Construction of Function‐Oriented Core–Shell Nanostructures in Hydrogen‐Bonded Organic Frameworks for Near‐Infrared‐Responsive Bacterial Inhibition
Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanopa...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 60; no. 49; pp. 25701 - 25707 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.
In this study, core–shell heterostructures of upconversion nanoparticles (UCNPs) and hydrogen‐bonded organic frameworks (HOFs) were fabricated via a stepwise ligand‐grafting method. The UCNP “core” can effectively upconvert near‐infrared (NIR) irradiation into visible ranges, which can further excite the HOF “shell” to achieve near‐infrared‐responsive photothermal and photodynamic bacterial inhibition. |
|---|---|
| AbstractList | Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications. Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli . This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications. Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the “bottle‐around‐ship” strategy, core–shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand‐grafting stepwise method. The UCNPs “core” can effectively upconvert near‐infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide‐based HOF “shell” through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR‐responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF‐based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications. In this study, core–shell heterostructures of upconversion nanoparticles (UCNPs) and hydrogen‐bonded organic frameworks (HOFs) were fabricated via a stepwise ligand‐grafting method. The UCNP “core” can effectively upconvert near‐infrared (NIR) irradiation into visible ranges, which can further excite the HOF “shell” to achieve near‐infrared‐responsive photothermal and photodynamic bacterial inhibition. Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the "bottle-around-ship" strategy, core-shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand-grafting stepwise method. The UCNPs "core" can effectively upconvert near-infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide-based HOF "shell" through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR-responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF-based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the "bottle-around-ship" strategy, core-shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand-grafting stepwise method. The UCNPs "core" can effectively upconvert near-infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide-based HOF "shell" through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR-responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF-based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications. |
| Author | Liu, Bai‐Tong Pan, Xiao‐Hong Liu, Tian‐Fu Fang, Han‐Ru Chen, Jun‐Yu Zhang, Ding‐Yang Wang, Rui |
| Author_xml | – sequence: 1 givenname: Bai‐Tong orcidid: 0000-0002-2493-0849 surname: Liu fullname: Liu, Bai‐Tong organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xiao‐Hong surname: Pan fullname: Pan, Xiao‐Hong organization: Fujian Agriculture and Forestry University – sequence: 3 givenname: Ding‐Yang surname: Zhang fullname: Zhang, Ding‐Yang organization: Fujian Agriculture and Forestry University – sequence: 4 givenname: Rui surname: Wang fullname: Wang, Rui organization: Chinese Academy of Sciences – sequence: 5 givenname: Jun‐Yu surname: Chen fullname: Chen, Jun‐Yu organization: Chinese Academy of Sciences – sequence: 6 givenname: Han‐Ru surname: Fang fullname: Fang, Han‐Ru organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Tian‐Fu orcidid: 0000-0001-9096-6981 surname: Liu fullname: Liu, Tian‐Fu email: tfliu@fjirsm.ac.cn organization: University of Chinese Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34477299$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctq3DAUhkVJaS7ttssi6KabmepiW_IyGTLNQJiBXtZGlo8TpR5pemQnzC6PUOg6L5cnidxJUwiUrnQE3yf955xDsueDB0LecjbljImPxjuYCib4eNMvyAHPBZ9IpeReqjMpJ0rnfJ8cxng1EpoVr8i-zDKlRFkekLtZ8LHHwfYueBpaOh_87_r-9ucKHfgeGjoLCPe3v75cQtfRpfFhZwwIkTpPz7YNhgsYlZPgmySs8CIFs3SOZg03Ab9H2gakSzCYoIVv0SA0qfwMcZMCuGugJ8b2gM50dOEvXe3GEK_Jy9Z0Ed48nkfk2_z06-xscr76tJgdn09sJks9KfKaW6VrYXQNlguhTNsYKSznorYlr3OdGQu1ym2mtRK1lkwIZjJjdFkwJo_Ih927Gww_Boh9tXbRpm6NhzDESuRFKbXkQib0_TP0KgzoU7pKFIxnuSr4SL17pIZ6DU21Qbc2uK3-DD4B0x1gMcSI0D4hnFXjLqtxs9XTZpOQPROs6804pB6N6_6tlTvtxnWw_c8n1fFycfrXfQBno79H |
| CitedBy_id | crossref_primary_10_1002_adom_202202122 crossref_primary_10_1016_j_chemosphere_2024_141143 crossref_primary_10_1039_D3QI01473H crossref_primary_10_1016_j_chempr_2025_102445 crossref_primary_10_1016_j_mtchem_2025_102663 crossref_primary_10_1002_adfm_202300954 crossref_primary_10_1007_s40843_022_2143_2 crossref_primary_10_1021_acscentsci_2c01196 crossref_primary_10_1039_D3SC03532H crossref_primary_10_1002_adhm_202402079 crossref_primary_10_1016_j_bios_2023_115835 crossref_primary_10_1002_advs_202204036 crossref_primary_10_1002_ange_202215591 crossref_primary_10_1002_asia_202401961 crossref_primary_10_1002_adma_202411229 crossref_primary_10_1002_ange_202511088 crossref_primary_10_1038_s41467_025_55885_z crossref_primary_10_1002_chem_202201571 crossref_primary_10_1039_D5CC03761A crossref_primary_10_1016_j_talanta_2023_125068 crossref_primary_10_1002_anie_202401448 crossref_primary_10_1016_j_biomaterials_2025_123734 crossref_primary_10_1007_s11426_024_2024_8 crossref_primary_10_1016_j_jhazmat_2023_130869 crossref_primary_10_1007_s11426_025_2655_1 crossref_primary_10_1016_j_ccr_2024_216424 crossref_primary_10_1002_ange_202401448 crossref_primary_10_1007_s40820_023_01237_9 crossref_primary_10_1002_ange_202312393 crossref_primary_10_1002_anie_202312784 crossref_primary_10_1002_cphc_202200742 crossref_primary_10_1002_anie_202208677 crossref_primary_10_1002_slct_202404417 crossref_primary_10_1039_D5TB01528F crossref_primary_10_1002_anie_202201485 crossref_primary_10_1002_anie_202413805 crossref_primary_10_1016_j_ccr_2022_214641 crossref_primary_10_1016_j_ccr_2024_216068 crossref_primary_10_1039_D5TA01211B crossref_primary_10_1021_acs_analchem_4c06917 crossref_primary_10_1002_anie_202312393 crossref_primary_10_1007_s11426_025_2608_4 crossref_primary_10_1002_adfm_202410113 crossref_primary_10_1002_anie_202511088 crossref_primary_10_1039_D3QI00570D crossref_primary_10_1002_smll_202410063 crossref_primary_10_1039_D4EE03766A crossref_primary_10_1007_s40820_023_01180_9 crossref_primary_10_1002_adom_202202386 crossref_primary_10_1002_advs_202400101 crossref_primary_10_1002_ange_202201485 crossref_primary_10_1016_j_apsusc_2024_160717 crossref_primary_10_1002_adma_202502416 crossref_primary_10_1002_ange_202208677 crossref_primary_10_1002_ange_202312784 crossref_primary_10_1016_j_ccr_2024_215760 crossref_primary_10_1007_s12274_024_6665_7 crossref_primary_10_1016_j_mattod_2025_06_016 crossref_primary_10_1063_5_0204199 crossref_primary_10_1007_s11426_022_1333_9 crossref_primary_10_1039_D4QI01543F crossref_primary_10_1002_adhm_202402342 crossref_primary_10_1002_agt2_481 crossref_primary_10_1021_jacs_2c02598 crossref_primary_10_1002_adhm_202202432 crossref_primary_10_1007_s11426_023_1689_1 crossref_primary_10_1038_s41929_023_00999_0 crossref_primary_10_1039_D3QI00965C crossref_primary_10_3389_fbioe_2025_1661224 crossref_primary_10_1002_anie_202215591 crossref_primary_10_1016_j_cclet_2023_109381 crossref_primary_10_1002_adma_202406026 crossref_primary_10_1016_j_dyepig_2025_113167 crossref_primary_10_3390_separations10030196 crossref_primary_10_1002_anie_202404452 crossref_primary_10_3390_nano15131000 crossref_primary_10_1016_j_cclet_2024_109522 crossref_primary_10_1002_ange_202404452 crossref_primary_10_1002_ange_202413805 crossref_primary_10_1002_cplu_202300352 crossref_primary_10_1007_s11426_023_1829_8 crossref_primary_10_1002_agt2_70045 crossref_primary_10_1021_acs_inorgchem_5c02495 crossref_primary_10_1016_j_jece_2024_112815 crossref_primary_10_1016_j_nantod_2022_101751 crossref_primary_10_1016_j_cis_2025_103504 crossref_primary_10_1186_s12951_024_02569_3 crossref_primary_10_1016_j_cej_2022_141017 crossref_primary_10_1002_advs_202305308 crossref_primary_10_1038_s41467_025_63126_6 crossref_primary_10_1016_j_chempr_2022_06_015 |
| Cites_doi | 10.1016/j.inoche.2009.12.031 10.1002/ange.201800354 10.1039/c2cc32112b 10.1002/adma.201501779 10.1002/anie.201810541 10.1038/s41467-019-08434-4 10.1021/acsnano.6b05810 10.1021/acsnano.6b00168 10.1039/D0TA07457H 10.1002/anie.201712949 10.1002/adma.201301834 10.1021/acsnano.7b04731 10.1002/ange.202001107 10.1002/anie.201912536 10.1002/ange.201408067 10.1039/C5TC01401H 10.1021/acs.inorgchem.9b03743 10.1021/ja508822r 10.1039/C4CC05896H 10.1039/D1TA00100K 10.1002/ange.201810541 10.1021/ja984188m 10.1021/ja901077a 10.1021/jacs.9b07695 10.1021/acs.chemrev.5b00188 10.1002/anie.201606155 10.1039/C5SC01167A 10.1021/jacs.9b03766 10.1021/jacs.9b12788 10.1002/ange.201912536 10.1002/anie.201408067 10.1002/anie.201902147 10.1002/anie.202006926 10.1002/anie.202001107 10.1021/acsnano.0c00043 10.1021/acs.nanolett.7b04162 10.1021/jacs.9b01563 10.1002/aenm.202100061 10.1016/j.msec.2017.06.020 10.1021/acsnano.6b08720 10.1039/D1NA00199J 10.1093/nsr/nwz122 10.1039/C4RA13609H 10.1002/ange.201712949 10.1021/acs.inorgchem.6b02479 10.1038/s41467-021-22475-8 10.1021/nl201400z 10.1002/ange.202100342 10.1002/anie.201005075 10.1002/ange.202006926 10.1039/C8CS00155C 10.1002/ange.201708971 10.1002/ange.201606155 10.1038/s41467-019-08416-6 10.1002/anie.201800354 10.1021/nn203293t 10.1021/jacs.0c06473 10.1002/ange.201005075 10.1038/nchem.444 10.1007/978-1-4757-3061-6 10.1021/jacs.9b13027 10.1002/anie.202100342 10.1002/adfm.201807599 10.1039/C8CC00177D 10.1002/adma.201602997 10.1021/accountsmr.0c00019 10.1002/ange.201909732 10.1002/adma.201908537 10.1002/anie.201708971 10.1021/acs.chemrev.5b00091 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202110028 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 25707 |
| ExternalDocumentID | 34477299 10_1002_anie_202110028 ANIE202110028 |
| Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: cas-iranian vice presidency for science and technology joint research project funderid: 121835KYSB20200034 – fundername: national natural science foundation of china funderid: 22071246; 22005305; 22033008 – fundername: fujian science technology innovation laboratory for optoelectronic information of china funderid: 2021ZR105 – fundername: national key research and development program of china funderid: 2018YFA0208600 – fundername: cas-iranian vice presidency for science and technology joint research project grantid: 121835KYSB20200034 – fundername: national natural science foundation of china grantid: 22071246 – fundername: national natural science foundation of china grantid: 22033008 – fundername: national key research and development program of china grantid: 2018YFA0208600 – fundername: national natural science foundation of china grantid: 22005305 – fundername: fujian science technology innovation laboratory for optoelectronic information of china grantid: 2021ZR105 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AAMMB AANHP AASGY AAYJJ AAYXX ABDBF ABDPE ABEFU ABJNI ABUFD ACBWZ ACRPL ACYXJ ADNMO ADXHL AEFGJ AETEA AEYWJ AGCDD AGHNM AGQPQ AGXDD AGYGG AI. AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB O8X OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4398-65b1c78b2a8bec1227afda32c112bc91b584aceb75c48872b830220a4aa896003 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 102 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700475900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Thu Oct 02 10:33:50 EDT 2025 Tue Oct 07 07:24:13 EDT 2025 Thu Apr 03 06:49:11 EDT 2025 Sat Nov 29 02:36:27 EST 2025 Tue Nov 18 21:08:07 EST 2025 Wed Jan 22 16:27:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 49 |
| Keywords | photothermal resonance energy transfer antimicrobials photodynamic core-shell composite |
| Language | English |
| License | 2021 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4398-65b1c78b2a8bec1227afda32c112bc91b584aceb75c48872b830220a4aa896003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2493-0849 0000-0001-9096-6981 |
| PMID | 34477299 |
| PQID | 2601457613 |
| PQPubID | 946352 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2569383123 proquest_journals_2601457613 pubmed_primary_34477299 crossref_primary_10_1002_anie_202110028 crossref_citationtrail_10_1002_anie_202110028 wiley_primary_10_1002_anie_202110028_ANIE202110028 |
| PublicationCentury | 2000 |
| PublicationDate | December 1, 2021 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 1, 2021 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 80 2013; 25 2010; 13 2019; 10 2020 2020; 59 132 1999; 121 2020; 59 2011; 11 2020; 14 2014; 136 2020; 8 2020; 7 2020; 1 2018 2018; 57 130 2015 2015; 54 127 2019; 29 2016; 116 2014; 50 2021; 9 2021; 7 2015; 6 2015; 5 2021; 3 2015; 3 2020; 142 2016; 10 2020; 32 2017 2017; 56 129 2009; 131 2019; 141 2011; 5 2019 2019; 58 131 1999 2018; 18 2015; 27 2016 2016; 55 128 2021; 12 2021; 11 2015; 115 2021 2017; 11 2019; 48 2017; 56 2021 2021; 60 133 2011 2011; 50 123 2012; 48 2016; 28 2009; 1 2018; 54 e_1_2_2_4_2 e_1_2_2_4_3 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_1 e_1_2_2_64_2 e_1_2_2_43_1 e_1_2_2_28_2 e_1_2_2_66_2 e_1_2_2_45_1 e_1_2_2_64_3 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_66_3 e_1_2_2_68_1 e_1_2_2_60_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_51_2 e_1_2_2_72_3 e_1_2_2_74_2 e_1_2_2_72_2 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_30_3 e_1_2_2_53_1 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_78_2 e_1_2_2_34_2 e_1_2_2_76_2 e_1_2_2_15_1 e_1_2_2_34_3 e_1_2_2_57_1 e_1_2_2_70_2 Huang Q. Y. (e_1_2_2_6_2) 2021; 7 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_48_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 Liu B. T. (e_1_2_2_24_1) 2020; 32 e_1_2_2_63_1 e_1_2_2_40_2 e_1_2_2_61_2 e_1_2_2_40_3 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_44_1 e_1_2_2_65_2 e_1_2_2_9_3 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_67_2 Yang Y. (e_1_2_2_8_2) 2021 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_3 e_1_2_2_50_2 e_1_2_2_75_2 e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_18_2 e_1_2_2_52_2 e_1_2_2_73_2 e_1_2_2_16_3 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_33_3 e_1_2_2_35_1 e_1_2_2_14_2 Liu B.-t. (e_1_2_2_17_2) 2020; 8 e_1_2_2_56_2 e_1_2_2_77_2 e_1_2_2_71_2 |
| References_xml | – volume: 57 130 start-page: 7691 7817 year: 2018 2018 end-page: 7696 7822 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 752 762 year: 2020 2020 end-page: 757 767 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 2208 year: 2018 end-page: 2211 publication-title: Chem. Commun. – volume: 48 start-page: 6402 year: 2012 end-page: 6404 publication-title: Chem. Commun. – volume: 18 start-page: 886 year: 2018 end-page: 897 publication-title: Nano Lett. – volume: 10 start-page: 4472 year: 2016 end-page: 4481 publication-title: ACS Nano – volume: 54 127 start-page: 3611 3682 year: 2015 2015 end-page: 3614 3685 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 3797 year: 2017 end-page: 3805 publication-title: ACS Nano – volume: 59 132 start-page: 22392 22578 year: 2020 2020 end-page: 22396 22582 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 19799 year: 2020 end-page: 19804 publication-title: J. Mater. Chem. A – volume: 3 start-page: 3441 year: 2021 end-page: 3446 publication-title: Nanoscale Adv. – volume: 1 start-page: 77 year: 2020 end-page: 87 publication-title: Acc. Mater. Res. – volume: 13 start-page: 392 year: 2010 end-page: 394 publication-title: Inorg. Chem. Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 5483 year: 2013 end-page: 5489 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 32 start-page: 6 year: 2020 publication-title: Adv. Mater. – volume: 50 123 start-page: 441 461 year: 2011 2011 end-page: 444 464 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 14433 year: 2019 end-page: 14442 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 9330 year: 2017 end-page: 9339 publication-title: ACS Nano – volume: 7 start-page: 13 year: 2021 publication-title: Chem – volume: 50 start-page: 12462 year: 2014 end-page: 12464 publication-title: Chem. Commun. – volume: 7 start-page: 170 year: 2020 end-page: 190 publication-title: Natl. Sci. Rev. – volume: 141 start-page: 7407 year: 2019 end-page: 7413 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 16895 year: 2014 end-page: 16901 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 14014 14118 year: 2020 2020 end-page: 14018 14122 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 3177 year: 2015 end-page: 3186 publication-title: RSC Adv. – volume: 28 start-page: 9320 year: 2016 end-page: 9325 publication-title: Adv. Mater. – volume: 58 131 start-page: 11160 11278 year: 2019 2019 end-page: 11170 11288 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 8735 year: 2015 publication-title: J. Mater. Chem. C – volume: 14 start-page: 2509 year: 2020 end-page: 2521 publication-title: ACS Nano – volume: 10 start-page: 600 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 2560 year: 2011 end-page: 2566 publication-title: Nano Lett. – volume: 5 start-page: 9761 year: 2011 end-page: 9771 publication-title: ACS Nano – volume: 12 start-page: 2146 year: 2021 publication-title: Nat. Commun. – volume: 115 start-page: 10725 year: 2015 end-page: 10815 publication-title: Chem. Rev. – volume: 131 start-page: 6215 year: 2009 end-page: 6228 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 14399 year: 2020 end-page: 14416 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3975 year: 2015 end-page: 3980 publication-title: Chem. Sci. – volume: 141 start-page: 8737 year: 2019 end-page: 8740 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4687 year: 2021 end-page: 4691 publication-title: J. Mater. Chem. A – volume: 57 130 start-page: 3963 4027 year: 2018 2018 end-page: 3967 4031 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 1362 year: 2019 end-page: 1389 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 16239 16457 year: 2017 2017 end-page: 16242 16460 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 start-page: 872 year: 2017 end-page: 877 publication-title: Inorg. Chem. – volume: 142 start-page: 2204 year: 2020 end-page: 2207 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 3297 year: 2020 end-page: 3303 publication-title: Inorg. Chem. – volume: 116 start-page: 962 year: 2016 end-page: 1052 publication-title: Chem. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 121 start-page: 3513 year: 1999 end-page: 3520 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 695 year: 2009 end-page: 704 publication-title: Nat. Chem. – year: 2021 publication-title: Nat. Chem. – volume: 55 128 start-page: 13979 14185 year: 2016 2016 end-page: 13984 14190 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 4075 year: 2015 end-page: 4080 publication-title: Adv. Mater. – volume: 10 start-page: 11000 year: 2016 end-page: 11011 publication-title: ACS Nano – volume: 8 start-page: 12 year: 2020 publication-title: Adv. Opt. Mater. – volume: 142 start-page: 3939 year: 2020 end-page: 3946 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 767 year: 2019 publication-title: Nat. Commun. – volume: 58 131 start-page: 1638 1652 year: 2019 2019 end-page: 1642 1656 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 10304 10392 year: 2021 2021 end-page: 10310 10398 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 80 start-page: 558 year: 2017 end-page: 565 publication-title: Mater. Sci. Eng. C – year: 1999 – ident: e_1_2_2_56_2 doi: 10.1016/j.inoche.2009.12.031 – ident: e_1_2_2_18_2 doi: 10.1002/ange.201800354 – ident: e_1_2_2_49_2 doi: 10.1039/c2cc32112b – ident: e_1_2_2_26_1 doi: 10.1002/adma.201501779 – ident: e_1_2_2_54_1 – ident: e_1_2_2_64_2 doi: 10.1002/anie.201810541 – ident: e_1_2_2_29_2 doi: 10.1038/s41467-019-08434-4 – ident: e_1_2_2_42_1 doi: 10.1021/acsnano.6b05810 – ident: e_1_2_2_38_1 – ident: e_1_2_2_39_2 doi: 10.1021/acsnano.6b00168 – ident: e_1_2_2_10_2 doi: 10.1039/D0TA07457H – ident: e_1_2_2_72_2 doi: 10.1002/anie.201712949 – ident: e_1_2_2_31_1 – ident: e_1_2_2_71_2 doi: 10.1002/adma.201301834 – ident: e_1_2_2_43_1 doi: 10.1021/acsnano.7b04731 – ident: e_1_2_2_30_3 doi: 10.1002/ange.202001107 – ident: e_1_2_2_15_1 – ident: e_1_2_2_33_2 doi: 10.1002/anie.201912536 – ident: e_1_2_2_50_3 doi: 10.1002/ange.201408067 – ident: e_1_2_2_68_1 – ident: e_1_2_2_62_2 doi: 10.1039/C5TC01401H – ident: e_1_2_2_51_2 doi: 10.1021/acs.inorgchem.9b03743 – ident: e_1_2_2_22_2 doi: 10.1021/ja508822r – ident: e_1_2_2_52_2 doi: 10.1039/C4CC05896H – ident: e_1_2_2_25_1 doi: 10.1039/D1TA00100K – ident: e_1_2_2_64_3 doi: 10.1002/ange.201810541 – ident: e_1_2_2_32_2 doi: 10.1021/ja984188m – ident: e_1_2_2_48_2 doi: 10.1021/ja901077a – ident: e_1_2_2_65_2 doi: 10.1021/jacs.9b07695 – ident: e_1_2_2_44_1 – volume: 7 start-page: 13 year: 2021 ident: e_1_2_2_6_2 publication-title: Chem – ident: e_1_2_2_28_2 doi: 10.1021/acs.chemrev.5b00188 – ident: e_1_2_2_63_1 – ident: e_1_2_2_66_2 doi: 10.1002/anie.201606155 – ident: e_1_2_2_75_2 doi: 10.1039/C5SC01167A – ident: e_1_2_2_60_1 – ident: e_1_2_2_13_2 doi: 10.1021/jacs.9b03766 – ident: e_1_2_2_36_2 doi: 10.1021/jacs.9b12788 – volume: 32 start-page: 6 year: 2020 ident: e_1_2_2_24_1 publication-title: Adv. Mater. – ident: e_1_2_2_33_3 doi: 10.1002/ange.201912536 – ident: e_1_2_2_50_2 doi: 10.1002/anie.201408067 – ident: e_1_2_2_4_2 doi: 10.1002/anie.201902147 – ident: e_1_2_2_47_1 – ident: e_1_2_2_16_2 doi: 10.1002/anie.202006926 – ident: e_1_2_2_30_2 doi: 10.1002/anie.202001107 – ident: e_1_2_2_74_2 doi: 10.1021/acsnano.0c00043 – ident: e_1_2_2_78_2 doi: 10.1021/acs.nanolett.7b04162 – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_53_1 doi: 10.1021/jacs.9b01563 – ident: e_1_2_2_57_1 – ident: e_1_2_2_20_2 doi: 10.1002/aenm.202100061 – ident: e_1_2_2_58_2 doi: 10.1016/j.msec.2017.06.020 – ident: e_1_2_2_73_2 doi: 10.1021/acsnano.6b08720 – ident: e_1_2_2_11_2 doi: 10.1039/D1NA00199J – ident: e_1_2_2_12_1 – ident: e_1_2_2_21_2 doi: 10.1093/nsr/nwz122 – ident: e_1_2_2_27_1 – ident: e_1_2_2_35_1 – ident: e_1_2_2_59_2 doi: 10.1039/C4RA13609H – ident: e_1_2_2_72_3 doi: 10.1002/ange.201712949 – ident: e_1_2_2_55_2 doi: 10.1021/acs.inorgchem.6b02479 – ident: e_1_2_2_23_1 doi: 10.1038/s41467-021-22475-8 – ident: e_1_2_2_69_2 doi: 10.1021/nl201400z – ident: e_1_2_2_9_3 doi: 10.1002/ange.202100342 – ident: e_1_2_2_40_2 doi: 10.1002/anie.201005075 – ident: e_1_2_2_16_3 doi: 10.1002/ange.202006926 – ident: e_1_2_2_3_2 doi: 10.1039/C8CS00155C – ident: e_1_2_2_34_3 doi: 10.1002/ange.201708971 – ident: e_1_2_2_66_3 doi: 10.1002/ange.201606155 – ident: e_1_2_2_14_2 doi: 10.1038/s41467-019-08416-6 – ident: e_1_2_2_18_1 doi: 10.1002/anie.201800354 – ident: e_1_2_2_70_2 doi: 10.1021/nn203293t – year: 2021 ident: e_1_2_2_8_2 publication-title: Nat. Chem. – ident: e_1_2_2_2_2 doi: 10.1021/jacs.0c06473 – ident: e_1_2_2_40_3 doi: 10.1002/ange.201005075 – ident: e_1_2_2_45_1 doi: 10.1038/nchem.444 – ident: e_1_2_2_61_2 doi: 10.1007/978-1-4757-3061-6 – ident: e_1_2_2_46_1 doi: 10.1021/jacs.9b13027 – ident: e_1_2_2_9_2 doi: 10.1002/anie.202100342 – ident: e_1_2_2_41_1 doi: 10.1002/adfm.201807599 – ident: e_1_2_2_19_1 – ident: e_1_2_2_76_2 doi: 10.1039/C8CC00177D – ident: e_1_2_2_77_2 doi: 10.1002/adma.201602997 – ident: e_1_2_2_5_2 doi: 10.1021/accountsmr.0c00019 – ident: e_1_2_2_4_3 doi: 10.1002/ange.201909732 – volume: 8 start-page: 12 year: 2020 ident: e_1_2_2_17_2 publication-title: Adv. Opt. Mater. – ident: e_1_2_2_67_2 doi: 10.1002/adma.201908537 – ident: e_1_2_2_34_2 doi: 10.1002/anie.201708971 – ident: e_1_2_2_37_2 doi: 10.1021/acs.chemrev.5b00091 |
| SSID | ssj0028806 |
| Score | 2.6341724 |
| Snippet | Exploration of effective ways to integrate various functional species into hydrogen‐bonded organic frameworks (HOFs) is critically important for their... Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 25701 |
| SubjectTerms | Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antimicrobials Composite materials Core-shell structure core–shell composite E coli Energy transfer Escherichia coli - drug effects Heterostructures Hydrogen Bonding I.R. radiation Imides - chemical synthesis Imides - chemistry Imides - pharmacology Infrared Rays Irradiation Microbial Sensitivity Tests Nanocomposites Nanoparticles Nanostructures - chemistry Near infrared radiation Particle Size Perylene - analogs & derivatives Perylene - chemical synthesis Perylene - chemistry Perylene - pharmacology photodynamic Photoresponse Photosensitizing Agents - chemical synthesis Photosensitizing Agents - chemistry Photosensitizing Agents - pharmacology photothermal Porosity resonance energy transfer Surface Properties |
| Title | Construction of Function‐Oriented Core–Shell Nanostructures in Hydrogen‐Bonded Organic Frameworks for Near‐Infrared‐Responsive Bacterial Inhibition |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110028 https://www.ncbi.nlm.nih.gov/pubmed/34477299 https://www.proquest.com/docview/2601457613 https://www.proquest.com/docview/2569383123 |
| Volume | 60 |
| WOSCitedRecordID | wos000700475900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB_0LOiL2lbb-I8tFPoUvGz-P-pp8EDOYmu5t7C72eCBJOVOhb7dRxB89svdJ3Emm0QPkYK-bchOsiQzO79JZn4D8F35QslIeXZGJe7ooTI7lrlny9wRkY8IQFfZhH9Ow8EgGg7jn8-q-A0_RPvBjSyj2q_JwIWc7D-RhlIFNsZ3FMCgj1yEJY7K63dg6eg8uThtgy7UT1Nh5Lo2NaJviBu7fH_-CvOO6QXanAevlfdJ1t6_7nVYrZEnOzCq8hEWdPEJlntNw7fP8EDNOxs6WVbmLEGfR-PZ9O6M6JARnLJeOdaz6f0vyh9luDWXRuIGo3Y2KtjJv2xcok6iCDUsRgFT7KlY0mSBTRjiZDZAC8NJ_SIfUwo8Ds_rbN1bzQ4NhTSutl9cjmSVVbYBF8nx796JXXdvsBWCnMgOfOmoMJJcRKgnDuehyDPhcoUIT6rYkQh9hNIy9BVuIiGXxETGu8ITIsKwqutuQqcoC_0VWOChiBA6FDrwsoA4DkWWu3GOm7PUXW6B3by6VNXU5tRh4yo1pMw8pYeetg_dgh_t_L-G1OPVmTuNJqS1cU9SYmHzME5zXAu-tafxZdG_FlHo8gbn-EGMwT_iAgu-GA1qb0UkixjTxBbwSlH-s4b0YNA_bo-23iK0DSs0Nmk4O9BBzdC78EHdXo8m4z1YDIfRXm04j3YiH0Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB21gEQvUCgUt3wsUqWeLOL19zENWIkIBlFA3Kzd9VqNVNkoAaTe-AmVeu6fyy_pjNc2iqqqUtWb4-w4K_vN7htn5g3AB-ULJSPl2TmVuOMOlduxLDxbFo6IfGQAus4mvBmHaRrd3sYXTTYh1cIYfYjuhRt5Rr1ek4PTC-mjZ9VQKsHGAI8iGNwkX8Kyh1hCkC8fXybX4y7qQoCaEiPXtakTfavc2ONHi1dY3Jl-o5uL7LXefpL1_zDx17DWcE_WN2DZgBe63ITVQdvy7Q38pPadraAsqwqW4K5Hx_On7-ckiIz0lA2qqZ4__fhMGaQMF-fKWDxg3M4mJRt-y6cVohJNqGUxGphyT8WSNg9sxpApsxR9DAeNymJKSfB4eNnk6z5q9smISONsR-WXiazzyrbgOjm5Ggztpn-DrZDmRHbgS0eFkeQiQqQ4nIeiyIXLFXI8qWJHIvkRSsvQV7iMhFySFhnvCU-ICAOrnrsNS2VV6h1ggYcmQuhQ6MDLA1I5FHnhxgUuz1L3uAV2--wy1YibU4-Nr5mRZeYZ3fSsu-kWfOzG3xlZjz-O3G2hkDXuPctIh83DSM1xLTjsvsaHRf-2iFJXDzjGD2IM_5EZWPDWQKj7KZJZxKgmtoDXSPnLHLJ-OjrpPr37F6MDWB1enY2z8Sg9fQ-v6LxJytmFJUSJ3oMV9Xg_mU33G__5Bc1jIkw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC7WcdG97NPVrLrbwsKegpPO-6ijwcEhK77wFro7HRxYEplRYW_-BMGzf85fYlU6yTLIIoi3PLqSJqnq-iqp-grgp_KFkpHy7JxK3NFD5XYsC8-WhSMiHxGArrMJT0dhmkZnZ_FBk01ItTCGH6L74EaWUa_XZOD6Ii82_7GGUgk2BngUwaCTnIN5jzrJ9GB-5zA5GXVRFyqoKTFyXZs60bfMjX2-OXuFWc_0BG7Ootfa_SQfXmHiH-F9gz3ZllGWT_BGl59hcdC2fPsC99S-syWUZVXBEvR6tP1wc_ubCJERnrJBNdEPN3dHlEHKcHGujMQVxu1sXLK9v_mkQq1EEWpZjAKm3FOxpM0DmzJEyixFG8NBw7KYUBI8bh42-brXmm0bEmmc7bA8H8s6r2wJTpLd48Ge3fRvsBXCnMgOfOmoMJJcRKgpDuehKHLhcoUYT6rYkQh-hNIy9BUuIyGXxEXG-8ITIsLAqu9-hV5ZlXoFWOChiBA6FDrw8oBYDkVeuHGBy7PUfW6B3b67TDXk5tRj409maJl5Rg896x66Bb-68ReG1uO_I9daVcga855mxMPmYaTmuBZsdKfxZdHfFlHq6grH-EGM4T8iAwuWjQp1tyKaRYxqYgt4rSnPzCHbSoe73d63lwj9gIWDnSQbDdP9VXhHh01Ozhr0UEn0OrxV15fj6eR7Yz6PKGAhxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Function%E2%80%90Oriented+Core%E2%80%93Shell+Nanostructures+in+Hydrogen%E2%80%90Bonded+Organic+Frameworks+for+Near%E2%80%90Infrared%E2%80%90Responsive+Bacterial+Inhibition&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Bai%E2%80%90Tong+Liu&rft.au=Xiao%E2%80%90Hong+Pan&rft.au=Ding%E2%80%90Yang+Zhang&rft.au=Wang%2C+Rui&rft.date=2021-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=49&rft.spage=25701&rft.epage=25707&rft_id=info:doi/10.1002%2Fanie.202110028&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |