Hidden mover‐stayer model for disease progression accounting for misclassified and partially observed diagnostic tests: Application to the natural history of human papillomavirus and cervical precancer

Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics in medicine Ročník 40; číslo 15; s. 3460 - 3476
Hlavní autoři: Aron, Jordan, Albert, Paul S., Wentzensen, Nicolas, Cheung, Li C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Subscription Services, Inc 10.07.2021
Témata:
ISSN:0277-6715, 1097-0258, 1097-0258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover‐stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward‐backward algorithm, used for evaluating the E‐step within the E‐M algorithm for maximum‐likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward‐backward algorithm that considers all possible fully observed states that could have occurred across a participant's follow‐up visits. We apply our method to data from a large management trial for women with low‐grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias.
AbstractList Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover-stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward-backward algorithm, used for evaluating the E-step within the E-M algorithm for maximum-likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward-backward algorithm that considers all possible fully observed states that could have occurred across a participant’s follow-up visits. We apply our method to data from a large management trial for women with low-grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias.
Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover-stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward-backward algorithm, used for evaluating the E-step within the E-M algorithm for maximum-likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward-backward algorithm that considers all possible fully observed states that could have occurred across a participant's follow-up visits. We apply our method to data from a large management trial for women with low-grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias.Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover-stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward-backward algorithm, used for evaluating the E-step within the E-M algorithm for maximum-likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward-backward algorithm that considers all possible fully observed states that could have occurred across a participant's follow-up visits. We apply our method to data from a large management trial for women with low-grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias.
Author Cheung, Li C.
Wentzensen, Nicolas
Aron, Jordan
Albert, Paul S.
AuthorAffiliation 1 Biostatistics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA
2 Clinical Genetics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA
AuthorAffiliation_xml – name: 1 Biostatistics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA
– name: 2 Clinical Genetics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA
Author_xml – sequence: 1
  givenname: Jordan
  surname: Aron
  fullname: Aron, Jordan
  organization: National Cancer Institute
– sequence: 2
  givenname: Paul S.
  orcidid: 0000-0003-1658-1068
  surname: Albert
  fullname: Albert, Paul S.
  organization: National Cancer Institute
– sequence: 3
  givenname: Nicolas
  surname: Wentzensen
  fullname: Wentzensen, Nicolas
  organization: National Cancer Institute
– sequence: 4
  givenname: Li C.
  orcidid: 0000-0003-1625-4331
  surname: Cheung
  fullname: Cheung, Li C.
  email: li.cheung@nih.gov
  organization: National Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33845514$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1uEzEQx1eoiKYFiSdAlrhwSbDX6_3ggqoKaKUiDsDZmnjHiSuvvdjeVLnxCLwXb8GT4CRt-RCcrPH85u-_Z-akOHLeYVE8ZXTBKC1fRjMs2q5pHhQzRrtmTkvRHhUzWjbNvG6YOC5OYrymlDFRNo-KY87bSghWzYrvF6bv0ZHBbzD8-PotJthiyGGPlmgfSG8iQkQyBr8KGKPxjoBSfnLJuNUeGUxUFnJKG-wJuJ6MEJIBa7fELyOGTb7uDaycj8kokjCm-IqcjaM1CtJOMXmS1kgcpCmAJWsTkw-5WpP1NIDLgqOx1g-wMWGK-zdU1s3lNjtDBS6Hj4uHGmzEJ7fnafH57ZtP5xfzqw_vLs_Pruaq4rk5qhVMcOyw7KjmlDZ8dy5rUQEFLbqOaVEvgWGtNUelSw1MNBoU6xRVCvlp8fqgO07LAXuFLmXTcgxmgLCVHoz8M-PMWq78RrI8l6ZteVZ4casQ_Jcpt0PueojWgkM_RVkKVnJWVTXN6PO_0Gs_BZf_lyne0K5mtM3Us98t3Xu5G3QGFgdABR9jQC2VSfveZ4fGZmtyt0kyb5LcbdIvi_cFd5r_QOcH9MZY3P6Xkx8v3-_5nxGX39g
CitedBy_id crossref_primary_10_1080_01621459_2024_2425460
crossref_primary_10_1038_s41416_022_01904_5
Cites_doi 10.1159/000328554
10.2307/2533196
10.1080/01621459.1985.10478195
10.1080/01621459.1961.10482130
10.1097/LGT.0000000000000529
10.1158/1055-9965.EPI-12-1406
10.1177/0969141316654197
10.1111/1467-9884.00351
10.1186/s12907-017-0058-8
10.1111/j.2517-6161.1985.tb01383.x
10.1201/b20790
10.2307/2530699
10.1080/01621459.1997.10473651
10.1128/JCM.36.11.3248-3254.1998
10.1200/JCO.2014.55.9948
10.1093/aje/kwu159
10.1016/S1386-6532(02)00007-0
10.2307/2988469
10.1097/01.AOG.0000220505.18525.85
ContentType Journal Article
Copyright Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.8977
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3476
ExternalDocumentID PMC10257883
33845514
10_1002_sim_8977
SIM8977
Genre article
Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 CA999999
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4397-c85153e9e290f3007390f3b654a0af5991f56ba1e6ff3ecf2fa157fac19c0cce3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639322700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
1097-0258
IngestDate Tue Nov 04 02:06:53 EST 2025
Wed Oct 01 14:56:36 EDT 2025
Tue Oct 07 05:12:05 EDT 2025
Mon Jul 21 06:00:06 EDT 2025
Tue Nov 18 22:04:26 EST 2025
Sat Nov 29 05:32:46 EST 2025
Wed Jan 22 16:28:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords measurement error
forward-backward algorithm
partial missing data
EM algorithm
Language English
License Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4397-c85153e9e290f3007390f3b654a0af5991f56ba1e6ff3ecf2fa157fac19c0cce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1658-1068
0000-0003-1625-4331
OpenAccessLink https://pmc.ncbi.nlm.nih.gov/articles/PMC10257883/pdf/nihms-1884073.pdf
PMID 33845514
PQID 2537096108
PQPubID 48361
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10257883
proquest_miscellaneous_2512314460
proquest_journals_2537096108
pubmed_primary_33845514
crossref_citationtrail_10_1002_sim_8977
crossref_primary_10_1002_sim_8977
wiley_primary_10_1002_sim_8977_SIM8977
PublicationCentury 2000
PublicationDate 10 July 2021
PublicationDateYYYYMMDD 2021-07-10
PublicationDate_xml – month: 07
  year: 2021
  text: 10 July 2021
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 25
2006; 108
1997; 92
2013; 22
1986; 42
2017; 17
2000; 44
2015; 33
1985; 80
2014; 180
2017
2020; 24
1961; 56
1994; 50
2003; 52
2016; 24
1998; 36
1996; 45
1985; 47
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 24
  start-page: 110
  year: 2016
  end-page: 112
  article-title: By how much could screening by primary human papillomavirus testing reduce cervical cancer incidence in England?
  publication-title: J Med Screen
– volume: 80
  start-page: 863
  issue: 392
  year: 1985
  end-page: 871
  article-title: The analysis of panel data under a Markov assumption
  publication-title: J Am Stat Assoc
– volume: 42
  start-page: 855
  year: 1986
  end-page: 865
  article-title: A Markov model for analysing cancer markers and disease states in survival studies
  publication-title: Biometrics
– volume: 108
  start-page: 264
  year: 2006
  end-page: 272
  article-title: Number of cervical biopsies and sensitivity of colposcopy
  publication-title: Obstet Gynecol
– volume: 47
  start-page: 528
  issue: 3
  year: 1985
  end-page: 539
  article-title: A model for high‐order Markov chains
  publication-title: J R Stat Soc Ser B Stat Methodol
– volume: 45
  start-page: 307
  issue: 3
  year: 1996
  end-page: 317
  article-title: A Markov chain method to estimate the tumour progression rate from preclinical to clinical phase, sensitivity and positive predictive value for mammography in breast cancer screening
  publication-title: Statistician
– volume: 92
  start-page: 1304
  year: 1997
  end-page: 1211
  article-title: Modeling repeated measures with monotonic ordinal responses and misclassification, with applications to studying maturation
  publication-title: J Am Stat Assoc
– volume: 22
  start-page: 553
  issue: 4
  year: 2013
  end-page: 560
  article-title: Human papillomavirus infection and the multistage carcinogenesis of cervical cancer
  publication-title: Cancer Epidemiol Biomark Prev
– volume: 44
  start-page: 726
  issue: 5
  year: 2000
  end-page: 742
  article-title: ASCUS‐LSIL triage study. design, methods and characteristics of trial participants
  publication-title: Acta Cytol
– volume: 180
  start-page: 545
  issue: 5
  year: 2014
  end-page: 555
  article-title: An updated natural history model of cervical cancer: derivation of model parameters
  publication-title: Am J Epidemiol
– volume: 36
  start-page: 3248
  year: 1998
  end-page: 3254
  article-title: Comparison of PCR‐ and hybrid capture‐based human papillomavirus detection systems using multiple cervical specimen collection strategies
  publication-title: J Clin Microbiol
– volume: 56
  start-page: 841
  year: 1961
  end-page: 868
  article-title: Statistical methods for the mover‐stayer model
  publication-title: J Am Stat Assoc
– volume: 52
  start-page: 193
  issue: 2
  year: 2003
  end-page: 209
  article-title: Multistate Markov models for disease progression with classification error
  publication-title: Statistician
– volume: 17
  issue: 1
  year: 2017
  article-title: Accuracy of cervical cytology: comparison of diagnoses of 100 Pap smears read by four pathologists at three hospitals in Norway
  publication-title: BMC Clinical Pathology
– volume: 50
  start-page: 51
  issue: 1
  year: 1994
  end-page: 60
  article-title: A Markov model for sequences of ordinal data from a relapsing‐remitting disease
  publication-title: Biometrics
– year: 2017
– volume: 33
  start-page: 83
  year: 2015
  end-page: 89
  article-title: Multiple biopsies and detection of cervical cancer precursors at colposcopy
  publication-title: J Clin Oncol
– volume: 24
  start-page: 132
  issue: 2
  year: 2020
  end-page: 143
  article-title: Risk estimates supporting the 2019 ASCCP risk‐based management consensus guidelines
  publication-title: J Low Genit Tract Dis
– volume: 25
  start-page: 177
  year: 2002
  end-page: 185
  article-title: Human papillomavirus DNA testing by PCR‐ELISA and hybrid capture II from a single cytological specimen: concordance and correlation with cytological results
  publication-title: J Clin Virol
– ident: e_1_2_9_14_1
  doi: 10.1159/000328554
– ident: e_1_2_9_3_1
  doi: 10.2307/2533196
– ident: e_1_2_9_19_1
  doi: 10.1080/01621459.1985.10478195
– ident: e_1_2_9_6_1
  doi: 10.1080/01621459.1961.10482130
– ident: e_1_2_9_13_1
  doi: 10.1097/LGT.0000000000000529
– ident: e_1_2_9_7_1
  doi: 10.1158/1055-9965.EPI-12-1406
– ident: e_1_2_9_9_1
  doi: 10.1177/0969141316654197
– ident: e_1_2_9_20_1
  doi: 10.1111/1467-9884.00351
– ident: e_1_2_9_10_1
  doi: 10.1186/s12907-017-0058-8
– ident: e_1_2_9_18_1
  doi: 10.1111/j.2517-6161.1985.tb01383.x
– ident: e_1_2_9_5_1
  doi: 10.1201/b20790
– ident: e_1_2_9_2_1
  doi: 10.2307/2530699
– ident: e_1_2_9_4_1
  doi: 10.1080/01621459.1997.10473651
– ident: e_1_2_9_16_1
  doi: 10.1128/JCM.36.11.3248-3254.1998
– ident: e_1_2_9_12_1
  doi: 10.1200/JCO.2014.55.9948
– ident: e_1_2_9_8_1
  doi: 10.1093/aje/kwu159
– ident: e_1_2_9_15_1
  doi: 10.1016/S1386-6532(02)00007-0
– ident: e_1_2_9_17_1
  doi: 10.2307/2988469
– ident: e_1_2_9_11_1
  doi: 10.1097/01.AOG.0000220505.18525.85
SSID ssj0011527
Score 2.3615122
Snippet Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3460
SubjectTerms Algorithms
Alphapapillomavirus
Cervical cancer
Disease Progression
Early Detection of Cancer
EM algorithm
Female
forward‐backward algorithm
Human papillomavirus
Humans
measurement error
Medical screening
Missing data
Papillomaviridae
Papillomavirus Infections
partial missing data
Uterine Cervical Dysplasia
Uterine Cervical Neoplasms
Title Hidden mover‐stayer model for disease progression accounting for misclassified and partially observed diagnostic tests: Application to the natural history of human papillomavirus and cervical precancer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8977
https://www.ncbi.nlm.nih.gov/pubmed/33845514
https://www.proquest.com/docview/2537096108
https://www.proquest.com/docview/2512314460
https://pubmed.ncbi.nlm.nih.gov/PMC10257883
Volume 40
WOSCitedRecordID wos000639322700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditQwFD64syIL4s_4V12XCKJX3e2kzaTj3aIOK7iLqAtzV9JMgoVOO0xnFrzzEXwv38In8Zyk7TqsguBVoT1pWvLl9GvOyXcAnitjZMyFCmWa6zBJuApzrtEZjkisXUk7F9oVm5BnZ-lsNvnQZlXSXhivD9EvuNHMcP6aJrjKm6NL0dCmWBymyF52YJcjbMUAdt98nJ6_72MIXcFWClKO5Uh00rMRP-rabn-MrjDMq4mSvxNY9wWa3v6fZ78Dt1reyY49UO7CNVMN4cZpG1kfwk2_fsf8tqQh7BEL9SLO9-DHCQmNVGxB-Z4_v31HRolMnbkqOgxZL2vDPMxle3mlD6b6OhTOBPGkiakXFkkvU9WcLQm1qiy_sjqntWE8PfeJf9grQwq8bl6x48sAO1vXDOkqc1qk-C5eKhlbW-YqDeINl0VZ1gt1Uaw2jetDO1eIxkv07ATw1X04n779_PokbKtAhJrIUqiRE4rYTAyfRDZ2kUU85mORqEhZgfzWinGuRmZsbWy05VaNhLRKjyY60trED2BQ1ZV5BEzqXGpLivipSGyilTS5NjYVYq5kEqkAXnZwyHQrkU6VOsrMizvzDAcuo4EL4FlvufSyIH-w2e8QlbWOocm4iCVV2YlSvEV_mYaAkt0qU2_IBukE_adHATz0AOw7ieM0IZIbQLoFzd6A5MK3r1TFFycbjlQS3XMaB_DCYfOvD559endKx8f_avgE9jil-pDeaLQPg_VqY57CdX2BOF0dwI6cpQft7PwFAAxHUw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFD7UVrQg_qxWo1VHEHsVm7_ZyepVUZct7i6iLfQuTGZnaGA3Wfan4J2P4Hv5Fj6J58wkqUsVBK8CyZlMwnxz8mXOme8AvJRaizji0hdprvwkiaSfRwqdYUhi7VKYCVe22IQYj9Ozs96nLXjb7IVx-hDtghvNDOuvaYLTgvThpWrospi9TpG-XIOdBFGE8N55_7l_OmyDCE3FVopSdkXIG-3ZIDps2m5-ja5QzKuZkr8zWPsJ6t_5r4e_C7dr5smOHFTuwZYuO3BjVMfWO3DLreAxtzGpA7vEQ52M8334MSCpkZLNKOPz57fvyCmRqzNbR4ch72V1oIfZfC-n9cFkW4nCmiCiFHH1wiDtZbKcsDnhVk6nX1mV0-ownp641D_slSEJXi3fsKPLEDtbVQwJK7NqpPguTiwZWxtmaw3iDefFdFrN5EWxWC9tH8o6QzSeo28niC8ewGn_w8m7gV_XgfAV0SVfISvkse7pqBeY2MYW8Zh3eSIDaTgyXMO7uQx115hYKxMZGXJhpAp7KlBKx3uwXValfgRMqFwoQ5r4KU9MoqTQudIm5XwiRRJIDw4aPGSqFkmnWh3TzMk7RxkOXEYD58GL1nLuhEH-YLPfQCqrXcMyi3gsqM5OkOIt2ss0BJTuVupqTTZIKOhPPfDgoUNg20kcpwnRXA_SDWy2BiQYvnmlLM6tcDiSSXTQaezBKwvOvz549uV4RMfH_2r4HG4OTkbDbHg8_vgEdiNK_CH10WAftleLtX4K19UFYnbxrJ6kvwCp9Upb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFD7UrZSC-LNqG606guhVbDbJ7GT1qliXFtulqIXehclkBgPZZNmfgnc-gu_lW_gknjOTpC5VELwKJGcyCfPNyZc5Z74D8EJqLaKQS18kmfLjOJR-Fip0hgMSa5fC5FzZYhNiMkkuLkZnG_C23Qvj9CG6BTeaGdZf0wTXs9zsX6mGLorp6wTpyw3YjKmGTA82Dz-Oz0-6IEJbsZWilEMx4K32bBDut23Xv0bXKOb1TMnfGaz9BI3v_NfD34XbDfNkBw4q92BDV33YOm1i63245VbwmNuY1Idt4qFOxvk-_DgiqZGKTSnj8-e378gpkaszW0eHIe9lTaCH2Xwvp_XBZFeJwpogohRx9cIg7WWyytmMcCvL8iurM1odxtO5S_3DXhmS4OXiDTu4CrGzZc2QsDKrRorv4sSSsbVhttYg3nBWlGU9lZfFfLWwfSjrDNF4hr6dID5_AOfj95_fHflNHQhfEV3yFbJCHumRDkeBiWxsEY_ZkMcykIYjwzV8mMmBHhoTaWVCIwdcGKkGIxUopaOH0KvqSu8CEyoTypAmfsJjEyspdKa0STjPpYgD6cGrFg-pakTSqVZHmTp55zDFgUtp4Dx43lnOnDDIH2z2WkiljWtYpCGPBNXZCRK8RXeZhoDS3Spdr8gGCQX9qQce7DgEdp1EURITzfUgWcNmZ0CC4etXquKLFQ5HMokOOok8eGnB-dcHTz8dn9Lx0b8aPoOts8NxenI8-fAYtkPK-yHx0WAPesv5Sj-Bm-oSITt_2szRX83rSdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+mover%E2%80%90stayer+model+for+disease+progression+accounting+for+misclassified+and+partially+observed+diagnostic+tests%3A+Application+to+the+natural+history+of+human+papillomavirus+and+cervical+precancer&rft.jtitle=Statistics+in+medicine&rft.au=Jordan%2C+Aron&rft.au=Albert%2C+Paul+S&rft.au=Wentzensen%2C+Nicolas&rft.au=Cheung%2C+Li+C&rft.date=2021-07-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=15&rft.spage=3460&rft.epage=3476&rft_id=info:doi/10.1002%2Fsim.8977&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon