Mathematical programming tools for randomization purposes in small two‐arm clinical trials: A case study with real data
Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical...
Saved in:
| Published in: | Pharmaceutical statistics : the journal of the pharmaceutical industry Vol. 23; no. 6; pp. 794 - 812 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Inc
01.11.2024
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1539-1604, 1539-1612, 1539-1612 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate‐adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures. |
|---|---|
| AbstractList | Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate‐adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures. Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate-adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures.Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the accumulated information in the trial. Some of the recent adaptive randomization methods use mathematical programming to construct attractive clinical trials that balance the group features, such as their sizes and covariate distributions of their subjects. We review some of these methods and compare their performance with common covariate-adaptive randomization methods for small clinical trials. We introduce an energy distance measure that compares the discrepancy between the two groups using the joint distribution of the subjects' covariates. This metric is more appealing than evaluating the discrepancy between the groups using their marginal covariate distributions. Using numerical experiments, we demonstrate the advantages of the mathematical programming methods under the new measure. In the supplementary material, we provide R codes to reproduce our study results and facilitate comparisons of different randomization procedures. |
| Author | Vazquez, Alan R. Wong, Weng‐Kee |
| AuthorAffiliation | 1 School of Engineering and Sciences Tecnologico de Monterrey Monterrey Nuevo Leon Mexico 2 Department of Biostatistics University of California Los Angeles California USA |
| AuthorAffiliation_xml | – name: 2 Department of Biostatistics University of California Los Angeles California USA – name: 1 School of Engineering and Sciences Tecnologico de Monterrey Monterrey Nuevo Leon Mexico |
| Author_xml | – sequence: 1 givenname: Alan R. orcidid: 0000-0002-3658-0911 surname: Vazquez fullname: Vazquez, Alan R. organization: Tecnologico de Monterrey – sequence: 2 givenname: Weng‐Kee orcidid: 0000-0001-5568-3054 surname: Wong fullname: Wong, Weng‐Kee email: wkwong@ucla.edu organization: University of California |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38613324$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kd9uFCEUxompse1q4hMYEm-8mRXmwPzxxjSNVZMaTazXhGGYXRoGRmC6Wa98hD6jTyLd1lUbvQGS8_s-zjnfMTpw3mmEnlKypISUL6eYliU0zQN0RDm0Ba1oebB_E3aIjmO8JITWTcsfoUNoKgpQsiO0_SDTWo8yGSUtnoJfBTmOxq1w8t5GPPiAg3S9H823DHmHpzlMPuqIjcNxlNbitPE_vl_LMGJljdsZpWCkja_wCVYyahzT3G_xxqQ1DjqXe5nkY_RwyIx-cncv0JezNxen74rzj2_fn56cF4pB2xSy45pD3XLQqq77UgPvGj10XKmOkY71jCuoeKmYGmquKlbVSkM1ZAXtaqhggV7f-k5zN-peaZeCtGIKZpRhK7w04u-KM2ux8leC5s2VLYPs8OLOIfivs45JjCYqba102s9RAIGGAWf5WKDn99BLPweX5xOQN86rum1Jpp792dK-l1-x_P5RBR9j0MMeoUTcJC5y4uIm8Ywu76HKpF1SeRhj_yUobgUbY_X2v8bi0-eLHf8TRTe_aw |
| CitedBy_id | crossref_primary_10_1080_01605682_2024_2423362 |
| Cites_doi | 10.1002/9781118575574 10.1137/S1052623401392354 10.1007/978-3-540-68279-0 10.1016/j.eururo.2019.01.009 10.1080/00224065.2020.1712275 10.1093/biomet/58.3.403 10.1093/biostatistics/4.2.179 10.1080/10543406.2012.676535 10.1186/s12874-021-01303-z 10.1007/s11222-022-10168-1 10.1016/j.jspi.2013.03.018 10.1002/9781118742112 10.1287/mnsc.1100.1248 10.1016/j.csda.2016.09.006 10.1016/j.csda.2019.01.020 10.1186/1750-1172-8-48 10.1016/j.jmva.2014.11.006 10.1007/s11222-013-9420-6 10.1111/insr.12073 10.1002/pst.346 10.1111/1467-985X.00564 10.1016/j.jspi.2006.12.003 10.1186/1745-6215-14-19 10.1016/j.cct.2012.12.004 10.1016/j.jhep.2009.07.005 10.1016/S0920-1211(96)01006-6 10.1016/j.ejor.2006.02.033 10.1353/hpu.0.0209 10.4103/0974-1208.82352 10.1002/pst.493 10.1214/aoms/1177706973 10.1093/biomet/69.1.61 10.1016/0197-2456(91)90207-3 10.1214/08-STS269 10.1287/mnsc.2019.3424 10.1016/S0895-4356(98)00138-3 10.5691/jjb.24.43 10.1002/cpt1974155443 10.1007/s11222-019-09867-z 10.1007/s11222-017-9741-y 10.1016/j.cct.2015.07.011 10.1016/j.jspi.2008.10.023 10.1002/(SICI)1097-0258(19990730)18:14<1741::AID-SIM210>3.0.CO;2-F 10.2307/2529712 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. – notice: 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
| DOI | 10.1002/pst.2388 |
| DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| DocumentTitleAlternate | Vazquez and Wong |
| EISSN | 1539-1612 |
| EndPage | 812 |
| ExternalDocumentID | PMC11602943 38613324 10_1002_pst_2388 PST2388 |
| Genre | article Journal Article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 UB1 W8V W99 WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c4398-ab5e537953ec77d2e35b8efb5ccb40b4d45c3652c4cf75c6467ce36f7951b7363 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001201340400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1539-1604 1539-1612 |
| IngestDate | Tue Nov 04 02:04:44 EST 2025 Fri Jul 11 11:40:43 EDT 2025 Sat Nov 29 14:30:02 EST 2025 Mon Jul 21 06:02:35 EDT 2025 Sat Nov 29 04:11:01 EST 2025 Tue Nov 18 21:28:28 EST 2025 Wed Jan 22 17:14:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | minimization method energy distance prior information covariate‐adaptive trial |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4398-ab5e537953ec77d2e35b8efb5ccb40b4d45c3652c4cf75c6467ce36f7951b7363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3658-0911 0000-0001-5568-3054 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2388 |
| PMID | 38613324 |
| PQID | 3133567990 |
| PQPubID | 1036354 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11602943 proquest_miscellaneous_3038435484 proquest_journals_3133567990 pubmed_primary_38613324 crossref_primary_10_1002_pst_2388 crossref_citationtrail_10_1002_pst_2388 wiley_primary_10_1002_pst_2388_PST2388 |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2024 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November/December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: England – name: Macclesfield |
| PublicationTitle | Pharmaceutical statistics : the journal of the pharmaceutical industry |
| PublicationTitleAlternate | Pharm Stat |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2010; 56 1974; 15 2021; 21 1991; 12 2003; 13 2014; 24 2013; 8 2017; 113 2012; 11 1977 2015; 45 1982; 69 2013; 14 2009; 51 2001 2015; 135 2015; 83 1999; 18 2014; 8:387 2019; 67 1971; 58 2008; 23 2003; 4 1983 1999; 52 2007; 180 2012; 22 2018; 28 2009; 20 2019; 75 2010 1997; 26 1975; 31 2005 2013; 143 2011; 4 2009; 139 2004; 10 2021; 53 2020; 30 2002; 165 2013; 34 2019; 137 2003; 24 2009; 8 2016 2008; 138 2015 2020; 66 1957; 28 2023; 33:1‐18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 Szekely GJ (e_1_2_8_43_1) 2004; 10 e_1_2_8_45_1 Evans CHJ (e_1_2_8_7_1) 2001 e_1_2_8_41_1 Bertsimas D (e_1_2_8_40_1) 2005 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 Chambers JM (e_1_2_8_48_1) 1983 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 Nardini C (e_1_2_8_50_1) 2014; 8 Bradley SP (e_1_2_8_10_1) 1977 Bertsimas D (e_1_2_8_22_1) 2019; 67 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 Vazquez AR (e_1_2_8_16_1) 2023; 33 e_1_2_8_52_1 |
| References_xml | – year: 2005 – volume: 20 start-page: 1079 year: 2009 end-page: 1094 article-title: A randomized community intervention to improve hypertension control among mexican americans: using the promotoras de salud community outreach model publication-title: J Health Care Poor Underserved – year: 2001 – volume: 165 start-page: 349 year: 2002 end-page: 373 article-title: The comparison of designs for sequential clinical trials with covariate information publication-title: J R Stat Assoc Ser A – volume: 13 start-page: 535 year: 2003 end-page: 560 article-title: Robust solutions of uncertain quadratic and conic‐quadratic problems publication-title: SIAM J Optim – volume: 24 start-page: 1063 year: 2014 end-page: 1080 article-title: A semi‐infinite programming based algorithm for finding minimax ‐optimal designs for nonlinear models publication-title: Stat Comput – volume: 135 start-page: 11 year: 2015 end-page: 24 article-title: A semi‐infinite programming based algorithm for determining T‐optimum designs for model discrimination publication-title: J Multivar Anal – volume: 138 start-page: 654 year: 2008 end-page: 666 article-title: Classification of orthogonal arrays by integer programming publication-title: J Stat Plan Inference – volume: 10 start-page: 1249 year: 2004 end-page: 1272 article-title: Testing for equal distributions in high dimension publication-title: InterStat – volume: 139 start-page: 2362 year: 2009 end-page: 2372 article-title: Analysis of supersaturated designs via the Dantzig selector publication-title: J Stat Plan Inference – volume: 28 start-page: 441 year: 2018 end-page: 460 article-title: Adaptive grid semidefinite programming for finding optimal designs publication-title: Stat Comput – volume: 23 start-page: 404 year: 2008 end-page: 419 article-title: Handling covariates in the design of clinical trials publication-title: Stat Sci – volume: 28 start-page: 449 year: 1957 end-page: 460 article-title: Design for the control of selection bias publication-title: Ann Math Stat – volume: 26 start-page: 389 year: 1997 end-page: 395 article-title: Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis publication-title: Epilepsy Res – volume: 53 start-page: 243 year: 2021 end-page: 266 article-title: A mixed integer optimization approach for model selection in screening experiments publication-title: J Qual Technol – volume: 12 start-page: 3729 year: 1991 end-page: 3741 article-title: Dynamic balance randomization for clinical trials publication-title: Control Clin Trials – volume: 34 start-page: 262 year: 2013 end-page: 269 article-title: Balancing continuous covariates based on Kernel densities publication-title: Contemp Clin Trials – volume: 4 start-page: 8 year: 2011 end-page: 11 article-title: An overview of randomization techniques: an unbiased assessment of outcome in clinical research publication-title: J Hum Reprod Sci – volume: 21 start-page: 1 year: 2021 end-page: 24 article-title: A roadmap to using randomization in clinical trials publication-title: BMC Med Res Methodol – volume: 30 start-page: 93 year: 2020 end-page: 112 article-title: Optimal exact designs of experiments via mixed integer nonlinear programming publication-title: Stat Comput – year: 2015 – volume: 56 start-page: 2302 year: 2010 end-page: 2315 article-title: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs publication-title: Manag Sci – volume: 52 start-page: 19 year: 1999 end-page: 26 article-title: Stratified randomization for clinical trials publication-title: J Clin Epidemiol – year: 1983 – volume: 45 start-page: 21 year: 2015 end-page: 25 article-title: The pursuit of balance: an overview of covariate‐adaptive randomization techniques in clinical trials publication-title: Contemp Clin Trials – volume: 24 start-page: 43 year: 2003 end-page: 55 article-title: An extended minimization method to assure similar means of continuous prognostic variables between treatment groups publication-title: Jpn J Biom – volume: 66 start-page: 4477 year: 2020 end-page: 4495 article-title: Near‐optimal A‐B testing publication-title: Manag Sci – volume: 4 start-page: 179 year: 2003 end-page: 193 article-title: The distribution of loss in two‐treatment biased‐coin designs publication-title: Biostatistics – volume: 22 start-page: 719 year: 2012 end-page: 736 article-title: Adaptive randomization for clinical trials publication-title: J Biopharm Stat – volume: 113 start-page: 136 year: 2017 end-page: 153 article-title: A Bayesian adaptive design for clinical trials in rare diseases publication-title: Comput Stat Data Anal – volume: 83 start-page: 239 year: 2015 end-page: 262 article-title: Finding Bayesian optimal designs for nonlinear models: a semidefinite programming‐based approach publication-title: Int Stat Rev – volume: 8:387 year: 2014 article-title: The ethics of clinical trials publication-title: Ecancermedicalscience – volume: 137 start-page: 101 year: 2019 end-page: 114 article-title: An algorithm for generating good mixed level factorial designs publication-title: Comput Stat Data Anal – year: 2016 – year: 1977 – volume: 8 start-page: 1 year: 2013 end-page: 12 article-title: Experimental designs for small randomised clinical trials: an algorithm for choice publication-title: Orphanet J Rare Dis – year: 2010 – volume: 33:1‐18 year: 2023 article-title: Constructing two‐level QB‐optimal screening designs using mixed‐integer programming and heuristic algorithms publication-title: Stat Comput – volume: 75 start-page: 701 year: 2019 end-page: 711 article-title: Randomized phase 1 trial of pembrolizumab with sequential versus concomitant stereotactic body radiotherapy in metastatic urothelial carcinoma publication-title: Eur Urol – volume: 11 start-page: 39 year: 2012 end-page: 48 article-title: Quantitative comparison of randomization designs in sequential clinical trials based on treatment balance and allocation randomness publication-title: Pharm Stat – volume: 31 start-page: 103 year: 1975 end-page: 115 article-title: Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial publication-title: Biometrics – volume: 51 start-page: 792 year: 2009 end-page: 797 article-title: Ethics in clinical research publication-title: J Hepatol – volume: 69 start-page: 61 issue: 1 year: 1982 end-page: 67 article-title: Optimum biased coin designs for sequential clinical trials with prognostic factors publication-title: Biometrika – volume: 143 start-page: 1249 year: 2013 end-page: 1272 article-title: Energy statistics: a class of statistics based on distances publication-title: J Stat Plan Inference – volume: 14 start-page: 1 year: 2013 end-page: 8 article-title: Introduction to a generalized method for adaptive randomization in trials publication-title: Trials – volume: 58 start-page: 403 year: 1971 end-page: 417 article-title: Forcing a sequential experiment to be balanced publication-title: Biometrika – volume: 15 start-page: 443 year: 1974 end-page: 453 article-title: Minimization: a new method of assigning patients to treatment and control groups publication-title: Clin Pharmacol Ther – volume: 67 start-page: 1150 year: 2019 end-page: 1161 article-title: Covariate‐adaptive optimization in online clinical trials publication-title: Oper Res – volume: 8 start-page: 264 year: 2009 end-page: 278 article-title: Use of simulation to compare the performance of minimization with stratified blocked randomization publication-title: Pharm Stat – volume: 180 start-page: 99 year: 2007 end-page: 115 article-title: A review of interactive methods for multiobjective integer and mixed‐integer programming publication-title: Eur J Oper Res – volume: 18 start-page: 1741 year: 1999 end-page: 1752 article-title: Optimum biased‐coin designs for sequential treatment allocation with covariate information publication-title: Stat Med – ident: e_1_2_8_36_1 doi: 10.1002/9781118575574 – ident: e_1_2_8_42_1 doi: 10.1137/S1052623401392354 – volume: 67 start-page: 1150 year: 2019 ident: e_1_2_8_22_1 article-title: Covariate‐adaptive optimization in online clinical trials publication-title: Oper Res – ident: e_1_2_8_41_1 doi: 10.1007/978-3-540-68279-0 – volume-title: Applied Mathematical Programming year: 1977 ident: e_1_2_8_10_1 – ident: e_1_2_8_46_1 doi: 10.1016/j.eururo.2019.01.009 – ident: e_1_2_8_20_1 doi: 10.1080/00224065.2020.1712275 – ident: e_1_2_8_37_1 doi: 10.1093/biomet/58.3.403 – ident: e_1_2_8_32_1 doi: 10.1093/biostatistics/4.2.179 – ident: e_1_2_8_4_1 doi: 10.1080/10543406.2012.676535 – ident: e_1_2_8_38_1 doi: 10.1186/s12874-021-01303-z – volume: 33 year: 2023 ident: e_1_2_8_16_1 article-title: Constructing two‐level QB‐optimal screening designs using mixed‐integer programming and heuristic algorithms publication-title: Stat Comput doi: 10.1007/s11222-022-10168-1 – ident: e_1_2_8_24_1 doi: 10.1016/j.jspi.2013.03.018 – ident: e_1_2_8_2_1 doi: 10.1002/9781118742112 – ident: e_1_2_8_52_1 doi: 10.1287/mnsc.1100.1248 – ident: e_1_2_8_21_1 doi: 10.1016/j.csda.2016.09.006 – ident: e_1_2_8_18_1 doi: 10.1016/j.csda.2019.01.020 – ident: e_1_2_8_5_1 doi: 10.1186/1750-1172-8-48 – volume-title: Graphical Methods for Data Analysis year: 1983 ident: e_1_2_8_48_1 – ident: e_1_2_8_14_1 doi: 10.1016/j.jmva.2014.11.006 – ident: e_1_2_8_12_1 doi: 10.1007/s11222-013-9420-6 – ident: e_1_2_8_13_1 doi: 10.1111/insr.12073 – ident: e_1_2_8_39_1 doi: 10.1002/pst.346 – ident: e_1_2_8_31_1 doi: 10.1111/1467-985X.00564 – ident: e_1_2_8_17_1 doi: 10.1016/j.jspi.2006.12.003 – ident: e_1_2_8_9_1 doi: 10.1186/1745-6215-14-19 – ident: e_1_2_8_35_1 doi: 10.1016/j.cct.2012.12.004 – ident: e_1_2_8_49_1 doi: 10.1016/j.jhep.2009.07.005 – ident: e_1_2_8_47_1 doi: 10.1016/S0920-1211(96)01006-6 – ident: e_1_2_8_51_1 doi: 10.1016/j.ejor.2006.02.033 – ident: e_1_2_8_6_1 doi: 10.1353/hpu.0.0209 – ident: e_1_2_8_8_1 doi: 10.4103/0974-1208.82352 – ident: e_1_2_8_45_1 doi: 10.1002/pst.493 – ident: e_1_2_8_44_1 doi: 10.1214/aoms/1177706973 – ident: e_1_2_8_29_1 doi: 10.1093/biomet/69.1.61 – ident: e_1_2_8_27_1 doi: 10.1016/0197-2456(91)90207-3 – volume-title: Optimization Over Integers year: 2005 ident: e_1_2_8_40_1 – ident: e_1_2_8_3_1 doi: 10.1214/08-STS269 – volume-title: Small Clinical Trials: Issues and Challenges year: 2001 ident: e_1_2_8_7_1 – volume: 10 start-page: 1249 year: 2004 ident: e_1_2_8_43_1 article-title: Testing for equal distributions in high dimension publication-title: InterStat – ident: e_1_2_8_23_1 doi: 10.1287/mnsc.2019.3424 – ident: e_1_2_8_26_1 doi: 10.1016/S0895-4356(98)00138-3 – ident: e_1_2_8_34_1 doi: 10.5691/jjb.24.43 – ident: e_1_2_8_28_1 doi: 10.1002/cpt1974155443 – ident: e_1_2_8_11_1 doi: 10.1007/s11222-019-09867-z – ident: e_1_2_8_15_1 doi: 10.1007/s11222-017-9741-y – ident: e_1_2_8_25_1 doi: 10.1016/j.cct.2015.07.011 – ident: e_1_2_8_19_1 doi: 10.1016/j.jspi.2008.10.023 – volume: 8 year: 2014 ident: e_1_2_8_50_1 article-title: The ethics of clinical trials publication-title: Ecancermedicalscience – ident: e_1_2_8_30_1 doi: 10.1002/(SICI)1097-0258(19990730)18:14<1741::AID-SIM210>3.0.CO;2-F – ident: e_1_2_8_33_1 doi: 10.2307/2529712 |
| SSID | ssj0017895 |
| Score | 2.3396966 |
| Snippet | Modern randomization methods in clinical trials are invariably adaptive, meaning that the assignment of the next subject to a treatment group uses the... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 794 |
| SubjectTerms | Adaptive Clinical Trials as Topic Clinical trials covariate‐adaptive trial energy distance Humans Main Paper Mathematical programming minimization method Models, Statistical prior information Random Allocation Randomized Controlled Trials as Topic - methods Randomized Controlled Trials as Topic - statistics & numerical data Research Design - statistics & numerical data Sample Size |
| Title | Mathematical programming tools for randomization purposes in small two‐arm clinical trials: A case study with real data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2388 https://www.ncbi.nlm.nih.gov/pubmed/38613324 https://www.proquest.com/docview/3133567990 https://www.proquest.com/docview/3038435484 https://pubmed.ncbi.nlm.nih.gov/PMC11602943 |
| Volume | 23 |
| WOSCitedRecordID | wos001201340400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1539-1612 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017895 issn: 1539-1604 databaseCode: DRFUL dateStart: 20020101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMX3o_AshokVC4btomf4bYCKg7LKoIu6i2KXUdUSpNqnQX1xk_gN_JLGCdpSrUgIXFJDhk7lj3j-fyYbwh5oW3EpU50KDjNQ6ajIlSxLEKc-qRnsNKsTZ3w-VSenanZLEn7W5U-Fqbjhxg23LxltPO1N_Bcu-MtaejKNa_Q36jrZD-KqPJpG2KWDicIUrUZV9CgkzASY7Yhnh3Hx5uSu67oCr68ek3yd_ja-p_J7f9p-R1yq0edcNKpyV1yzVb3yCjtaKvXRzDdRmG5IxhBuiW0Xt8n6w8DtytW0t_oWqLPg6auSweIewFd3rxe9kGdsMLhq511sKjALfOyhOZb_fP7D6wVNrGY0CYMca_hBAy6UmiJbsHvCwMC2RL83dUH5HzybvrmfdinbAgNIhsV5ppbTmXCqTVSzmNLuVa20NwYzcaazRk3VPDYMFNIbgRO08ZSUWCJSEsq6EOyV9WVfUwAV3J5kUdc88Qf7uEqfh5JqYVQphCx5gF5uRm9zPR85j6tRpl1TMxxhv2c-X4OyPNBctVxePxB5mCjAFlvxS6juIDnQqLDxiqGz2h__lAlr2x9iTJjqhByMsUC8qjTl-EnVCFYQsQaELWjSYOA5_be_VItvrQc3xHqbJwwGpBRq0p_bXiWfpr695N_FXxKbsYIzLp4ygOy11xc2mfkhvnaLNzFYWtE-JQzdUj2336cnJ_-AgqwJtA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VggQX3o9AASOh5dK0m_gZOFWIqojtKhIL6i2KvY5YKZusmhS0N34Cv5FfwjivZVWQkDjl4LFj2TOez4_5BuCltgGXOtK-4DT1mQ4yX4Uy83Hpk47BSrMmdcLniZxO1dlZFO_Amz4WpuWHGA7cnGU067UzcHcgfbhhDV1V9QE6HHUFrjJ0Mk7JQxYPVwhSNSlX0KIjPxBj1jPPjsPDvua2L7oEMC-_k_wdvzYO6PjWf3X9NtzscCc5ahXlDuzY4i6M4pa4er1PZps4rGqfjEi8obRe34P16cDuio10b7qW6PVIXZZ5RRD5EnR683LZhXWSFU5gWdmKLApSLdM8J_W38uf3H9gq6aMxSZMypHpNjohBZ0oaqlviToYJQtmcuNer9-HT8bvZ2xO_S9rgG8Q2yk81t5zKiFNrpJyHlnKtbKa5MZqNNZszbqjgoWEmk9wIXKiNpSLDGoGWVNAHsFuUhX0EBPdyaZYGXPPIXe_hPn4eSKmFUCYToeYevOqnLzEdo7lLrJEnLRdzmOA4J26cPXgxSK5aFo8_yOz1GpB0dlwlFLfwXEh02djEUIwW6K5V0sKWFygzpgpBJ1PMg4etwgw_oQrhEmJWD9SWKg0Cjt17u6RYfGlYvgNU2jBi1INRo0t_7XgSf5y57-N_FXwO109mp5Nk8n764QncCBGmtdGVe7Bbn1_Yp3DNfK0X1fmzxqJ-AVDeKDM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXYS48IYNLGAkVC4btont2IHTiqUCUaoIumhvUew42kptUm2yoN74CfxGfgnjvEq1ICFxysFjx7JnPJ8f8w3Ac2U8LlSo3IDTxGXKy1zpi8zFpU9YBivF6tQJXyZiOpWnp2G0A6-7WJiGH6I_cLOWUa_X1sDNKs0ON6yhq7J6iQ5HXoFdZnPIDGD3-NP4ZNJfIghZJ11Bmw5dLxixjnt25B92dbe90SWIefml5O8ItnZB45v_1flbcKNFnuSoUZXbsGPyOzCMGurq9QGZbSKxygMyJNGG1Hp9F9Yfe35XbKR91bVEv0eqoliUBLEvQbeXFss2sJOscAqL0pRknpNymSwWpPpW_Pz-A1slXTwmqZOGlK_IEdHoTklNdkvs2TBBMLsg9v3qPTgZv529eee2aRtcjehGuonihlMRcmq0EKlvKFfSZIprrdhIsZRxTQPua6YzwXWAS7U2NMiwhqcEDeh9GORFbvaA4G4uyRKPKx7aCz7cyaeeECoIpM4CX3EHXnTTF-uW09ym1ljEDRuzH-M4x3acHXjWS64aHo8_yOx3GhC3llzGFDfxPBDotLGJvhht0F6sJLkpLlBmRCXCTiaZAw8ahel_QiUCJkStDsgtVeoFLL_3dkk-P6t5vj1UWj9k1IFhrUt_7XgcfZ7Z78N_FXwK16LjcTx5P_3wCK77iNOa8Mp9GFTnF-YxXNVfq3l5_qQ1qV_1MClJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+programming+tools+for+randomization+purposes+in+small+two%E2%80%90arm+clinical+trials%3A+A+case+study+with+real+data&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=Vazquez%2C+Alan+R.&rft.au=Wong%2C+Weng%E2%80%90Kee&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1539-1604&rft.eissn=1539-1612&rft.volume=23&rft.issue=6&rft.spage=794&rft.epage=812&rft_id=info:doi/10.1002%2Fpst.2388&rft_id=info%3Apmid%2F38613324&rft.externalDocID=PMC11602943 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon |