Construction of Function‐Oriented Core–Shell Nanostructures in Hydrogen‐Bonded Organic Frameworks for Near‐Infrared‐Responsive Bacterial Inhibition

Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanopa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 60; číslo 49; s. 25701 - 25707
Hlavní autoři: Liu, Bai‐Tong, Pan, Xiao‐Hong, Zhang, Ding‐Yang, Wang, Rui, Chen, Jun‐Yu, Fang, Han‐Ru, Liu, Tian‐Fu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.12.2021
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications. In this study, core–shell heterostructures of upconversion nanoparticles (UCNPs) and hydrogen‐bonded organic frameworks (HOFs) were fabricated via a stepwise ligand‐grafting method. The UCNP “core” can effectively upconvert near‐infrared (NIR) irradiation into visible ranges, which can further excite the HOF “shell” to achieve near‐infrared‐responsive photothermal and photodynamic bacterial inhibition.
AbstractList Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.
Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli . This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.
Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications. In this study, core–shell heterostructures of upconversion nanoparticles (UCNPs) and hydrogen‐bonded organic frameworks (HOFs) were fabricated via a stepwise ligand‐grafting method. The UCNP “core” can effectively upconvert near‐infrared (NIR) irradiation into visible ranges, which can further excite the HOF “shell” to achieve near‐infrared‐responsive photothermal and photodynamic bacterial inhibition.
Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the "bottle-around-ship" strategy, core-shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand-grafting stepwise method. The UCNPs "core" can effectively upconvert near-infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide-based HOF "shell" through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR-responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF-based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the "bottle-around-ship" strategy, core-shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand-grafting stepwise method. The UCNPs "core" can effectively upconvert near-infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide-based HOF "shell" through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR-responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF-based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.
Author Liu, Bai‐Tong
Pan, Xiao‐Hong
Liu, Tian‐Fu
Fang, Han‐Ru
Chen, Jun‐Yu
Zhang, Ding‐Yang
Wang, Rui
Author_xml – sequence: 1
  givenname: Bai‐Tong
  orcidid: 0000-0002-2493-0849
  surname: Liu
  fullname: Liu, Bai‐Tong
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xiao‐Hong
  surname: Pan
  fullname: Pan, Xiao‐Hong
  organization: Fujian Agriculture and Forestry University
– sequence: 3
  givenname: Ding‐Yang
  surname: Zhang
  fullname: Zhang, Ding‐Yang
  organization: Fujian Agriculture and Forestry University
– sequence: 4
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Jun‐Yu
  surname: Chen
  fullname: Chen, Jun‐Yu
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Han‐Ru
  surname: Fang
  fullname: Fang, Han‐Ru
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Tian‐Fu
  orcidid: 0000-0001-9096-6981
  surname: Liu
  fullname: Liu, Tian‐Fu
  email: tfliu@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34477299$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJaS7ttssi6KabmepiW_IyGTLNQJiBXtZGlo8TpR5pemQnzC6PUOg6L5cnidxJUwiUrnQE3yf955xDsueDB0LecjbljImPxjuYCib4eNMvyAHPBZ9IpeReqjMpJ0rnfJ8cxng1EpoVr8i-zDKlRFkekLtZ8LHHwfYueBpaOh_87_r-9ucKHfgeGjoLCPe3v75cQtfRpfFhZwwIkTpPz7YNhgsYlZPgmySs8CIFs3SOZg03Ab9H2gakSzCYoIVv0SA0qfwMcZMCuGugJ8b2gM50dOEvXe3GEK_Jy9Z0Ed48nkfk2_z06-xscr76tJgdn09sJks9KfKaW6VrYXQNlguhTNsYKSznorYlr3OdGQu1ym2mtRK1lkwIZjJjdFkwJo_Ih927Gww_Boh9tXbRpm6NhzDESuRFKbXkQib0_TP0KgzoU7pKFIxnuSr4SL17pIZ6DU21Qbc2uK3-DD4B0x1gMcSI0D4hnFXjLqtxs9XTZpOQPROs6804pB6N6_6tlTvtxnWw_c8n1fFycfrXfQBno79H
CitedBy_id crossref_primary_10_1002_adom_202202122
crossref_primary_10_1016_j_chemosphere_2024_141143
crossref_primary_10_1039_D3QI01473H
crossref_primary_10_1016_j_chempr_2025_102445
crossref_primary_10_1016_j_mtchem_2025_102663
crossref_primary_10_1002_adfm_202300954
crossref_primary_10_1007_s40843_022_2143_2
crossref_primary_10_1021_acscentsci_2c01196
crossref_primary_10_1039_D3SC03532H
crossref_primary_10_1002_adhm_202402079
crossref_primary_10_1016_j_bios_2023_115835
crossref_primary_10_1002_advs_202204036
crossref_primary_10_1002_ange_202215591
crossref_primary_10_1002_asia_202401961
crossref_primary_10_1002_adma_202411229
crossref_primary_10_1002_ange_202511088
crossref_primary_10_1038_s41467_025_55885_z
crossref_primary_10_1002_chem_202201571
crossref_primary_10_1039_D5CC03761A
crossref_primary_10_1016_j_talanta_2023_125068
crossref_primary_10_1002_anie_202401448
crossref_primary_10_1016_j_biomaterials_2025_123734
crossref_primary_10_1007_s11426_024_2024_8
crossref_primary_10_1016_j_jhazmat_2023_130869
crossref_primary_10_1007_s11426_025_2655_1
crossref_primary_10_1016_j_ccr_2024_216424
crossref_primary_10_1002_ange_202401448
crossref_primary_10_1007_s40820_023_01237_9
crossref_primary_10_1002_ange_202312393
crossref_primary_10_1002_anie_202312784
crossref_primary_10_1002_cphc_202200742
crossref_primary_10_1002_anie_202208677
crossref_primary_10_1002_slct_202404417
crossref_primary_10_1039_D5TB01528F
crossref_primary_10_1002_anie_202201485
crossref_primary_10_1002_anie_202413805
crossref_primary_10_1016_j_ccr_2022_214641
crossref_primary_10_1016_j_ccr_2024_216068
crossref_primary_10_1039_D5TA01211B
crossref_primary_10_1021_acs_analchem_4c06917
crossref_primary_10_1002_anie_202312393
crossref_primary_10_1007_s11426_025_2608_4
crossref_primary_10_1002_adfm_202410113
crossref_primary_10_1002_anie_202511088
crossref_primary_10_1039_D3QI00570D
crossref_primary_10_1002_smll_202410063
crossref_primary_10_1039_D4EE03766A
crossref_primary_10_1007_s40820_023_01180_9
crossref_primary_10_1002_adom_202202386
crossref_primary_10_1002_advs_202400101
crossref_primary_10_1002_ange_202201485
crossref_primary_10_1016_j_apsusc_2024_160717
crossref_primary_10_1002_adma_202502416
crossref_primary_10_1002_ange_202208677
crossref_primary_10_1002_ange_202312784
crossref_primary_10_1016_j_ccr_2024_215760
crossref_primary_10_1007_s12274_024_6665_7
crossref_primary_10_1016_j_mattod_2025_06_016
crossref_primary_10_1063_5_0204199
crossref_primary_10_1007_s11426_022_1333_9
crossref_primary_10_1039_D4QI01543F
crossref_primary_10_1002_adhm_202402342
crossref_primary_10_1002_agt2_481
crossref_primary_10_1021_jacs_2c02598
crossref_primary_10_1002_adhm_202202432
crossref_primary_10_1007_s11426_023_1689_1
crossref_primary_10_1038_s41929_023_00999_0
crossref_primary_10_1039_D3QI00965C
crossref_primary_10_3389_fbioe_2025_1661224
crossref_primary_10_1002_anie_202215591
crossref_primary_10_1016_j_cclet_2023_109381
crossref_primary_10_1002_adma_202406026
crossref_primary_10_1016_j_dyepig_2025_113167
crossref_primary_10_3390_separations10030196
crossref_primary_10_1002_anie_202404452
crossref_primary_10_3390_nano15131000
crossref_primary_10_1016_j_cclet_2024_109522
crossref_primary_10_1002_ange_202404452
crossref_primary_10_1002_ange_202413805
crossref_primary_10_1002_cplu_202300352
crossref_primary_10_1007_s11426_023_1829_8
crossref_primary_10_1002_agt2_70045
crossref_primary_10_1021_acs_inorgchem_5c02495
crossref_primary_10_1016_j_jece_2024_112815
crossref_primary_10_1016_j_nantod_2022_101751
crossref_primary_10_1016_j_cis_2025_103504
crossref_primary_10_1186_s12951_024_02569_3
crossref_primary_10_1016_j_cej_2022_141017
crossref_primary_10_1002_advs_202305308
crossref_primary_10_1038_s41467_025_63126_6
crossref_primary_10_1016_j_chempr_2022_06_015
Cites_doi 10.1016/j.inoche.2009.12.031
10.1002/ange.201800354
10.1039/c2cc32112b
10.1002/adma.201501779
10.1002/anie.201810541
10.1038/s41467-019-08434-4
10.1021/acsnano.6b05810
10.1021/acsnano.6b00168
10.1039/D0TA07457H
10.1002/anie.201712949
10.1002/adma.201301834
10.1021/acsnano.7b04731
10.1002/ange.202001107
10.1002/anie.201912536
10.1002/ange.201408067
10.1039/C5TC01401H
10.1021/acs.inorgchem.9b03743
10.1021/ja508822r
10.1039/C4CC05896H
10.1039/D1TA00100K
10.1002/ange.201810541
10.1021/ja984188m
10.1021/ja901077a
10.1021/jacs.9b07695
10.1021/acs.chemrev.5b00188
10.1002/anie.201606155
10.1039/C5SC01167A
10.1021/jacs.9b03766
10.1021/jacs.9b12788
10.1002/ange.201912536
10.1002/anie.201408067
10.1002/anie.201902147
10.1002/anie.202006926
10.1002/anie.202001107
10.1021/acsnano.0c00043
10.1021/acs.nanolett.7b04162
10.1021/jacs.9b01563
10.1002/aenm.202100061
10.1016/j.msec.2017.06.020
10.1021/acsnano.6b08720
10.1039/D1NA00199J
10.1093/nsr/nwz122
10.1039/C4RA13609H
10.1002/ange.201712949
10.1021/acs.inorgchem.6b02479
10.1038/s41467-021-22475-8
10.1021/nl201400z
10.1002/ange.202100342
10.1002/anie.201005075
10.1002/ange.202006926
10.1039/C8CS00155C
10.1002/ange.201708971
10.1002/ange.201606155
10.1038/s41467-019-08416-6
10.1002/anie.201800354
10.1021/nn203293t
10.1021/jacs.0c06473
10.1002/ange.201005075
10.1038/nchem.444
10.1007/978-1-4757-3061-6
10.1021/jacs.9b13027
10.1002/anie.202100342
10.1002/adfm.201807599
10.1039/C8CC00177D
10.1002/adma.201602997
10.1021/accountsmr.0c00019
10.1002/ange.201909732
10.1002/adma.201908537
10.1002/anie.201708971
10.1021/acs.chemrev.5b00091
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202110028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 25707
ExternalDocumentID 34477299
10_1002_anie_202110028
ANIE202110028
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: cas-iranian vice presidency for science and technology joint research project
  funderid: 121835KYSB20200034
– fundername: national natural science foundation of china
  funderid: 22071246; 22005305; 22033008
– fundername: fujian science technology innovation laboratory for optoelectronic information of china
  funderid: 2021ZR105
– fundername: national key research and development program of china
  funderid: 2018YFA0208600
– fundername: cas-iranian vice presidency for science and technology joint research project
  grantid: 121835KYSB20200034
– fundername: national natural science foundation of china
  grantid: 22071246
– fundername: national natural science foundation of china
  grantid: 22033008
– fundername: national key research and development program of china
  grantid: 2018YFA0208600
– fundername: national natural science foundation of china
  grantid: 22005305
– fundername: fujian science technology innovation laboratory for optoelectronic information of china
  grantid: 2021ZR105
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AAMMB
AANHP
AASGY
AAYJJ
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ABUFD
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGXDD
AGYGG
AI.
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
O8X
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4398-65b1c78b2a8bec1227afda32c112bc91b584aceb75c48872b830220a4aa896003
IEDL.DBID DRFUL
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700475900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Thu Oct 02 10:33:50 EDT 2025
Tue Oct 07 07:24:13 EDT 2025
Thu Apr 03 06:49:11 EDT 2025
Sat Nov 29 02:36:27 EST 2025
Tue Nov 18 21:08:07 EST 2025
Wed Jan 22 16:27:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords photothermal
resonance energy transfer
antimicrobials
photodynamic
core-shell composite
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-65b1c78b2a8bec1227afda32c112bc91b584aceb75c48872b830220a4aa896003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2493-0849
0000-0001-9096-6981
PMID 34477299
PQID 2601457613
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2569383123
proquest_journals_2601457613
pubmed_primary_34477299
crossref_primary_10_1002_anie_202110028
crossref_citationtrail_10_1002_anie_202110028
wiley_primary_10_1002_anie_202110028_ANIE202110028
PublicationCentury 2000
PublicationDate December 1, 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 80
2013; 25
2010; 13
2019; 10
2020 2020; 59 132
1999; 121
2020; 59
2011; 11
2020; 14
2014; 136
2020; 8
2020; 7
2020; 1
2018 2018; 57 130
2015 2015; 54 127
2019; 29
2016; 116
2014; 50
2021; 9
2021; 7
2015; 6
2015; 5
2021; 3
2015; 3
2020; 142
2016; 10
2020; 32
2017 2017; 56 129
2009; 131
2019; 141
2011; 5
2019 2019; 58 131
1999
2018; 18
2015; 27
2016 2016; 55 128
2021; 12
2021; 11
2015; 115
2021
2017; 11
2019; 48
2017; 56
2021 2021; 60 133
2011 2011; 50 123
2012; 48
2016; 28
2009; 1
2018; 54
e_1_2_2_4_2
e_1_2_2_4_3
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_1
e_1_2_2_64_2
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_66_2
e_1_2_2_45_1
e_1_2_2_64_3
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_66_3
e_1_2_2_68_1
e_1_2_2_60_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_51_2
e_1_2_2_72_3
e_1_2_2_74_2
e_1_2_2_72_2
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_30_3
e_1_2_2_53_1
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_78_2
e_1_2_2_34_2
e_1_2_2_76_2
e_1_2_2_15_1
e_1_2_2_34_3
e_1_2_2_57_1
e_1_2_2_70_2
Huang Q. Y. (e_1_2_2_6_2) 2021; 7
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_48_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
Liu B. T. (e_1_2_2_24_1) 2020; 32
e_1_2_2_63_1
e_1_2_2_40_2
e_1_2_2_61_2
e_1_2_2_40_3
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_44_1
e_1_2_2_65_2
e_1_2_2_9_3
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_67_2
Yang Y. (e_1_2_2_8_2) 2021
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_3
e_1_2_2_50_2
e_1_2_2_75_2
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_73_2
e_1_2_2_16_3
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_33_3
e_1_2_2_35_1
e_1_2_2_14_2
Liu B.-t. (e_1_2_2_17_2) 2020; 8
e_1_2_2_56_2
e_1_2_2_77_2
e_1_2_2_71_2
References_xml – volume: 57 130
  start-page: 7691 7817
  year: 2018 2018
  end-page: 7696 7822
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 752 762
  year: 2020 2020
  end-page: 757 767
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 2208
  year: 2018
  end-page: 2211
  publication-title: Chem. Commun.
– volume: 48
  start-page: 6402
  year: 2012
  end-page: 6404
  publication-title: Chem. Commun.
– volume: 18
  start-page: 886
  year: 2018
  end-page: 897
  publication-title: Nano Lett.
– volume: 10
  start-page: 4472
  year: 2016
  end-page: 4481
  publication-title: ACS Nano
– volume: 54 127
  start-page: 3611 3682
  year: 2015 2015
  end-page: 3614 3685
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 3797
  year: 2017
  end-page: 3805
  publication-title: ACS Nano
– volume: 59 132
  start-page: 22392 22578
  year: 2020 2020
  end-page: 22396 22582
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 19799
  year: 2020
  end-page: 19804
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 3441
  year: 2021
  end-page: 3446
  publication-title: Nanoscale Adv.
– volume: 1
  start-page: 77
  year: 2020
  end-page: 87
  publication-title: Acc. Mater. Res.
– volume: 13
  start-page: 392
  year: 2010
  end-page: 394
  publication-title: Inorg. Chem. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 5483
  year: 2013
  end-page: 5489
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 6
  year: 2020
  publication-title: Adv. Mater.
– volume: 50 123
  start-page: 441 461
  year: 2011 2011
  end-page: 444 464
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 14433
  year: 2019
  end-page: 14442
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 9330
  year: 2017
  end-page: 9339
  publication-title: ACS Nano
– volume: 7
  start-page: 13
  year: 2021
  publication-title: Chem
– volume: 50
  start-page: 12462
  year: 2014
  end-page: 12464
  publication-title: Chem. Commun.
– volume: 7
  start-page: 170
  year: 2020
  end-page: 190
  publication-title: Natl. Sci. Rev.
– volume: 141
  start-page: 7407
  year: 2019
  end-page: 7413
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 16895
  year: 2014
  end-page: 16901
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 14014 14118
  year: 2020 2020
  end-page: 14018 14122
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 3177
  year: 2015
  end-page: 3186
  publication-title: RSC Adv.
– volume: 28
  start-page: 9320
  year: 2016
  end-page: 9325
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 11160 11278
  year: 2019 2019
  end-page: 11170 11288
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 8735
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 2509
  year: 2020
  end-page: 2521
  publication-title: ACS Nano
– volume: 10
  start-page: 600
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2560
  year: 2011
  end-page: 2566
  publication-title: Nano Lett.
– volume: 5
  start-page: 9761
  year: 2011
  end-page: 9771
  publication-title: ACS Nano
– volume: 12
  start-page: 2146
  year: 2021
  publication-title: Nat. Commun.
– volume: 115
  start-page: 10725
  year: 2015
  end-page: 10815
  publication-title: Chem. Rev.
– volume: 131
  start-page: 6215
  year: 2009
  end-page: 6228
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 14399
  year: 2020
  end-page: 14416
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3975
  year: 2015
  end-page: 3980
  publication-title: Chem. Sci.
– volume: 141
  start-page: 8737
  year: 2019
  end-page: 8740
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4687
  year: 2021
  end-page: 4691
  publication-title: J. Mater. Chem. A
– volume: 57 130
  start-page: 3963 4027
  year: 2018 2018
  end-page: 3967 4031
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 1362
  year: 2019
  end-page: 1389
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 16239 16457
  year: 2017 2017
  end-page: 16242 16460
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56
  start-page: 872
  year: 2017
  end-page: 877
  publication-title: Inorg. Chem.
– volume: 142
  start-page: 2204
  year: 2020
  end-page: 2207
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 3297
  year: 2020
  end-page: 3303
  publication-title: Inorg. Chem.
– volume: 116
  start-page: 962
  year: 2016
  end-page: 1052
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 121
  start-page: 3513
  year: 1999
  end-page: 3520
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 695
  year: 2009
  end-page: 704
  publication-title: Nat. Chem.
– year: 2021
  publication-title: Nat. Chem.
– volume: 55 128
  start-page: 13979 14185
  year: 2016 2016
  end-page: 13984 14190
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 4075
  year: 2015
  end-page: 4080
  publication-title: Adv. Mater.
– volume: 10
  start-page: 11000
  year: 2016
  end-page: 11011
  publication-title: ACS Nano
– volume: 8
  start-page: 12
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 142
  start-page: 3939
  year: 2020
  end-page: 3946
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 767
  year: 2019
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 1638 1652
  year: 2019 2019
  end-page: 1642 1656
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 10304 10392
  year: 2021 2021
  end-page: 10310 10398
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 80
  start-page: 558
  year: 2017
  end-page: 565
  publication-title: Mater. Sci. Eng. C
– year: 1999
– ident: e_1_2_2_56_2
  doi: 10.1016/j.inoche.2009.12.031
– ident: e_1_2_2_18_2
  doi: 10.1002/ange.201800354
– ident: e_1_2_2_49_2
  doi: 10.1039/c2cc32112b
– ident: e_1_2_2_26_1
  doi: 10.1002/adma.201501779
– ident: e_1_2_2_54_1
– ident: e_1_2_2_64_2
  doi: 10.1002/anie.201810541
– ident: e_1_2_2_29_2
  doi: 10.1038/s41467-019-08434-4
– ident: e_1_2_2_42_1
  doi: 10.1021/acsnano.6b05810
– ident: e_1_2_2_38_1
– ident: e_1_2_2_39_2
  doi: 10.1021/acsnano.6b00168
– ident: e_1_2_2_10_2
  doi: 10.1039/D0TA07457H
– ident: e_1_2_2_72_2
  doi: 10.1002/anie.201712949
– ident: e_1_2_2_31_1
– ident: e_1_2_2_71_2
  doi: 10.1002/adma.201301834
– ident: e_1_2_2_43_1
  doi: 10.1021/acsnano.7b04731
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.202001107
– ident: e_1_2_2_15_1
– ident: e_1_2_2_33_2
  doi: 10.1002/anie.201912536
– ident: e_1_2_2_50_3
  doi: 10.1002/ange.201408067
– ident: e_1_2_2_68_1
– ident: e_1_2_2_62_2
  doi: 10.1039/C5TC01401H
– ident: e_1_2_2_51_2
  doi: 10.1021/acs.inorgchem.9b03743
– ident: e_1_2_2_22_2
  doi: 10.1021/ja508822r
– ident: e_1_2_2_52_2
  doi: 10.1039/C4CC05896H
– ident: e_1_2_2_25_1
  doi: 10.1039/D1TA00100K
– ident: e_1_2_2_64_3
  doi: 10.1002/ange.201810541
– ident: e_1_2_2_32_2
  doi: 10.1021/ja984188m
– ident: e_1_2_2_48_2
  doi: 10.1021/ja901077a
– ident: e_1_2_2_65_2
  doi: 10.1021/jacs.9b07695
– ident: e_1_2_2_44_1
– volume: 7
  start-page: 13
  year: 2021
  ident: e_1_2_2_6_2
  publication-title: Chem
– ident: e_1_2_2_28_2
  doi: 10.1021/acs.chemrev.5b00188
– ident: e_1_2_2_63_1
– ident: e_1_2_2_66_2
  doi: 10.1002/anie.201606155
– ident: e_1_2_2_75_2
  doi: 10.1039/C5SC01167A
– ident: e_1_2_2_60_1
– ident: e_1_2_2_13_2
  doi: 10.1021/jacs.9b03766
– ident: e_1_2_2_36_2
  doi: 10.1021/jacs.9b12788
– volume: 32
  start-page: 6
  year: 2020
  ident: e_1_2_2_24_1
  publication-title: Adv. Mater.
– ident: e_1_2_2_33_3
  doi: 10.1002/ange.201912536
– ident: e_1_2_2_50_2
  doi: 10.1002/anie.201408067
– ident: e_1_2_2_4_2
  doi: 10.1002/anie.201902147
– ident: e_1_2_2_47_1
– ident: e_1_2_2_16_2
  doi: 10.1002/anie.202006926
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.202001107
– ident: e_1_2_2_74_2
  doi: 10.1021/acsnano.0c00043
– ident: e_1_2_2_78_2
  doi: 10.1021/acs.nanolett.7b04162
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_53_1
  doi: 10.1021/jacs.9b01563
– ident: e_1_2_2_57_1
– ident: e_1_2_2_20_2
  doi: 10.1002/aenm.202100061
– ident: e_1_2_2_58_2
  doi: 10.1016/j.msec.2017.06.020
– ident: e_1_2_2_73_2
  doi: 10.1021/acsnano.6b08720
– ident: e_1_2_2_11_2
  doi: 10.1039/D1NA00199J
– ident: e_1_2_2_12_1
– ident: e_1_2_2_21_2
  doi: 10.1093/nsr/nwz122
– ident: e_1_2_2_27_1
– ident: e_1_2_2_35_1
– ident: e_1_2_2_59_2
  doi: 10.1039/C4RA13609H
– ident: e_1_2_2_72_3
  doi: 10.1002/ange.201712949
– ident: e_1_2_2_55_2
  doi: 10.1021/acs.inorgchem.6b02479
– ident: e_1_2_2_23_1
  doi: 10.1038/s41467-021-22475-8
– ident: e_1_2_2_69_2
  doi: 10.1021/nl201400z
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.202100342
– ident: e_1_2_2_40_2
  doi: 10.1002/anie.201005075
– ident: e_1_2_2_16_3
  doi: 10.1002/ange.202006926
– ident: e_1_2_2_3_2
  doi: 10.1039/C8CS00155C
– ident: e_1_2_2_34_3
  doi: 10.1002/ange.201708971
– ident: e_1_2_2_66_3
  doi: 10.1002/ange.201606155
– ident: e_1_2_2_14_2
  doi: 10.1038/s41467-019-08416-6
– ident: e_1_2_2_18_1
  doi: 10.1002/anie.201800354
– ident: e_1_2_2_70_2
  doi: 10.1021/nn203293t
– year: 2021
  ident: e_1_2_2_8_2
  publication-title: Nat. Chem.
– ident: e_1_2_2_2_2
  doi: 10.1021/jacs.0c06473
– ident: e_1_2_2_40_3
  doi: 10.1002/ange.201005075
– ident: e_1_2_2_45_1
  doi: 10.1038/nchem.444
– ident: e_1_2_2_61_2
  doi: 10.1007/978-1-4757-3061-6
– ident: e_1_2_2_46_1
  doi: 10.1021/jacs.9b13027
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.202100342
– ident: e_1_2_2_41_1
  doi: 10.1002/adfm.201807599
– ident: e_1_2_2_19_1
– ident: e_1_2_2_76_2
  doi: 10.1039/C8CC00177D
– ident: e_1_2_2_77_2
  doi: 10.1002/adma.201602997
– ident: e_1_2_2_5_2
  doi: 10.1021/accountsmr.0c00019
– ident: e_1_2_2_4_3
  doi: 10.1002/ange.201909732
– volume: 8
  start-page: 12
  year: 2020
  ident: e_1_2_2_17_2
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_2_67_2
  doi: 10.1002/adma.201908537
– ident: e_1_2_2_34_2
  doi: 10.1002/anie.201708971
– ident: e_1_2_2_37_2
  doi: 10.1021/acs.chemrev.5b00091
SSID ssj0028806
Score 2.6341724
Snippet Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their...
Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25701
SubjectTerms Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antimicrobials
Composite materials
Core-shell structure
core–shell composite
E coli
Energy transfer
Escherichia coli - drug effects
Heterostructures
Hydrogen Bonding
I.R. radiation
Imides - chemical synthesis
Imides - chemistry
Imides - pharmacology
Infrared Rays
Irradiation
Microbial Sensitivity Tests
Nanocomposites
Nanoparticles
Nanostructures - chemistry
Near infrared radiation
Particle Size
Perylene - analogs & derivatives
Perylene - chemical synthesis
Perylene - chemistry
Perylene - pharmacology
photodynamic
Photoresponse
Photosensitizing Agents - chemical synthesis
Photosensitizing Agents - chemistry
Photosensitizing Agents - pharmacology
photothermal
Porosity
resonance energy transfer
Surface Properties
Title Construction of Function‐Oriented Core–Shell Nanostructures in Hydrogen‐Bonded Organic Frameworks for Near‐Infrared‐Responsive Bacterial Inhibition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110028
https://www.ncbi.nlm.nih.gov/pubmed/34477299
https://www.proquest.com/docview/2601457613
https://www.proquest.com/docview/2569383123
Volume 60
WOSCitedRecordID wos000700475900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB2aTaG5pE3bJG7ToECgJxNbtlfyMd3GZCFsQj5gb0aSZbpQ7LCbDfSWn1DIOX8uvyQzK9vtUkqhuclYkoX8Rnpjj94A7MtAGMH73Nc6QQdFl6WvIlP6NoitikuZaqeufyJGIzkep2e_neJ3-hDdBzeyjMV6TQau9Ozgl2goncBG_44cGNwjV2CVI3iTHqx-Pc-uTjqnC_HpThhFkU-J6FvhxoAfLPewvDH9wTaXyeti98leP3_cb2C9YZ7s0EFlA17Y6i28GrQJ397BAyXvbOVkWV2yDPc8Kj_e_TwlOWQkp2xQT-3j3f0FxY8yXJpr12KOXjubVOz4RzGtEZPYhBIWYwN32NOwrI0CmzHkyWyEFoaVhlU5pRB4LJ430bq3ln1xEtI42mH1baIXUWXv4So7uhwc-032Bt8gyZF-P9GhEVJzJREnIedClYWKuEGGp00aaqQ-ylgtEoOLiOCalMh4oGKlJLpVQbQJvaqu7Daw1OCyE5RITgobh8JIk2Kv2JGVRWFs7IHfvrrcNNLmlGHje-5EmXlOk553k-7B567-tRP1-GvNnRYJeWPcs5xU2GL008LIg73uNr4s-teiKlvPsU7ST9H5R17gwZZDUPcoEllEnyb1gC-A8o8x5Iej4VF39eF_Gn2ENSq7MJwd6CEy7Cd4aW5vJrPpLqyIsdxtDOcJRi4e4g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9RAFL1oK7Qvfn9Eq44g-BSaTLKb5LGuDbu4Rqkt9C3MTCa4IEnZtQXf-hMEn_1z_SWeu5NEFhFBfMvHzGRIzp05d3LnXKKXaZCYRI6lr_UIDoqua19FpvZtEFsV12mmnbr-PCmK9PQ0-9BFE_JeGKcPMSy4sWWsx2s2cF6Q3v-lGspbsOHgsQeDSfI6bcfAEkC-_eYoP5kPXhcA6rYYRZHPmeh75cZA7m-2sDkz_UY3N9nrevrJb_2Hjt-mmx33FAcOLHfomm3u0s6kT_l2j35w-s5eUFa0tcgx6_Hx1eW39yyIDHoqJu3SXl1-_8gRpAKDc-tqnMNvF4tGTL9WyxaoRBVOWYwKbrunEXkfB7YSYMqigI2h0KyplxwEj8OjLl73worXTkQavZ01nxZ6HVd2n07yw-PJ1O_yN_gGNCf1xyMdmiTVUqVASihloupKRdKA42mThRrkRxmrk5HBMJJIzVpkMlCxUikcqyB6QFtN29hHJDKDgSeoQU8qG4eJSU2GVtGQTavK2Ngjv_92penEzTnHxufSyTLLkl96Obx0j14N5c-crMcfS-71UCg7816VrMMWw1MLI49eDLfxsfhvi2pse44yo3EG9x_MwKOHDkLDo1hmEV5N5pFcI-UvfSgPitnhcPb4Xyo9p53p8bt5OZ8Vb5_QLl93QTl7tAWU2Kd0w1x8WayWzzr7-QmbeyHq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3aTWlzSZs2Td0mqQqFnszasnctH5NNTJYsTkgbyM1IskQXih12k0Bv-QmBnPPn8ks6s7JdllIKJTd_SLKQZ6T37NEbgM8iSHTCh9xXaoAERVnry0hb3wSxkbEVqXLq-pMkz8X5eXrSRBPSXhinD9F9cCPPWMzX5ODmorT936qhtAUbCR4xGFwkn8JKTJlkerCyf5qdTTrWhQbqthhFkU-Z6FvlxoD3l1tYXpn-gJvL6HWx_GQvH6Hjr2CtwZ5s1xnLOjwx1Wt4MWpTvr2Be0rf2QrKstqyDFc9On64uT0mQWSEp2xUz8zDzd1XiiBlODnXrsYV8nY2rdjhz3JWo1ViFUpZjBXcdk_NsjYObM4QKbMcfQwLjSs7oyB4PDxt4nWvDdtzItLY23H1faoWcWUbcJYdfBsd-k3-Bl8jzBH-cKBCnQjFpUBLCTlPpC1lxDViPKXTUCH4kdqoZKBxGkm4Ii0yHshYSoHEKojeQq-qK_MOWKpx4gkswpPSxGGihU6xVWzIiLLUJvbAb99doRtxc8qx8aNwssy8oEEvukH34EtX_sLJevy15FZrCkXj3vOCdNhiZGph5MGn7ja-LPrbIitTX2GZwTBF-o_IwINNZ0Ldo0hmEVlN6gFfWMo_-lDs5uOD7uz9_1T6CM9P9rNiMs6PPsAqXXYxOVvQQyMx2_BMX19O57Odxn1-AfbLIWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Function-Oriented+Core-Shell+Nanostructures+in+Hydrogen-Bonded+Organic+Frameworks+for+Near-Infrared-Responsive+Bacterial+Inhibition&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Bai-Tong&rft.au=Pan%2C+Xiao-Hong&rft.au=Zhang%2C+Ding-Yang&rft.au=Wang%2C+Rui&rft.date=2021-12-01&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=49&rft.spage=25701&rft_id=info:doi/10.1002%2Fanie.202110028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon