Hidden mover‐stayer model for disease progression accounting for misclassified and partially observed diagnostic tests: Application to the natural history of human papillomavirus and cervical precancer
Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined...
Uloženo v:
| Vydáno v: | Statistics in medicine Ročník 40; číslo 15; s. 3460 - 3476 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
10.07.2021
|
| Témata: | |
| ISSN: | 0277-6715, 1097-0258, 1097-0258 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover‐stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward‐backward algorithm, used for evaluating the E‐step within the E‐M algorithm for maximum‐likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward‐backward algorithm that considers all possible fully observed states that could have occurred across a participant's follow‐up visits. We apply our method to data from a large management trial for women with low‐grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias. |
|---|---|
| AbstractList | Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover-stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward-backward algorithm, used for evaluating the E-step within the E-M algorithm for maximum-likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward-backward algorithm that considers all possible fully observed states that could have occurred across a participant’s follow-up visits. We apply our method to data from a large management trial for women with low-grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias. Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover-stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward-backward algorithm, used for evaluating the E-step within the E-M algorithm for maximum-likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward-backward algorithm that considers all possible fully observed states that could have occurred across a participant's follow-up visits. We apply our method to data from a large management trial for women with low-grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias.Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We introduce a discrete time HMM for human papillomavirus (HPV) and cervical precancer/cancer where the hidden and observed state spaces are defined by all possible combinations of HPV, cytology, and colposcopy results. Because the population of women undergoing cervical cancer screening is heterogeneous with respect to sexual behavior, and therefore risk of HPV acquisition and subsequent precancers, we use a mover-stayer mixture model that assumes a proportion of the population will stay in the healthy state and are not subject to disease progression. As each state is a combination of three distinct tests that characterize the cervix, partially observed data arise when at least one but not every test is observed. The standard forward-backward algorithm, used for evaluating the E-step within the E-M algorithm for maximum-likelihood estimation of HMMs, cannot incorporate time points with partially observed data. We propose a new forward-backward algorithm that considers all possible fully observed states that could have occurred across a participant's follow-up visits. We apply our method to data from a large management trial for women with low-grade cervical abnormalities. Our simulation study found that our method has relatively little bias and out preforms simpler methods that resulted in larger bias. |
| Author | Cheung, Li C. Wentzensen, Nicolas Aron, Jordan Albert, Paul S. |
| AuthorAffiliation | 1 Biostatistics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA 2 Clinical Genetics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA |
| AuthorAffiliation_xml | – name: 1 Biostatistics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA – name: 2 Clinical Genetics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, Maryland, USA |
| Author_xml | – sequence: 1 givenname: Jordan surname: Aron fullname: Aron, Jordan organization: National Cancer Institute – sequence: 2 givenname: Paul S. orcidid: 0000-0003-1658-1068 surname: Albert fullname: Albert, Paul S. organization: National Cancer Institute – sequence: 3 givenname: Nicolas surname: Wentzensen fullname: Wentzensen, Nicolas organization: National Cancer Institute – sequence: 4 givenname: Li C. orcidid: 0000-0003-1625-4331 surname: Cheung fullname: Cheung, Li C. email: li.cheung@nih.gov organization: National Cancer Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33845514$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1uEzEQx1eoiKYFiSdAlrhwSbDX6_3ggqoKaKUiDsDZmnjHiSuvvdjeVLnxCLwXb8GT4CRt-RCcrPH85u-_Z-akOHLeYVE8ZXTBKC1fRjMs2q5pHhQzRrtmTkvRHhUzWjbNvG6YOC5OYrymlDFRNo-KY87bSghWzYrvF6bv0ZHBbzD8-PotJthiyGGPlmgfSG8iQkQyBr8KGKPxjoBSfnLJuNUeGUxUFnJKG-wJuJ6MEJIBa7fELyOGTb7uDaycj8kokjCm-IqcjaM1CtJOMXmS1kgcpCmAJWsTkw-5WpP1NIDLgqOx1g-wMWGK-zdU1s3lNjtDBS6Hj4uHGmzEJ7fnafH57ZtP5xfzqw_vLs_Pruaq4rk5qhVMcOyw7KjmlDZ8dy5rUQEFLbqOaVEvgWGtNUelSw1MNBoU6xRVCvlp8fqgO07LAXuFLmXTcgxmgLCVHoz8M-PMWq78RrI8l6ZteVZ4casQ_Jcpt0PueojWgkM_RVkKVnJWVTXN6PO_0Gs_BZf_lyne0K5mtM3Us98t3Xu5G3QGFgdABR9jQC2VSfveZ4fGZmtyt0kyb5LcbdIvi_cFd5r_QOcH9MZY3P6Xkx8v3-_5nxGX39g |
| CitedBy_id | crossref_primary_10_1080_01621459_2024_2425460 crossref_primary_10_1038_s41416_022_01904_5 |
| Cites_doi | 10.1159/000328554 10.2307/2533196 10.1080/01621459.1985.10478195 10.1080/01621459.1961.10482130 10.1097/LGT.0000000000000529 10.1158/1055-9965.EPI-12-1406 10.1177/0969141316654197 10.1111/1467-9884.00351 10.1186/s12907-017-0058-8 10.1111/j.2517-6161.1985.tb01383.x 10.1201/b20790 10.2307/2530699 10.1080/01621459.1997.10473651 10.1128/JCM.36.11.3248-3254.1998 10.1200/JCO.2014.55.9948 10.1093/aje/kwu159 10.1016/S1386-6532(02)00007-0 10.2307/2988469 10.1097/01.AOG.0000220505.18525.85 |
| ContentType | Journal Article |
| Copyright | Published 2021. This article is a U.S. Government work and is in the public domain in the USA. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Published 2021. This article is a U.S. Government work and is in the public domain in the USA. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
| DOI | 10.1002/sim.8977 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Public Health |
| EISSN | 1097-0258 |
| EndPage | 3476 |
| ExternalDocumentID | PMC10257883 33845514 10_1002_sim_8977 SIM8977 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 CA999999 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION O8X CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c4397-c85153e9e290f3007390f3b654a0af5991f56ba1e6ff3ecf2fa157fac19c0cce3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639322700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0277-6715 1097-0258 |
| IngestDate | Tue Nov 04 02:06:53 EST 2025 Wed Oct 01 14:56:36 EDT 2025 Tue Oct 07 05:12:05 EDT 2025 Mon Jul 21 06:00:06 EDT 2025 Tue Nov 18 22:04:26 EST 2025 Sat Nov 29 05:32:46 EST 2025 Wed Jan 22 16:28:53 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | measurement error forward-backward algorithm partial missing data EM algorithm |
| Language | English |
| License | Published 2021. This article is a U.S. Government work and is in the public domain in the USA. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4397-c85153e9e290f3007390f3b654a0af5991f56ba1e6ff3ecf2fa157fac19c0cce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1658-1068 0000-0003-1625-4331 |
| OpenAccessLink | https://pmc.ncbi.nlm.nih.gov/articles/PMC10257883/pdf/nihms-1884073.pdf |
| PMID | 33845514 |
| PQID | 2537096108 |
| PQPubID | 48361 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10257883 proquest_miscellaneous_2512314460 proquest_journals_2537096108 pubmed_primary_33845514 crossref_citationtrail_10_1002_sim_8977 crossref_primary_10_1002_sim_8977 wiley_primary_10_1002_sim_8977_SIM8977 |
| PublicationCentury | 2000 |
| PublicationDate | 10 July 2021 |
| PublicationDateYYYYMMDD | 2021-07-10 |
| PublicationDate_xml | – month: 07 year: 2021 text: 10 July 2021 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Statistics in medicine |
| PublicationTitleAlternate | Stat Med |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2002; 25 2006; 108 1997; 92 2013; 22 1986; 42 2017; 17 2000; 44 2015; 33 1985; 80 2014; 180 2017 2020; 24 1961; 56 1994; 50 2003; 52 2016; 24 1998; 36 1996; 45 1985; 47 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 |
| References_xml | – volume: 24 start-page: 110 year: 2016 end-page: 112 article-title: By how much could screening by primary human papillomavirus testing reduce cervical cancer incidence in England? publication-title: J Med Screen – volume: 80 start-page: 863 issue: 392 year: 1985 end-page: 871 article-title: The analysis of panel data under a Markov assumption publication-title: J Am Stat Assoc – volume: 42 start-page: 855 year: 1986 end-page: 865 article-title: A Markov model for analysing cancer markers and disease states in survival studies publication-title: Biometrics – volume: 108 start-page: 264 year: 2006 end-page: 272 article-title: Number of cervical biopsies and sensitivity of colposcopy publication-title: Obstet Gynecol – volume: 47 start-page: 528 issue: 3 year: 1985 end-page: 539 article-title: A model for high‐order Markov chains publication-title: J R Stat Soc Ser B Stat Methodol – volume: 45 start-page: 307 issue: 3 year: 1996 end-page: 317 article-title: A Markov chain method to estimate the tumour progression rate from preclinical to clinical phase, sensitivity and positive predictive value for mammography in breast cancer screening publication-title: Statistician – volume: 92 start-page: 1304 year: 1997 end-page: 1211 article-title: Modeling repeated measures with monotonic ordinal responses and misclassification, with applications to studying maturation publication-title: J Am Stat Assoc – volume: 22 start-page: 553 issue: 4 year: 2013 end-page: 560 article-title: Human papillomavirus infection and the multistage carcinogenesis of cervical cancer publication-title: Cancer Epidemiol Biomark Prev – volume: 44 start-page: 726 issue: 5 year: 2000 end-page: 742 article-title: ASCUS‐LSIL triage study. design, methods and characteristics of trial participants publication-title: Acta Cytol – volume: 180 start-page: 545 issue: 5 year: 2014 end-page: 555 article-title: An updated natural history model of cervical cancer: derivation of model parameters publication-title: Am J Epidemiol – volume: 36 start-page: 3248 year: 1998 end-page: 3254 article-title: Comparison of PCR‐ and hybrid capture‐based human papillomavirus detection systems using multiple cervical specimen collection strategies publication-title: J Clin Microbiol – volume: 56 start-page: 841 year: 1961 end-page: 868 article-title: Statistical methods for the mover‐stayer model publication-title: J Am Stat Assoc – volume: 52 start-page: 193 issue: 2 year: 2003 end-page: 209 article-title: Multistate Markov models for disease progression with classification error publication-title: Statistician – volume: 17 issue: 1 year: 2017 article-title: Accuracy of cervical cytology: comparison of diagnoses of 100 Pap smears read by four pathologists at three hospitals in Norway publication-title: BMC Clinical Pathology – volume: 50 start-page: 51 issue: 1 year: 1994 end-page: 60 article-title: A Markov model for sequences of ordinal data from a relapsing‐remitting disease publication-title: Biometrics – year: 2017 – volume: 33 start-page: 83 year: 2015 end-page: 89 article-title: Multiple biopsies and detection of cervical cancer precursors at colposcopy publication-title: J Clin Oncol – volume: 24 start-page: 132 issue: 2 year: 2020 end-page: 143 article-title: Risk estimates supporting the 2019 ASCCP risk‐based management consensus guidelines publication-title: J Low Genit Tract Dis – volume: 25 start-page: 177 year: 2002 end-page: 185 article-title: Human papillomavirus DNA testing by PCR‐ELISA and hybrid capture II from a single cytological specimen: concordance and correlation with cytological results publication-title: J Clin Virol – ident: e_1_2_9_14_1 doi: 10.1159/000328554 – ident: e_1_2_9_3_1 doi: 10.2307/2533196 – ident: e_1_2_9_19_1 doi: 10.1080/01621459.1985.10478195 – ident: e_1_2_9_6_1 doi: 10.1080/01621459.1961.10482130 – ident: e_1_2_9_13_1 doi: 10.1097/LGT.0000000000000529 – ident: e_1_2_9_7_1 doi: 10.1158/1055-9965.EPI-12-1406 – ident: e_1_2_9_9_1 doi: 10.1177/0969141316654197 – ident: e_1_2_9_20_1 doi: 10.1111/1467-9884.00351 – ident: e_1_2_9_10_1 doi: 10.1186/s12907-017-0058-8 – ident: e_1_2_9_18_1 doi: 10.1111/j.2517-6161.1985.tb01383.x – ident: e_1_2_9_5_1 doi: 10.1201/b20790 – ident: e_1_2_9_2_1 doi: 10.2307/2530699 – ident: e_1_2_9_4_1 doi: 10.1080/01621459.1997.10473651 – ident: e_1_2_9_16_1 doi: 10.1128/JCM.36.11.3248-3254.1998 – ident: e_1_2_9_12_1 doi: 10.1200/JCO.2014.55.9948 – ident: e_1_2_9_8_1 doi: 10.1093/aje/kwu159 – ident: e_1_2_9_15_1 doi: 10.1016/S1386-6532(02)00007-0 – ident: e_1_2_9_17_1 doi: 10.2307/2988469 – ident: e_1_2_9_11_1 doi: 10.1097/01.AOG.0000220505.18525.85 |
| SSID | ssj0011527 |
| Score | 2.3615122 |
| Snippet | Hidden Markov models (HMMs) have been proposed to model the natural history of diseases while accounting for misclassification in state identification. We... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3460 |
| SubjectTerms | Algorithms Alphapapillomavirus Cervical cancer Disease Progression Early Detection of Cancer EM algorithm Female forward‐backward algorithm Human papillomavirus Humans measurement error Medical screening Missing data Papillomaviridae Papillomavirus Infections partial missing data Uterine Cervical Dysplasia Uterine Cervical Neoplasms |
| Title | Hidden mover‐stayer model for disease progression accounting for misclassified and partially observed diagnostic tests: Application to the natural history of human papillomavirus and cervical precancer |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8977 https://www.ncbi.nlm.nih.gov/pubmed/33845514 https://www.proquest.com/docview/2537096108 https://www.proquest.com/docview/2512314460 https://pubmed.ncbi.nlm.nih.gov/PMC10257883 |
| Volume | 40 |
| WOSCitedRecordID | wos000639322700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 issn: 0277-6715 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditQwFD64syIL4s_4V12XCKJX3e2kzaTj3aIOK7iLqAtzV9JMgoVOO0xnFrzzEXwv38In8Zyk7TqsguBVoT1pWvLl9GvOyXcAnitjZMyFCmWa6zBJuApzrtEZjkisXUk7F9oVm5BnZ-lsNvnQZlXSXhivD9EvuNHMcP6aJrjKm6NL0dCmWBymyF52YJcjbMUAdt98nJ6_72MIXcFWClKO5Uh00rMRP-rabn-MrjDMq4mSvxNY9wWa3v6fZ78Dt1reyY49UO7CNVMN4cZpG1kfwk2_fsf8tqQh7BEL9SLO9-DHCQmNVGxB-Z4_v31HRolMnbkqOgxZL2vDPMxle3mlD6b6OhTOBPGkiakXFkkvU9WcLQm1qiy_sjqntWE8PfeJf9grQwq8bl6x48sAO1vXDOkqc1qk-C5eKhlbW-YqDeINl0VZ1gt1Uaw2jetDO1eIxkv07ATw1X04n779_PokbKtAhJrIUqiRE4rYTAyfRDZ2kUU85mORqEhZgfzWinGuRmZsbWy05VaNhLRKjyY60trED2BQ1ZV5BEzqXGpLivipSGyilTS5NjYVYq5kEqkAXnZwyHQrkU6VOsrMizvzDAcuo4EL4FlvufSyIH-w2e8QlbWOocm4iCVV2YlSvEV_mYaAkt0qU2_IBukE_adHATz0AOw7ieM0IZIbQLoFzd6A5MK3r1TFFycbjlQS3XMaB_DCYfOvD559endKx8f_avgE9jil-pDeaLQPg_VqY57CdX2BOF0dwI6cpQft7PwFAAxHUw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFD7UVrQg_qxWo1VHEHsVm7_ZyepVUZct7i6iLfQuTGZnaGA3Wfan4J2P4Hv5Fj6J58wkqUsVBK8CyZlMwnxz8mXOme8AvJRaizji0hdprvwkiaSfRwqdYUhi7VKYCVe22IQYj9Ozs96nLXjb7IVx-hDtghvNDOuvaYLTgvThpWrospi9TpG-XIOdBFGE8N55_7l_OmyDCE3FVopSdkXIG-3ZIDps2m5-ja5QzKuZkr8zWPsJ6t_5r4e_C7dr5smOHFTuwZYuO3BjVMfWO3DLreAxtzGpA7vEQ52M8334MSCpkZLNKOPz57fvyCmRqzNbR4ch72V1oIfZfC-n9cFkW4nCmiCiFHH1wiDtZbKcsDnhVk6nX1mV0-ownp641D_slSEJXi3fsKPLEDtbVQwJK7NqpPguTiwZWxtmaw3iDefFdFrN5EWxWC9tH8o6QzSeo28niC8ewGn_w8m7gV_XgfAV0SVfISvkse7pqBeY2MYW8Zh3eSIDaTgyXMO7uQx115hYKxMZGXJhpAp7KlBKx3uwXValfgRMqFwoQ5r4KU9MoqTQudIm5XwiRRJIDw4aPGSqFkmnWh3TzMk7RxkOXEYD58GL1nLuhEH-YLPfQCqrXcMyi3gsqM5OkOIt2ss0BJTuVupqTTZIKOhPPfDgoUNg20kcpwnRXA_SDWy2BiQYvnmlLM6tcDiSSXTQaezBKwvOvz549uV4RMfH_2r4HG4OTkbDbHg8_vgEdiNK_CH10WAftleLtX4K19UFYnbxrJ6kvwCp9Upb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFD7UrZSC-LNqG606guhVbDbJ7GT1qliXFtulqIXehclkBgPZZNmfgnc-gu_lW_gknjOTpC5VELwKJGcyCfPNyZc5Z74D8EJqLaKQS18kmfLjOJR-Fip0hgMSa5fC5FzZYhNiMkkuLkZnG_C23Qvj9CG6BTeaGdZf0wTXs9zsX6mGLorp6wTpyw3YjKmGTA82Dz-Oz0-6IEJbsZWilEMx4K32bBDut23Xv0bXKOb1TMnfGaz9BI3v_NfD34XbDfNkBw4q92BDV33YOm1i63245VbwmNuY1Idt4qFOxvk-_DgiqZGKTSnj8-e378gpkaszW0eHIe9lTaCH2Xwvp_XBZFeJwpogohRx9cIg7WWyytmMcCvL8iurM1odxtO5S_3DXhmS4OXiDTu4CrGzZc2QsDKrRorv4sSSsbVhttYg3nBWlGU9lZfFfLWwfSjrDNF4hr6dID5_AOfj95_fHflNHQhfEV3yFbJCHumRDkeBiWxsEY_ZkMcykIYjwzV8mMmBHhoTaWVCIwdcGKkGIxUopaOH0KvqSu8CEyoTypAmfsJjEyspdKa0STjPpYgD6cGrFg-pakTSqVZHmTp55zDFgUtp4Dx43lnOnDDIH2z2WkiljWtYpCGPBNXZCRK8RXeZhoDS3Spdr8gGCQX9qQce7DgEdp1EURITzfUgWcNmZ0CC4etXquKLFQ5HMokOOok8eGnB-dcHTz8dn9Lx0b8aPoOts8NxenI8-fAYtkPK-yHx0WAPesv5Sj-Bm-oSITt_2szRX83rSdY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+mover%E2%80%90stayer+model+for+disease+progression+accounting+for+misclassified+and+partially+observed+diagnostic+tests%3A+Application+to+the+natural+history+of+human+papillomavirus+and+cervical+precancer&rft.jtitle=Statistics+in+medicine&rft.au=Jordan%2C+Aron&rft.au=Albert%2C+Paul+S&rft.au=Wentzensen%2C+Nicolas&rft.au=Cheung%2C+Li+C&rft.date=2021-07-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=15&rft.spage=3460&rft.epage=3476&rft_id=info:doi/10.1002%2Fsim.8977&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |