488 202 1203 469 576
  year: 1975 2009 2016 1977 2005 1990 2013
  publication-title: Sol. Energy Mater. Sol. Cells MRS Bull. Jpn. J. Appl. Phys. J. Appl. Phys. IEEE Trans. Electron Devices J. Cryst. Growth
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 6705
  year: 2014
  publication-title: Chem. Mater.
– volume: 90
  start-page: 14
  year: 2001 1988
  publication-title: J. Cryst. Growth
– volume: 27 29
  start-page: 17
  year: 2016 2017
  publication-title: Nano Energy Adv. Mater.
– volume: 1 7
  start-page: 1773
  year: 2016 2020
  publication-title: Nat. Energy Mater. Horiz.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– ident: e_1_2_8_9_5
  doi: 10.1063/1.2113414
– ident: e_1_2_8_20_2
  doi: 10.1016/0022-0248(88)90294-1
– ident: e_1_2_8_10_4
  doi: 10.1021/acs.nanolett.7b04445
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevB.76.085303
– ident: e_1_2_8_4_1
  doi: 10.1021/jacs.5b03796
– ident: e_1_2_8_9_4
  doi: 10.1143/JJAP.16.1203
– ident: e_1_2_8_10_1
  doi: 10.1126/science.aaw6184
– ident: e_1_2_8_9_2
  doi: 10.1016/j.solmat.2009.03.027
– ident: e_1_2_8_18_1
  doi: 10.1021/acsami.0c05894
– ident: e_1_2_8_9_1
  doi: 10.1016/B978-1-4831-9854-5.50020-3
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_8_24_1
  doi: 10.1016/j.joule.2020.09.011
– ident: e_1_2_8_6_2
  doi: 10.1038/nature14133
– ident: e_1_2_8_6_1
  doi: 10.1021/nl400349b
– ident: e_1_2_8_12_3
  doi: 10.1038/s41467-020-19237-3
– ident: e_1_2_8_11_2
  doi: 10.1039/D0MH00512F
– ident: e_1_2_8_12_2
  doi: 10.1038/s41467-019-13856-1
– ident: e_1_2_8_21_2
  doi: 10.1002/adma.202004630
– ident: e_1_2_8_1_1
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_8_9_7
  doi: 10.1016/j.jcrysgro.2012.11.008
– ident: e_1_2_8_15_1
  doi: 10.1021/cm5028817
– ident: e_1_2_8_4_4
  doi: 10.1039/C6NR04741F
– ident: e_1_2_8_4_3
  doi: 10.1021/jacs.8b04604
– ident: e_1_2_8_27_1
  doi: 10.1126/science.1254763
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2016.06.041
– ident: e_1_2_8_17_2
  doi: 10.1002/adma.201604113
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201703852
– volume-title: Crystallization
  year: 2001
  ident: e_1_2_8_20_1
– ident: e_1_2_8_3_1
  doi: 10.1021/jz4020162
– ident: e_1_2_8_10_7
  doi: 10.1002/adfm.201904913
– volume-title: Materials Science of Thin Films
  year: 2001
  ident: e_1_2_8_8_1
– ident: e_1_2_8_11_1
  doi: 10.1038/nenergy.2016.142
– ident: e_1_2_8_10_5
  doi: 10.1002/adfm.202002358
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201901284
– ident: e_1_2_8_4_5
  doi: 10.1002/adma.201804771
– ident: e_1_2_8_9_3
  doi: 10.1557/mrs.2016.25
– ident: e_1_2_8_10_2
  doi: 10.1002/adma.201807689
– ident: e_1_2_8_5_2
  doi: 10.1021/jacs.7b04949
– ident: e_1_2_8_19_1
  doi: 10.1038/s41563-018-0154-x
– ident: e_1_2_8_13_2
  doi: 10.1038/s41566-019-0398-2
– ident: e_1_2_8_16_1
  doi: 10.1021/ja01848a010
– ident: e_1_2_8_7_1
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.5b00321
– ident: e_1_2_8_5_1
  doi: 10.1021/acsami.7b07071
– ident: e_1_2_8_9_6
  doi: 10.1109/16.46385
– ident: e_1_2_8_10_8
  doi: 10.1038/s41467-019-12056-1
– ident: e_1_2_8_10_9
  doi: 10.1002/adfm.202004612
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-018-05076-w
– ident: e_1_2_8_4_2
  doi: 10.1002/adfm.201806482
– ident: e_1_2_8_12_1
  doi: 10.1038/s41586-020-2219-7
– ident: e_1_2_8_2_1
  doi: 10.1021/ja809598r
– ident: e_1_2_8_10_6
  doi: 10.1103/PhysRevMaterials.2.076002
– ident: e_1_2_8_10_3
  doi: 10.1038/s41586-019-1868-x
– ident: e_1_2_8_23_1
  doi: 10.1039/C9EE02162K
SSID ssj0009606
Score 2.62092
Snippet Epitaxial growth gives the highest‐quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution‐processed bottom‐up...
Epitaxial growth gives the highest-quality crystalline semiconductor thin films for optoelectronic devices. Here, a universal solution-processed bottom-up...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100009
SubjectTerms bottom‐up growth
Crystal defects
Crystal structure
Crystallinity
Crystallization
Crystallography
Energy conversion efficiency
Epitaxial growth
Materials science
Optoelectronic devices
perovskite solar cells
Perovskites
Photovoltaic cells
quasi‐epitaxial growth
self‐assembly
Solar cells
Thin films
Title Bottom‐Up Quasi‐Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving High‐Efficiency Solar Cells via Template​‐Guided Crystallization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100009
https://www.ncbi.nlm.nih.gov/pubmed/33893688
https://www.proquest.com/docview/2535038454
https://www.proquest.com/docview/2518221493
Volume 33
WOSCitedRecordID wos000643156000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEF41Tg_tIem7bh7aSpV6QrEXFpaj48TJoY3SKpZ8Q_tCQSLGAmwlN9976aG_oD_Nv6QzgEmsqqrU3oAdYLXMsN_M7nxDyAerpXW5ZY6Je8LxPCYdAEfWAYfFCB240uOqKjYRXFyIySS8fJDFX_NDtAE3tIzqf40GLlVxdE8aKk3FG8SqAHW4RbYZKC_vkO2Tr6Pxp3viXb-qr4nrfU7oe2JN3NhjR5tP2JyYfkObm-C1mn1Gu__f72dkp0GedFCrynPyyE5fkKcP-Ahfkp_HWVlmN6vl9_GMfpnLIoHDU6wrcgtqSs_AZS-vaRbT8ztM9KKXNs8WBcZ_Kaap0HWMjTbpB6vlj4G-TiwGLSjuKMHHVZwVmPCJ4jKnQ5umBV0kkl7Zm1kK2He1_AaCZ_PEWEOH-R0A2DRt8kVfkfHo9Gp47jRFHByNro7TV6GVfmgDH7QC0KLhSvcUNwagYSC1EkJ6Atq1sVIZ14bKB0gZutLvC7gi3NekM82m9i2hSulYx17AYUr1eN_gCquROo4lE1zEbpc46y8Y6YbhHAttpFHNzcwiHPuoHfsu-djKz2pujz9K7q8VImpsvIgYd5FLx-Nel7xvm8E6cclFTm02Rxnw3xh4odC5N7Uita9yESv6QnQJq_TlL32IBiefB-3Zu3-5aY88weN6p9s-6ZT53B6Qx3pRJkV-SLaCiThs7OcXhMIi6g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BiwQ98FsgUGCRkDhZTey1vT6madMg0qigROrN2j-rltw4sp2oveXOhUOfoI-WJ-mM7bhECCEhbvZ6vF7ZM95vZne-IeSTUcI4rrEtHbW5xZgtLABHxgKHRXPlO4K5siw24Y9G_OwsOK13E2IuTMUP0QTc0DLK_zUaOAak9-9YQ4UuiYPsMkId3CfbDHQJlHz78Ht_Mrxj3vXKApu44GcFHuNr5sa2vb_Zw-bM9Bvc3ESv5fTTf_IfBv6UPK6xJ-1WyvKM3DPT52TnF0bCF-TmIC2K9GK1_DmZ0W9zkcdweISVRS5BUekxOO3FOU0jOrjCVC96arJ0kWMEmGKiCl1H2WidgLBaXnfVeWwwbEFxTwl2V7JWYMoniouM9kyS5HQRCzo2F7ME0O9q-QMEj-exNpr2siuAsElSZ4zukkn_aNwbWHUZB0uhs2N1ZGCEFxjfA70AvKhdqdrS1RrAoS-U5FwwDteVNkJqxwTSA1AZOMLrcGjhzkuyNU2n5jWhUqpIRcx3YVJlbkfjGqsWKoqEzV0eOS1irT9hqGqOcyy1kYQVO7Md4rsPm3ffIp8b-VnF7vFHyb21RoS1leeh7TrIpsNc1iIfm8tgn7joIqYmnaMMeHA2-KEwuFeVJjWPchAtepy3iF0qzF_GEHYPT7rN2Zt_uekDeTgYnwzD4ZfR17fkEbZX-972yFaRzc078kAtijjP3tdmdAv5OCXy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BFyE48P9TWMBISJyibRMncY6l3e4ilqqgrbS3yLEdbaRsUyVpxd5658KBJ-DR-iTMJGmWCiEkxC1xJo6VzMTfjD3fALwxShrHNbal456wOLelheDIWOiwaKF8R3I3qopN-JOJODsLps1uQsqFqfkh2oAbWUb1vyYDNwsdH1yxhkpdEQfZVYQ6uA57nCrJdGBv9Hk8O7li3vWqApu04GcFHhdb5saefbDbw-7M9Bvc3EWv1fQzvvsfBn4P7jTYkw1qZbkP18z8Adz-hZHwIfx4l5VldrFZf5st2KelLBI8PKTKIl9QUdkROu3lOctidnxJqV5savJsVVAEmFGiCttG2ViTgLBZfx-o88RQ2ILRnhLqrmKtoJRPEpc5G5o0LdgqkezUXCxSRL-b9VcUPFom2mg2zC8RwqZpkzH6CGbjw9PhsdWUcbAUOTtWPwqM9ALje6gXiBe1G6le5GqN4NCXKhJCcoHXlTYy0o4JIg9BZeBIry-wRTiPoTPP5uYpsChSsYq57-Kkyt2-pjVWLVUcS1u4Ina6YG0_YagajnMqtZGGNTuzHdK7D9t334W3rfyiZvf4o-T-ViPCxsqL0HYdYtPhLu_C6_Yy2ictusi5yZYkgx6cjX4oDu5JrUntoxxCi54QXbArhfnLGMLB6OOgPXv2Lze9gpvT0Tg8eT_58BxuUXO97W0fOmW-NC_ghlqVSZG_bKzoJ09zJW0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottom%E2%80%90Up+Quasi%E2%80%90Epitaxial+Growth+of+Hybrid+Perovskite+from+Solution+Process%E2%80%94Achieving+High%E2%80%90Efficiency+Solar+Cells+via+Template%E2%80%8B%E2%80%90Guided+Crystallization&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Hengkai&rft.au=Qin%2C+Minchao&rft.au=Chen%2C+Zhiliang&rft.au=Yu%2C+Wei&rft.date=2021-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.202100009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202100009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon