Mathematical programming tools for randomization purposes in small two‐arm clinical trials: A case study with real data

Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical statistics : the journal of the pharmaceutical industry Vol. 23; no. 6; pp. 794 - 812
Main Authors: Vazquez, Alan R., Wong, Weng‐Kee
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Inc 01.11.2024
Wiley Subscription Services, Inc
Subjects:
ISSN:1539-1604, 1539-1612, 1539-1612
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate‐adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures.
AbstractList Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate‐adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures.
Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate-adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures.Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate-adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures.
Author Vazquez, Alan R.
Wong, Weng‐Kee
AuthorAffiliation 1 School of Engineering and Sciences Tecnologico de Monterrey Monterrey Nuevo Leon Mexico
2 Department of Biostatistics University of California Los Angeles California USA
AuthorAffiliation_xml – name: 2 Department of Biostatistics University of California Los Angeles California USA
– name: 1 School of Engineering and Sciences Tecnologico de Monterrey Monterrey Nuevo Leon Mexico
Author_xml – sequence: 1
  givenname: Alan R.
  orcidid: 0000-0002-3658-0911
  surname: Vazquez
  fullname: Vazquez, Alan R.
  organization: Tecnologico de Monterrey
– sequence: 2
  givenname: Weng‐Kee
  orcidid: 0000-0001-5568-3054
  surname: Wong
  fullname: Wong, Weng‐Kee
  email: wkwong@ucla.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38613324$$D View this record in MEDLINE/PubMed
BookMark eNp1kd9uFCEUxompse1q4hMYEm-8mRXmwPzxxjSNVZMaTazXhGGYXRoGRmC6Wa98hD6jTyLd1lUbvQGS8_s-zjnfMTpw3mmEnlKypISUL6eYliU0zQN0RDm0Ba1oebB_E3aIjmO8JITWTcsfoUNoKgpQsiO0_SDTWo8yGSUtnoJfBTmOxq1w8t5GPPiAg3S9H823DHmHpzlMPuqIjcNxlNbitPE_vl_LMGJljdsZpWCkja_wCVYyahzT3G_xxqQ1DjqXe5nkY_RwyIx-cncv0JezNxen74rzj2_fn56cF4pB2xSy45pD3XLQqq77UgPvGj10XKmOkY71jCuoeKmYGmquKlbVSkM1ZAXtaqhggV7f-k5zN-peaZeCtGIKZpRhK7w04u-KM2ux8leC5s2VLYPs8OLOIfivs45JjCYqba102s9RAIGGAWf5WKDn99BLPweX5xOQN86rum1Jpp792dK-l1-x_P5RBR9j0MMeoUTcJC5y4uIm8Ywu76HKpF1SeRhj_yUobgUbY_X2v8bi0-eLHf8TRTe_aw
CitedBy_id crossref_primary_10_1080_01605682_2024_2423362
Cites_doi 10.1002/9781118575574
10.1137/S1052623401392354
10.1007/978-3-540-68279-0
10.1016/j.eururo.2019.01.009
10.1080/00224065.2020.1712275
10.1093/biomet/58.3.403
10.1093/biostatistics/4.2.179
10.1080/10543406.2012.676535
10.1186/s12874-021-01303-z
10.1007/s11222-022-10168-1
10.1016/j.jspi.2013.03.018
10.1002/9781118742112
10.1287/mnsc.1100.1248
10.1016/j.csda.2016.09.006
10.1016/j.csda.2019.01.020
10.1186/1750-1172-8-48
10.1016/j.jmva.2014.11.006
10.1007/s11222-013-9420-6
10.1111/insr.12073
10.1002/pst.346
10.1111/1467-985X.00564
10.1016/j.jspi.2006.12.003
10.1186/1745-6215-14-19
10.1016/j.cct.2012.12.004
10.1016/j.jhep.2009.07.005
10.1016/S0920-1211(96)01006-6
10.1016/j.ejor.2006.02.033
10.1353/hpu.0.0209
10.4103/0974-1208.82352
10.1002/pst.493
10.1214/aoms/1177706973
10.1093/biomet/69.1.61
10.1016/0197-2456(91)90207-3
10.1214/08-STS269
10.1287/mnsc.2019.3424
10.1016/S0895-4356(98)00138-3
10.5691/jjb.24.43
10.1002/cpt1974155443
10.1007/s11222-019-09867-z
10.1007/s11222-017-9741-y
10.1016/j.cct.2015.07.011
10.1016/j.jspi.2008.10.023
10.1002/(SICI)1097-0258(19990730)18:14<1741::AID-SIM210>3.0.CO;2-F
10.2307/2529712
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/pst.2388
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Vazquez and Wong
EISSN 1539-1612
EndPage 812
ExternalDocumentID PMC11602943
38613324
10_1002_pst_2388
PST2388
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4398-ab5e537953ec77d2e35b8efb5ccb40b4d45c3652c4cf75c6467ce36f7951b7363
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001201340400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1539-1604
1539-1612
IngestDate Tue Nov 04 02:04:44 EST 2025
Fri Jul 11 11:40:43 EDT 2025
Sat Nov 29 14:30:02 EST 2025
Mon Jul 21 06:02:35 EDT 2025
Sat Nov 29 04:11:01 EST 2025
Tue Nov 18 21:28:28 EST 2025
Wed Jan 22 17:14:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords minimization method
energy distance
prior information
covariate‐adaptive trial
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-ab5e537953ec77d2e35b8efb5ccb40b4d45c3652c4cf75c6467ce36f7951b7363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3658-0911
0000-0001-5568-3054
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2388
PMID 38613324
PQID 3133567990
PQPubID 1036354
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11602943
proquest_miscellaneous_3038435484
proquest_journals_3133567990
pubmed_primary_38613324
crossref_primary_10_1002_pst_2388
crossref_citationtrail_10_1002_pst_2388
wiley_primary_10_1002_pst_2388_PST2388
PublicationCentury 2000
PublicationDate November/December 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November/December 2024
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Macclesfield
PublicationTitle Pharmaceutical statistics : the journal of the pharmaceutical industry
PublicationTitleAlternate Pharm Stat
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 56
1974; 15
2021; 21
1991; 12
2003; 13
2014; 24
2013; 8
2017; 113
2012; 11
1977
2015; 45
1982; 69
2013; 14
2009; 51
2001
2015; 135
2015; 83
1999; 18
2014; 8:387
2019; 67
1971; 58
2008; 23
2003; 4
1983
1999; 52
2007; 180
2012; 22
2018; 28
2009; 20
2019; 75
2010
1997; 26
1975; 31
2005
2013; 143
2011; 4
2009; 139
2004; 10
2021; 53
2020; 30
2002; 165
2013; 34
2019; 137
2003; 24
2009; 8
2016
2008; 138
2015
2020; 66
1957; 28
2023; 33:1‐18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
Szekely GJ (e_1_2_8_43_1) 2004; 10
e_1_2_8_45_1
Evans CHJ (e_1_2_8_7_1) 2001
e_1_2_8_41_1
Bertsimas D (e_1_2_8_40_1) 2005
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
Chambers JM (e_1_2_8_48_1) 1983
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
Nardini C (e_1_2_8_50_1) 2014; 8
Bradley SP (e_1_2_8_10_1) 1977
Bertsimas D (e_1_2_8_22_1) 2019; 67
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
Vazquez AR (e_1_2_8_16_1) 2023; 33
e_1_2_8_52_1
References_xml – year: 2005
– volume: 20
  start-page: 1079
  year: 2009
  end-page: 1094
  article-title: A randomized community intervention to improve hypertension control among mexican americans: using the promotoras de salud community outreach model
  publication-title: J Health Care Poor Underserved
– year: 2001
– volume: 165
  start-page: 349
  year: 2002
  end-page: 373
  article-title: The comparison of designs for sequential clinical trials with covariate information
  publication-title: J R Stat Assoc Ser A
– volume: 13
  start-page: 535
  year: 2003
  end-page: 560
  article-title: Robust solutions of uncertain quadratic and conic‐quadratic problems
  publication-title: SIAM J Optim
– volume: 24
  start-page: 1063
  year: 2014
  end-page: 1080
  article-title: A semi‐infinite programming based algorithm for finding minimax ‐optimal designs for nonlinear models
  publication-title: Stat Comput
– volume: 135
  start-page: 11
  year: 2015
  end-page: 24
  article-title: A semi‐infinite programming based algorithm for determining T‐optimum designs for model discrimination
  publication-title: J Multivar Anal
– volume: 138
  start-page: 654
  year: 2008
  end-page: 666
  article-title: Classification of orthogonal arrays by integer programming
  publication-title: J Stat Plan Inference
– volume: 10
  start-page: 1249
  year: 2004
  end-page: 1272
  article-title: Testing for equal distributions in high dimension
  publication-title: InterStat
– volume: 139
  start-page: 2362
  year: 2009
  end-page: 2372
  article-title: Analysis of supersaturated designs via the Dantzig selector
  publication-title: J Stat Plan Inference
– volume: 28
  start-page: 441
  year: 2018
  end-page: 460
  article-title: Adaptive grid semidefinite programming for finding optimal designs
  publication-title: Stat Comput
– volume: 23
  start-page: 404
  year: 2008
  end-page: 419
  article-title: Handling covariates in the design of clinical trials
  publication-title: Stat Sci
– volume: 28
  start-page: 449
  year: 1957
  end-page: 460
  article-title: Design for the control of selection bias
  publication-title: Ann Math Stat
– volume: 26
  start-page: 389
  year: 1997
  end-page: 395
  article-title: Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis
  publication-title: Epilepsy Res
– volume: 53
  start-page: 243
  year: 2021
  end-page: 266
  article-title: A mixed integer optimization approach for model selection in screening experiments
  publication-title: J Qual Technol
– volume: 12
  start-page: 3729
  year: 1991
  end-page: 3741
  article-title: Dynamic balance randomization for clinical trials
  publication-title: Control Clin Trials
– volume: 34
  start-page: 262
  year: 2013
  end-page: 269
  article-title: Balancing continuous covariates based on Kernel densities
  publication-title: Contemp Clin Trials
– volume: 4
  start-page: 8
  year: 2011
  end-page: 11
  article-title: An overview of randomization techniques: an unbiased assessment of outcome in clinical research
  publication-title: J Hum Reprod Sci
– volume: 21
  start-page: 1
  year: 2021
  end-page: 24
  article-title: A roadmap to using randomization in clinical trials
  publication-title: BMC Med Res Methodol
– volume: 30
  start-page: 93
  year: 2020
  end-page: 112
  article-title: Optimal exact designs of experiments via mixed integer nonlinear programming
  publication-title: Stat Comput
– year: 2015
– volume: 56
  start-page: 2302
  year: 2010
  end-page: 2315
  article-title: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs
  publication-title: Manag Sci
– volume: 52
  start-page: 19
  year: 1999
  end-page: 26
  article-title: Stratified randomization for clinical trials
  publication-title: J Clin Epidemiol
– year: 1983
– volume: 45
  start-page: 21
  year: 2015
  end-page: 25
  article-title: The pursuit of balance: an overview of covariate‐adaptive randomization techniques in clinical trials
  publication-title: Contemp Clin Trials
– volume: 24
  start-page: 43
  year: 2003
  end-page: 55
  article-title: An extended minimization method to assure similar means of continuous prognostic variables between treatment groups
  publication-title: Jpn J Biom
– volume: 66
  start-page: 4477
  year: 2020
  end-page: 4495
  article-title: Near‐optimal A‐B testing
  publication-title: Manag Sci
– volume: 4
  start-page: 179
  year: 2003
  end-page: 193
  article-title: The distribution of loss in two‐treatment biased‐coin designs
  publication-title: Biostatistics
– volume: 22
  start-page: 719
  year: 2012
  end-page: 736
  article-title: Adaptive randomization for clinical trials
  publication-title: J Biopharm Stat
– volume: 113
  start-page: 136
  year: 2017
  end-page: 153
  article-title: A Bayesian adaptive design for clinical trials in rare diseases
  publication-title: Comput Stat Data Anal
– volume: 83
  start-page: 239
  year: 2015
  end-page: 262
  article-title: Finding Bayesian optimal designs for nonlinear models: a semidefinite programming‐based approach
  publication-title: Int Stat Rev
– volume: 8:387
  year: 2014
  article-title: The ethics of clinical trials
  publication-title: Ecancermedicalscience
– volume: 137
  start-page: 101
  year: 2019
  end-page: 114
  article-title: An algorithm for generating good mixed level factorial designs
  publication-title: Comput Stat Data Anal
– year: 2016
– year: 1977
– volume: 8
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Experimental designs for small randomised clinical trials: an algorithm for choice
  publication-title: Orphanet J Rare Dis
– year: 2010
– volume: 33:1‐18
  year: 2023
  article-title: Constructing two‐level QB‐optimal screening designs using mixed‐integer programming and heuristic algorithms
  publication-title: Stat Comput
– volume: 75
  start-page: 701
  year: 2019
  end-page: 711
  article-title: Randomized phase 1 trial of pembrolizumab with sequential versus concomitant stereotactic body radiotherapy in metastatic urothelial carcinoma
  publication-title: Eur Urol
– volume: 11
  start-page: 39
  year: 2012
  end-page: 48
  article-title: Quantitative comparison of randomization designs in sequential clinical trials based on treatment balance and allocation randomness
  publication-title: Pharm Stat
– volume: 31
  start-page: 103
  year: 1975
  end-page: 115
  article-title: Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial
  publication-title: Biometrics
– volume: 51
  start-page: 792
  year: 2009
  end-page: 797
  article-title: Ethics in clinical research
  publication-title: J Hepatol
– volume: 69
  start-page: 61
  issue: 1
  year: 1982
  end-page: 67
  article-title: Optimum biased coin designs for sequential clinical trials with prognostic factors
  publication-title: Biometrika
– volume: 143
  start-page: 1249
  year: 2013
  end-page: 1272
  article-title: Energy statistics: a class of statistics based on distances
  publication-title: J Stat Plan Inference
– volume: 14
  start-page: 1
  year: 2013
  end-page: 8
  article-title: Introduction to a generalized method for adaptive randomization in trials
  publication-title: Trials
– volume: 58
  start-page: 403
  year: 1971
  end-page: 417
  article-title: Forcing a sequential experiment to be balanced
  publication-title: Biometrika
– volume: 15
  start-page: 443
  year: 1974
  end-page: 453
  article-title: Minimization: a new method of assigning patients to treatment and control groups
  publication-title: Clin Pharmacol Ther
– volume: 67
  start-page: 1150
  year: 2019
  end-page: 1161
  article-title: Covariate‐adaptive optimization in online clinical trials
  publication-title: Oper Res
– volume: 8
  start-page: 264
  year: 2009
  end-page: 278
  article-title: Use of simulation to compare the performance of minimization with stratified blocked randomization
  publication-title: Pharm Stat
– volume: 180
  start-page: 99
  year: 2007
  end-page: 115
  article-title: A review of interactive methods for multiobjective integer and mixed‐integer programming
  publication-title: Eur J Oper Res
– volume: 18
  start-page: 1741
  year: 1999
  end-page: 1752
  article-title: Optimum biased‐coin designs for sequential treatment allocation with covariate information
  publication-title: Stat Med
– ident: e_1_2_8_36_1
  doi: 10.1002/9781118575574
– ident: e_1_2_8_42_1
  doi: 10.1137/S1052623401392354
– volume: 67
  start-page: 1150
  year: 2019
  ident: e_1_2_8_22_1
  article-title: Covariate‐adaptive optimization in online clinical trials
  publication-title: Oper Res
– ident: e_1_2_8_41_1
  doi: 10.1007/978-3-540-68279-0
– volume-title: Applied Mathematical Programming
  year: 1977
  ident: e_1_2_8_10_1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.eururo.2019.01.009
– ident: e_1_2_8_20_1
  doi: 10.1080/00224065.2020.1712275
– ident: e_1_2_8_37_1
  doi: 10.1093/biomet/58.3.403
– ident: e_1_2_8_32_1
  doi: 10.1093/biostatistics/4.2.179
– ident: e_1_2_8_4_1
  doi: 10.1080/10543406.2012.676535
– ident: e_1_2_8_38_1
  doi: 10.1186/s12874-021-01303-z
– volume: 33
  year: 2023
  ident: e_1_2_8_16_1
  article-title: Constructing two‐level QB‐optimal screening designs using mixed‐integer programming and heuristic algorithms
  publication-title: Stat Comput
  doi: 10.1007/s11222-022-10168-1
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jspi.2013.03.018
– ident: e_1_2_8_2_1
  doi: 10.1002/9781118742112
– ident: e_1_2_8_52_1
  doi: 10.1287/mnsc.1100.1248
– ident: e_1_2_8_21_1
  doi: 10.1016/j.csda.2016.09.006
– ident: e_1_2_8_18_1
  doi: 10.1016/j.csda.2019.01.020
– ident: e_1_2_8_5_1
  doi: 10.1186/1750-1172-8-48
– volume-title: Graphical Methods for Data Analysis
  year: 1983
  ident: e_1_2_8_48_1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jmva.2014.11.006
– ident: e_1_2_8_12_1
  doi: 10.1007/s11222-013-9420-6
– ident: e_1_2_8_13_1
  doi: 10.1111/insr.12073
– ident: e_1_2_8_39_1
  doi: 10.1002/pst.346
– ident: e_1_2_8_31_1
  doi: 10.1111/1467-985X.00564
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jspi.2006.12.003
– ident: e_1_2_8_9_1
  doi: 10.1186/1745-6215-14-19
– ident: e_1_2_8_35_1
  doi: 10.1016/j.cct.2012.12.004
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jhep.2009.07.005
– ident: e_1_2_8_47_1
  doi: 10.1016/S0920-1211(96)01006-6
– ident: e_1_2_8_51_1
  doi: 10.1016/j.ejor.2006.02.033
– ident: e_1_2_8_6_1
  doi: 10.1353/hpu.0.0209
– ident: e_1_2_8_8_1
  doi: 10.4103/0974-1208.82352
– ident: e_1_2_8_45_1
  doi: 10.1002/pst.493
– ident: e_1_2_8_44_1
  doi: 10.1214/aoms/1177706973
– ident: e_1_2_8_29_1
  doi: 10.1093/biomet/69.1.61
– ident: e_1_2_8_27_1
  doi: 10.1016/0197-2456(91)90207-3
– volume-title: Optimization Over Integers
  year: 2005
  ident: e_1_2_8_40_1
– ident: e_1_2_8_3_1
  doi: 10.1214/08-STS269
– volume-title: Small Clinical Trials: Issues and Challenges
  year: 2001
  ident: e_1_2_8_7_1
– volume: 10
  start-page: 1249
  year: 2004
  ident: e_1_2_8_43_1
  article-title: Testing for equal distributions in high dimension
  publication-title: InterStat
– ident: e_1_2_8_23_1
  doi: 10.1287/mnsc.2019.3424
– ident: e_1_2_8_26_1
  doi: 10.1016/S0895-4356(98)00138-3
– ident: e_1_2_8_34_1
  doi: 10.5691/jjb.24.43
– ident: e_1_2_8_28_1
  doi: 10.1002/cpt1974155443
– ident: e_1_2_8_11_1
  doi: 10.1007/s11222-019-09867-z
– ident: e_1_2_8_15_1
  doi: 10.1007/s11222-017-9741-y
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cct.2015.07.011
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jspi.2008.10.023
– volume: 8
  year: 2014
  ident: e_1_2_8_50_1
  article-title: The ethics of clinical trials
  publication-title: Ecancermedicalscience
– ident: e_1_2_8_30_1
  doi: 10.1002/(SICI)1097-0258(19990730)18:14<1741::AID-SIM210>3.0.CO;2-F
– ident: e_1_2_8_33_1
  doi: 10.2307/2529712
SSID ssj0017895
Score 2.3396966
Snippet Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 794
SubjectTerms Adaptive Clinical Trials as Topic
Clinical trials
covariate‐adaptive trial
energy distance
Humans
Main Paper
Mathematical programming
minimization method
Models, Statistical
prior information
Random Allocation
Randomized Controlled Trials as Topic - methods
Randomized Controlled Trials as Topic - statistics & numerical data
Research Design - statistics & numerical data
Sample Size
Title Mathematical programming tools for randomization purposes in small two‐arm clinical trials: A case study with real data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2388
https://www.ncbi.nlm.nih.gov/pubmed/38613324
https://www.proquest.com/docview/3133567990
https://www.proquest.com/docview/3038435484
https://pubmed.ncbi.nlm.nih.gov/PMC11602943
Volume 23
WOSCitedRecordID wos001201340400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1539-1612
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017895
  issn: 1539-1604
  databaseCode: DRFUL
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMX3o_AshokVC4btomf4bYCKg7LKoIu6i2KXUdUSpNqnQX1xk_gN_JLGCdpSrUgIXFJDhk7lj3j-fyYbwh5oW3EpU50KDjNQ6ajIlSxLEKc-qRnsNKsTZ3w-VSenanZLEn7W5U-Fqbjhxg23LxltPO1N_Bcu-MtaejKNa_Q36jrZD-KqPJpG2KWDicIUrUZV9CgkzASY7Yhnh3Hx5uSu67oCr68ek3yd_ja-p_J7f9p-R1yq0edcNKpyV1yzVb3yCjtaKvXRzDdRmG5IxhBuiW0Xt8n6w8DtytW0t_oWqLPg6auSweIewFd3rxe9kGdsMLhq511sKjALfOyhOZb_fP7D6wVNrGY0CYMca_hBAy6UmiJbsHvCwMC2RL83dUH5HzybvrmfdinbAgNIhsV5ppbTmXCqTVSzmNLuVa20NwYzcaazRk3VPDYMFNIbgRO08ZSUWCJSEsq6EOyV9WVfUwAV3J5kUdc88Qf7uEqfh5JqYVQphCx5gF5uRm9zPR85j6tRpl1TMxxhv2c-X4OyPNBctVxePxB5mCjAFlvxS6juIDnQqLDxiqGz2h__lAlr2x9iTJjqhByMsUC8qjTl-EnVCFYQsQaELWjSYOA5_be_VItvrQc3xHqbJwwGpBRq0p_bXiWfpr695N_FXxKbsYIzLp4ygOy11xc2mfkhvnaLNzFYWtE-JQzdUj2336cnJ_-AgqwJtA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VggQX3o9AASOh5dK0m_gZOFWIqojtKhIL6i2KvY5YKZusmhS0N34Cv5FfwjivZVWQkDjl4LFj2TOez4_5BuCltgGXOtK-4DT1mQ4yX4Uy83Hpk47BSrMmdcLniZxO1dlZFO_Amz4WpuWHGA7cnGU067UzcHcgfbhhDV1V9QE6HHUFrjJ0Mk7JQxYPVwhSNSlX0KIjPxBj1jPPjsPDvua2L7oEMC-_k_wdvzYO6PjWf3X9NtzscCc5ahXlDuzY4i6M4pa4er1PZps4rGqfjEi8obRe34P16cDuio10b7qW6PVIXZZ5RRD5EnR683LZhXWSFU5gWdmKLApSLdM8J_W38uf3H9gq6aMxSZMypHpNjohBZ0oaqlviToYJQtmcuNer9-HT8bvZ2xO_S9rgG8Q2yk81t5zKiFNrpJyHlnKtbKa5MZqNNZszbqjgoWEmk9wIXKiNpSLDGoGWVNAHsFuUhX0EBPdyaZYGXPPIXe_hPn4eSKmFUCYToeYevOqnLzEdo7lLrJEnLRdzmOA4J26cPXgxSK5aFo8_yOz1GpB0dlwlFLfwXEh02djEUIwW6K5V0sKWFygzpgpBJ1PMg4etwgw_oQrhEmJWD9SWKg0Cjt17u6RYfGlYvgNU2jBi1INRo0t_7XgSf5y57-N_FXwO109mp5Nk8n764QncCBGmtdGVe7Bbn1_Yp3DNfK0X1fmzxqJ-AVDeKDM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXYS48IYNLGAkVC4btont2IHTiqUCUaoIumhvUew42kptUm2yoN74CfxGfgnjvEq1ICFxysFjx7JnPJ8f8w3Ac2U8LlSo3IDTxGXKy1zpi8zFpU9YBivF6tQJXyZiOpWnp2G0A6-7WJiGH6I_cLOWUa_X1sDNKs0ON6yhq7J6iQ5HXoFdZnPIDGD3-NP4ZNJfIghZJ11Bmw5dLxixjnt25B92dbe90SWIefml5O8ItnZB45v_1flbcKNFnuSoUZXbsGPyOzCMGurq9QGZbSKxygMyJNGG1Hp9F9Yfe35XbKR91bVEv0eqoliUBLEvQbeXFss2sJOscAqL0pRknpNymSwWpPpW_Pz-A1slXTwmqZOGlK_IEdHoTklNdkvs2TBBMLsg9v3qPTgZv529eee2aRtcjehGuonihlMRcmq0EKlvKFfSZIprrdhIsZRxTQPua6YzwXWAS7U2NMiwhqcEDeh9GORFbvaA4G4uyRKPKx7aCz7cyaeeECoIpM4CX3EHXnTTF-uW09ym1ljEDRuzH-M4x3acHXjWS64aHo8_yOx3GhC3llzGFDfxPBDotLGJvhht0F6sJLkpLlBmRCXCTiaZAw8ahel_QiUCJkStDsgtVeoFLL_3dkk-P6t5vj1UWj9k1IFhrUt_7XgcfZ7Z78N_FXwK16LjcTx5P_3wCK77iNOa8Mp9GFTnF-YxXNVfq3l5_qQ1qV_1MClJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+programming+tools+for+randomization+purposes+in+small+two%E2%80%90arm+clinical+trials%3A+A+case+study+with+real+data&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=Vazquez%2C+Alan+R.&rft.au=Wong%2C+Weng%E2%80%90Kee&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1539-1604&rft.eissn=1539-1612&rft.volume=23&rft.issue=6&rft.spage=794&rft.epage=812&rft_id=info:doi/10.1002%2Fpst.2388&rft_id=info%3Apmid%2F38613324&rft.externalDocID=PMC11602943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon