Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boron‐Oxygen‐Nitrogen Embedded Polycyclic Aromatic System

Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green em...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 61; no. 23; pp. e202200337 - n/a
Main Authors: Cai, Xinliang, Xue, Jianan, Li, Chenglong, Liang, Baoyan, Ying, Ao, Tan, Yao, Gong, Shaolong, Wang, Yue
Format: Journal Article
Language:English
Published: WEINHEIM Wiley 07.06.2022
Wiley Subscription Services, Inc
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %. A ternary B−O−N embedded multiple resonance thermally activated delayed fluorescence emitter is developed based on the para B‐π‐B and O‐π‐O strategy. It exhibits a narrowband green emission with a full width at half maximum (FWHM) of 19 nm/0.09 eV and a preferential horizontal dipole ratio of 96 %. The corresponding organic light‐emitting diode (OLED) emits green light with a FWHM of 27 nm and a high external quantum efficiency (EQE) of 37.1 %.
AbstractList Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-pi-boron and para oxygen-pi-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.
Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.
Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.
Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-π-boron and para oxygen-π-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-π-boron and para oxygen-π-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.
Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %. A ternary B−O−N embedded multiple resonance thermally activated delayed fluorescence emitter is developed based on the para B‐π‐B and O‐π‐O strategy. It exhibits a narrowband green emission with a full width at half maximum (FWHM) of 19 nm/0.09 eV and a preferential horizontal dipole ratio of 96 %. The corresponding organic light‐emitting diode (OLED) emits green light with a FWHM of 27 nm and a high external quantum efficiency (EQE) of 37.1 %.
ArticleNumber 202200337
Author Xue, Jianan
Liang, Baoyan
Ying, Ao
Tan, Yao
Wang, Yue
Gong, Shaolong
Cai, Xinliang
Li, Chenglong
Author_xml – sequence: 1
  givenname: Xinliang
  surname: Cai
  fullname: Cai, Xinliang
  organization: Jilin University
– sequence: 2
  givenname: Jianan
  surname: Xue
  fullname: Xue, Jianan
  organization: Jilin University
– sequence: 3
  givenname: Chenglong
  orcidid: 0000-0003-2523-6151
  surname: Li
  fullname: Li, Chenglong
  email: chenglongli@jlu.edu.cn
  organization: Jilin University
– sequence: 4
  givenname: Baoyan
  surname: Liang
  fullname: Liang, Baoyan
  email: liangby@jihualab.ac.cn
  organization: Jihua Laboratory
– sequence: 5
  givenname: Ao
  surname: Ying
  fullname: Ying, Ao
  organization: Wuhan University
– sequence: 6
  givenname: Yao
  surname: Tan
  fullname: Tan, Yao
  organization: Wuhan University
– sequence: 7
  givenname: Shaolong
  surname: Gong
  fullname: Gong, Shaolong
  organization: Wuhan University
– sequence: 8
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  email: yuewang@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35302704$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhiNURC-wZYksISSkKoMvSZwsp6PpRSotEgWWkWOfTF05dmsn0Oz6CLwHb8WT4DDTIlVCsPKR_f3-7f-c3WTLOgtJ8pLgGcGYvhNWw4xiSjFmjD9JdkhOSco4Z1uxzhhLeZmT7WQ3hKvIlyUuniXbLGeYcpztJD_m8lLDV21XiPEZeYOOPIBFSwOy984MnbYQJNgeLdtWSw1WjkhYhfAMVwg-o8PBGPRFq_4SiR4dC9Oi9-JWd0OHDkQAhZxFAl2At8KP6MB5Z3_efT-_HVcwFWc62qwmx64BpSL_wZlRjtJoiebedaKPxccx9NA9T562wgR4sVn3kk-Hy4vFcXp6fnSymJ-mMmMVT7NGUVWSsilFropK8Io0THFaxl1FmyIXFKhgJZYsByhY1raRblkGGS0Yr9he8nZ977V3NwOEvu50zMAYYcENoaZFFrNnFc0j-voReuWG-FUzUZxQzHhOI_VqQw1NB6q-9rqLadT3bYjA_hr4Bo1rw--Y4QHDGHNexv7GJmNMIl3-P73QfYzQ2YUbbB-l2VoqvQvBQ1vLzXnvhTY1wfU0VvU0VvXDWEXZ7JHs3u2vgmrzRG1g_Addz89Oln-0vwATr93u
CitedBy_id crossref_primary_10_1002_chem_202202628
crossref_primary_10_1002_ange_202509606
crossref_primary_10_1002_anie_202309923
crossref_primary_10_1039_D2QM01008A
crossref_primary_10_1016_j_chemphys_2024_112544
crossref_primary_10_1002_ange_202313254
crossref_primary_10_1016_j_cej_2024_155350
crossref_primary_10_1016_j_chempr_2025_102685
crossref_primary_10_1002_anie_202213697
crossref_primary_10_1002_adma_202313602
crossref_primary_10_1002_ange_202216473
crossref_primary_10_1002_adom_202403556
crossref_primary_10_1002_adom_202301084
crossref_primary_10_1002_anie_202210864
crossref_primary_10_1002_ange_202302478
crossref_primary_10_1002_anie_202304104
crossref_primary_10_1002_adma_202408816
crossref_primary_10_1002_adma_202412761
crossref_primary_10_1016_j_heliyon_2024_e30926
crossref_primary_10_1002_anie_202312666
crossref_primary_10_1002_adom_202301626
crossref_primary_10_1002_anie_202300934
crossref_primary_10_1002_anie_202515889
crossref_primary_10_1016_j_dyepig_2023_111520
crossref_primary_10_1039_D2SC06343C
crossref_primary_10_1016_j_cej_2022_141074
crossref_primary_10_1016_j_cej_2024_150618
crossref_primary_10_1002_adpr_202200201
crossref_primary_10_1002_anie_202504628
crossref_primary_10_1002_anie_202415113
crossref_primary_10_1002_adom_202402317
crossref_primary_10_1002_adfm_202422973
crossref_primary_10_1021_acs_chemrev_5c00021
crossref_primary_10_1002_adma_202204253
crossref_primary_10_1002_anie_202209984
crossref_primary_10_1002_adom_202300298
crossref_primary_10_1021_acs_jcim_5c00608
crossref_primary_10_1039_D2RA05163J
crossref_primary_10_1002_poc_70012
crossref_primary_10_1038_s41566_022_01106_8
crossref_primary_10_1002_jsid_1287
crossref_primary_10_1039_D3QM00131H
crossref_primary_10_1002_anie_202313254
crossref_primary_10_1002_ange_202504628
crossref_primary_10_1002_ange_202213697
crossref_primary_10_1002_cptc_202500100
crossref_primary_10_1016_j_cej_2024_158958
crossref_primary_10_1002_adom_202400490
crossref_primary_10_1002_adom_202500867
crossref_primary_10_1002_anie_202215226
crossref_primary_10_1002_adom_202201714
crossref_primary_10_1002_ange_202210864
crossref_primary_10_1002_cjoc_202200356
crossref_primary_10_1002_adma_202301018
crossref_primary_10_1016_j_orgel_2023_106845
crossref_primary_10_1007_s11426_022_1447_4
crossref_primary_10_1002_adma_202511230
crossref_primary_10_1038_s41467_022_35591_w
crossref_primary_10_1002_ange_202209984
crossref_primary_10_1002_anie_202408522
crossref_primary_10_1002_smll_202407220
crossref_primary_10_1002_adom_202301711
crossref_primary_10_1002_adma_202208602
crossref_primary_10_1002_ange_202215226
crossref_primary_10_1002_anie_202218947
crossref_primary_10_1039_D4SC02351J
crossref_primary_10_1002_ange_202515889
crossref_primary_10_1038_s41467_023_37687_3
crossref_primary_10_1002_ange_202300934
crossref_primary_10_6023_A23040186
crossref_primary_10_1002_adma_202210489
crossref_primary_10_1002_ange_202415113
crossref_primary_10_1002_anie_202416154
crossref_primary_10_1039_D4SC05489J
crossref_primary_10_1016_j_dyepig_2024_112398
crossref_primary_10_1038_s42004_022_00766_5
crossref_primary_10_1016_j_cej_2024_150785
crossref_primary_10_1002_anie_202509606
crossref_primary_10_1002_anie_202213392
crossref_primary_10_1016_j_cej_2023_142900
crossref_primary_10_1016_j_dyepig_2025_113225
crossref_primary_10_1002_adma_202502747
crossref_primary_10_1002_bio_4624
crossref_primary_10_1002_anie_202420253
crossref_primary_10_1002_anie_202423002
crossref_primary_10_1002_anie_202212575
crossref_primary_10_1016_j_orgel_2024_107084
crossref_primary_10_1007_s40843_025_3490_4
crossref_primary_10_1002_adom_202201898
crossref_primary_10_1002_anie_202302478
crossref_primary_10_1002_anie_202213823
crossref_primary_10_1002_ange_202304104
crossref_primary_10_1002_ange_202312666
crossref_primary_10_1002_ange_202416154
crossref_primary_10_1016_j_dyepig_2025_113097
crossref_primary_10_1002_anie_202216473
crossref_primary_10_1002_ange_202423002
crossref_primary_10_1039_D3QM00100H
crossref_primary_10_1002_ange_202213392
crossref_primary_10_1039_D5TC01938A
crossref_primary_10_1002_adom_202301217
crossref_primary_10_1002_adom_202500384
crossref_primary_10_1002_ange_202420253
crossref_primary_10_1002_anie_202500108
crossref_primary_10_1002_ange_202408522
crossref_primary_10_1002_ange_202212575
crossref_primary_10_1039_D5TC01861G
crossref_primary_10_1002_ange_202213823
crossref_primary_10_1002_ange_202306413
crossref_primary_10_1002_ange_202309923
crossref_primary_10_1002_smll_202503089
crossref_primary_10_1002_chem_202201605
crossref_primary_10_1016_j_cej_2024_148567
crossref_primary_10_1002_ange_202500108
crossref_primary_10_1039_D5CY00775E
crossref_primary_10_1039_D3QM00498H
crossref_primary_10_1002_adom_202302811
crossref_primary_10_1002_adom_202301732
crossref_primary_10_1002_adma_202416224
crossref_primary_10_1002_adma_202212237
crossref_primary_10_1002_ange_202218947
crossref_primary_10_1002_anie_202306413
Cites_doi 10.1002/ange.202007210
10.1002/adma.202100652
10.1021/ct200308m
10.1002/adma.201705250
10.1002/ange.202108283
10.1021/jacs.0c10081
10.1002/ange.202008264
10.1002/anie.202012891
10.1002/anie.202117181
10.1002/ange.201509231
10.1039/C5CS00183H
10.1021/jacs.9b13704
10.1038/natrevmats.2018.20
10.1002/ange.202113206
10.1002/anie.202007210
10.1002/ange.202012891
10.1021/acsami.1c09743
10.1002/adma.201402532
10.1002/ange.202109041
10.1021/ja3036042
10.1002/anie.201509231
10.1002/adma.202106954
10.1002/anie.202105032
10.1002/adma.202103293
10.1002/anie.202107848
10.1039/D1SC02042K
10.1002/adma.201505491
10.1002/adom.201902142
10.1038/nature11687
10.1002/adma.201401407
10.1002/adma.201401476
10.1002/ange.202109335
10.1002/advs.201902508
10.1002/adfm.202102017
10.31635/ccschem.020.202000243
10.1021/jacs.1c04251
10.1002/anie.202109041
10.1038/s41467-021-26689-8
10.1021/acs.chemrev.8b00637
10.31635/ccschem.021.202101033
10.1021/ja211944q
10.1002/ange.202105032
10.1002/anie.201806323
10.1002/ange.201911266
10.1002/adfm.201908839
10.1002/ange.202107848
10.1039/D0QM00190B
10.1002/adfm.201908677
10.1038/s41467-019-08495-5
10.1039/C5MH00258C
10.1002/adma.202004072
10.1021/jacs.1c08486
10.1002/anie.202109335
10.1002/advs.202101137
10.1002/anie.202113206
10.1002/anie.202108283
10.1002/anie.202008264
10.1038/nmat4154
10.1002/anie.201709125
10.1002/adfm.202103875
10.1021/acs.orglett.0c04159
10.1021/jacs.1c09058
10.1038/s41566-019-0476-5
10.1021/acsami.0c20619
10.1002/adom.202001845
10.1002/anie.201911266
10.1038/370354a0
10.1002/ange.201806323
10.1002/adma.202105080
10.1002/ange.202117181
10.1002/ange.201709125
10.1038/ncomms5016
10.1002/aelm.202101114
10.1021/acs.chemrev.6b00076
10.1038/NMAT4154
10.1002/advs.202000261
10.1038/natrevmats.2018.3
10.1002/adma.202204355
10.1039/c5mh00258c
10.1039/c5cs00183h
10.1039/d1sc02042k
10.1039/d0qm00190b
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202200337
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList Web of Science
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35302704
000778033200001
10_1002_anie_202200337
ANIE202200337
Genre article
Journal Article
GrantInformation_xml – fundername: National Key RAMP;D Program of China
  grantid: 2020YFA0714601
– fundername: Natural Science Foundation of Chongqing, China; Natural Science Foundation of Chongqing
  grantid: cstc2021jcyj-msxmX0274; X190321TF190
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21935005; 52173165
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4397-4bd2d818b8a5d69a791b3d7282d8d2b65a2e2a380c35ee634ff818f34e4263793
IEDL.DBID DRFUL
ISICitedReferencesCount 123
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000778033200001
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 13:32:19 EST 2025
Tue Oct 07 06:49:12 EDT 2025
Wed Feb 19 02:25:53 EST 2025
Tue Oct 28 00:19:37 EDT 2025
Fri Dec 05 23:00:41 EST 2025
Tue Nov 18 22:36:12 EST 2025
Sat Nov 29 02:36:39 EST 2025
Wed Jan 22 16:24:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Thermally Activated Delayed fluorescence
LIGHT-EMITTING-DIODES
Polycyclic Aromatic Hydrocarbon
Narrowband Emission
Organic Light-Emitting Diodes
Multiple Resonance Effect
ACTIVATED DELAYED FLUORESCENCE
EMITTERS
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4397-4bd2d818b8a5d69a791b3d7282d8d2b65a2e2a380c35ee634ff818f34e4263793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2523-6151
0000-0003-1256-9440
0000-0002-1166-9047
PMID 35302704
PQID 2671203752
PQPubID 946352
PageCount 8
ParticipantIDs crossref_citationtrail_10_1002_anie_202200337
webofscience_primary_000778033200001
webofscience_primary_000778033200001CitationCount
crossref_primary_10_1002_anie_202200337
proquest_miscellaneous_2641003925
proquest_journals_2671203752
pubmed_primary_35302704
wiley_primary_10_1002_anie_202200337_ANIE202200337
PublicationCentury 2000
PublicationDate June 7, 2022
PublicationDateYYYYMMDD 2022-06-07
PublicationDate_xml – month: 06
  year: 2022
  text: June 7, 2022
  day: 07
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 9
2021; 8
2015; 14
2021; 3
2021; 23
2020; 142
2019; 10
2019; 13
1994; 370
2020 2020; 59 132
2014; 26
2021; 143
2020; 32
2017 2017; 56 129
2019 2019; 58 131
2011; 7
2017; 117
2020; 8
2012; 492
2021; 13
2020; 7
2022 2022; 61 134
2020; 4
2018; 3
2014; 5
2021; 31
2016 2016; 55 128
2012; 134
2021; 12
2020; 2
2021; 33
2016; 3
2020; 30
2018 2018; 57 130
2022; 8
2015; 44
2022; 34
2021 2021; 60 133
2019; 119
2018; 30
2016; 28
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_19_3
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_60_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_47_1
e_1_2_7_68_2
e_1_2_7_26_2
(e_1_2_7_40_3) 2022; 134
e_1_2_7_26_3
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_71_2
e_1_2_7_71_3
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_3
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_1
e_1_2_7_58_2
e_1_2_7_56_3
e_1_2_7_37_2
e_1_2_7_37_3
e_1_2_7_39_2
(e_1_2_7_43_2) 2022; 134
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_65_2
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_67_1
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_29_3
e_1_2_7_72_2
e_1_2_7_51_1
e_1_2_7_70_2
e_1_2_7_30_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_55_3
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_57_2
e_1_2_7_38_2
Yang, ML (WOS:000696247200001) 2021; 60
Yan, ZP (WOS:000668587400001) 2021; 31
Ando, N (WOS:000672592000026) 2021; 143
Xu, YC (WOS:000810728900024) 2022; 4
Nagata, M (WOS:000683177500001) 2021; 60
Li, JK (WOS:000715845900012) 2021; 143
Tao, Y (WOS:000346263100001) 2014; 26
Hirai, M (WOS:000477787600004) 2019; 119
Gillett, AJ (WOS:000720063500021) 2021; 12
Zhang, YW (WOS:000492218500001) 2019; 58
Shiu, YJ (WOS:000370656200004) 2016; 55
Le Bahers, T (WOS:000293662500019) 2011; 7
Cai, X. (000778033200001.1) 1000; 2022
Kondo, Y (WOS:000487333400005) 2019; 13
(000778033200001.33) 2020; 132
Stavrou, K (WOS:000623228500075) 2021; 13
Sun, DM (WOS:000545448500008) 2020; 4
Chen, XL (WOS:000445812900038) 2017; 56
Zeng, X (WOS:000755169600001) 2022; 61
Zeng (000778033200001.48) 2022; 134
Zhang, YW (WOS:000557993900001) 2020; 59
Zhang, DD (WOS:000424485100026) 2018; 30
Liang, X (WOS:000442340000034) 2018; 57
Liu, Y (WOS:000662326300001) 2021; 12
Hatakeyama, T (WOS:000373839600014) 2016; 28
Chen, Y (WOS:000695165000001) 2021; 33
Yan, CQ (WOS:000427559200007) 2018; 3
Hirata, S (WOS:000350136400022) 2015; 14
(000778033200001.31) 2020; 132
Suresh, SM (WOS:000535648400001) 2020; 30
(000778033200001.60) 2017; 129
Yang, ML (WOS:000592911000007) 2020; 142
Guo, JX (WOS:000715845900045) 2021; 143
Xu, YC (WOS:000555866800001) 2020; 59
(000778033200001.15) 2021; 133
Zhang (000778033200001.44) 2022; 134
(000778033200001.28) 2019; 131
Uoyama, H (WOS:000312259300038) 2012; 492
Ikeda, N (WOS:000564015100001) 2020; 32
Zhang, YW (WOS:000723906400001) 2022; 61
Xu, YC (WOS:000640769600001) 2021; 33
Zhang, YW (WOS:000678178400001) 2021; 60
Oda, S (WOS:000597678700001) 2021; 60
Guo, XH (WOS:000833748300001) 2022; 34
Yin, C (WOS:000794109100015) 2020; 2
Zhang, DD (WOS:000340500700023) 2014; 26
COLVIN, VL (WOS:A1994PA30400050) 1994; 370
Qiu, X (WOS:000599193500001) 2021; 9
Shiu (000778033200001.58) 2016; 128
(000778033200001.22) 2021; 133
Zhang, Y (000778033200001.19) 2021; 133
Wu, XG (WOS:000710320800001) 2022; 34
Narita, A (WOS:000360654900015) 2015; 44
Huang, F (WOS:000683741400081) 2021; 13
Naveen, KR (WOS:000721829700001) 2022; 8
Pershin, A (WOS:000457749000006) 2019; 10
Nakanotani, H (WOS:000337542700001) 2014; 5
Sun, JW (WOS:000340900800013) 2014; 26
Qi, YY (WOS:000649837300001) 2021; 31
Gong, X (WOS:000515672300001) 2020; 30
(000778033200001.17) 2018; 130
Tanaka, H (WOS:000668878500001) 2021; 60
Suresh, SM (WOS:000526394200021) 2020; 142
Zhang, DD (WOS:000371611800007) 2016; 3
Patil, VV (WOS:000684483100001) 2021; 8
Yang (000778033200001.24) 2021; 133
Zou, SN (WOS:000629001700062) 2021; 23
Wen, F (WOS:000538802400001) 2020; 7
Huang, TY (WOS:000697714500001) 2021; 60
Stepien, M (WOS:000394829000024) 2017; 117
(000778033200001.40) 2021; 133
Xu, YC (WOS:000531416200016) 2020; 8
Zhou, ZG (WOS:000301990600020) 2012; 134
Saito, S (WOS:000304837800028) 2012; 134
References_xml – volume: 7
  start-page: 2498
  year: 2011
  end-page: 2506
  publication-title: J. Chem. Theory Comput.
– volume: 13
  start-page: 678
  year: 2019
  end-page: 682
  publication-title: Nat. Photonics
– volume: 8
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 26
  start-page: 5684
  year: 2014
  end-page: 5688
  publication-title: Adv. Mater.
– volume: 12
  start-page: 6640
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 55 128
  start-page: 3017 3069
  year: 2016 2016
  end-page: 3021 3073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 13
  start-page: 8643
  year: 2021
  end-page: 8655
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1268
  year: 2020
  end-page: 1277
  publication-title: CCS Chem.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 142
  start-page: 19468
  year: 2020
  end-page: 19472
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4016
  year: 2014
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 17910 18054
  year: 2021 2021
  end-page: 17914 18058
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 57 130
  start-page: 11316 11486
  year: 2018 2018
  end-page: 11320 11490
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 3479
  year: 2017
  end-page: 3716
  publication-title: Chem. Rev.
– volume: 12
  start-page: 9408
  year: 2021
  end-page: 9412
  publication-title: Chem. Sci.
– volume: 13
  start-page: 36089
  year: 2021
  end-page: 36097
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 4529
  year: 2012
  end-page: 4532
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 2777
  year: 2016
  end-page: 2781
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 17499 17652
  year: 2020 2020
  end-page: 17503 17656
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 9130
  year: 2012
  end-page: 9133
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 5050
  year: 2014
  end-page: 5055
  publication-title: Adv. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 26
  start-page: 7931
  year: 2014
  end-page: 7958
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 23771 23964
  year: 2021 2021
  end-page: 23776 23969
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 6616
  year: 2015
  end-page: 6643
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 2018
  year: 2020
  end-page: 2022
  publication-title: Mater. Chem. Front.
– volume: 60 133
  start-page: 20280 20442
  year: 2021 2021
  end-page: 20285 20447
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 20498 20661
  year: 2021 2021
  end-page: 20503 20666
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 145
  year: 2016
  end-page: 151
  publication-title: Mater. Horiz.
– volume: 143
  start-page: 9944
  year: 2021
  end-page: 9951
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 17958
  year: 2021
  end-page: 17963
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 2882 2918
  year: 2021 2021
  end-page: 2886 2922
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 6588
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 18020
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 56 129
  start-page: 15006 15202
  year: 2017 2017
  end-page: 15009 15205
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 370
  start-page: 354
  year: 1994
  end-page: 357
  publication-title: Nature
– volume: 143
  start-page: 18272
  year: 2021
  end-page: 18279
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 23142 23326
  year: 2021 2021
  end-page: 23147 23331
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 119
  start-page: 8291
  year: 2019
  end-page: 8331
  publication-title: Chem. Rev.
– volume: 10
  start-page: 597
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 2077
  year: 2021
  end-page: 2091
  publication-title: CCS Chem.
– volume: 14
  start-page: 330
  year: 2015
  end-page: 336
  publication-title: Nat. Mater.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 23
  start-page: 958
  year: 2021
  end-page: 962
  publication-title: Org. Lett.
– volume: 58 131
  start-page: 16912 17068
  year: 2019 2019
  end-page: 16917 17073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 17442 17595
  year: 2020 2020
  end-page: 17446 17599
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 492
  start-page: 234
  year: 2012
  end-page: 238
  publication-title: Nature
– ident: e_1_2_7_28_3
  doi: 10.1002/ange.202007210
– ident: e_1_2_7_30_2
  doi: 10.1002/adma.202100652
– ident: e_1_2_7_42_1
  doi: 10.1021/ct200308m
– ident: e_1_2_7_69_2
  doi: 10.1002/adma.201705250
– ident: e_1_2_7_21_3
  doi: 10.1002/ange.202108283
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.0c10081
– ident: e_1_2_7_29_3
  doi: 10.1002/ange.202008264
– ident: e_1_2_7_37_2
  doi: 10.1002/anie.202012891
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.202117181
– ident: e_1_2_7_55_3
  doi: 10.1002/ange.201509231
– ident: e_1_2_7_2_2
  doi: 10.1039/C5CS00183H
– ident: e_1_2_7_50_2
  doi: 10.1021/jacs.9b13704
– ident: e_1_2_7_25_1
– ident: e_1_2_7_57_2
  doi: 10.1038/natrevmats.2018.20
– ident: e_1_2_7_4_1
– ident: e_1_2_7_47_1
– ident: e_1_2_7_52_1
– volume: 134
  start-page: e202113206
  year: 2022
  ident: e_1_2_7_40_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113206
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.202007210
– ident: e_1_2_7_37_3
  doi: 10.1002/ange.202012891
– ident: e_1_2_7_60_2
  doi: 10.1021/acsami.1c09743
– ident: e_1_2_7_54_2
  doi: 10.1002/adma.201402532
– ident: e_1_2_7_71_3
  doi: 10.1002/ange.202109041
– ident: e_1_2_7_9_2
  doi: 10.1021/ja3036042
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.201509231
– ident: e_1_2_7_32_1
– ident: e_1_2_7_33_2
  doi: 10.1002/adma.202106954
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.202105032
– ident: e_1_2_7_64_2
  doi: 10.1002/adma.202103293
– ident: e_1_2_7_19_2
  doi: 10.1002/anie.202107848
– ident: e_1_2_7_31_2
  doi: 10.1039/D1SC02042K
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201505491
– ident: e_1_2_7_27_2
  doi: 10.1002/adom.201902142
– ident: e_1_2_7_45_2
  doi: 10.1038/nature11687
– ident: e_1_2_7_53_2
  doi: 10.1002/adma.201401407
– ident: e_1_2_7_70_2
  doi: 10.1002/adma.201401476
– ident: e_1_2_7_22_3
  doi: 10.1002/ange.202109335
– ident: e_1_2_7_58_2
  doi: 10.1002/advs.201902508
– ident: e_1_2_7_61_2
  doi: 10.1002/adfm.202102017
– ident: e_1_2_7_72_2
  doi: 10.31635/ccschem.020.202000243
– ident: e_1_2_7_3_2
  doi: 10.1021/jacs.1c04251
– ident: e_1_2_7_71_2
  doi: 10.1002/anie.202109041
– ident: e_1_2_7_49_2
  doi: 10.1038/s41467-021-26689-8
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.chemrev.8b00637
– ident: e_1_2_7_20_2
  doi: 10.31635/ccschem.021.202101033
– ident: e_1_2_7_59_1
– ident: e_1_2_7_10_2
  doi: 10.1021/ja211944q
– ident: e_1_2_7_17_3
  doi: 10.1002/ange.202105032
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.201806323
– ident: e_1_2_7_26_3
  doi: 10.1002/ange.201911266
– ident: e_1_2_7_34_2
  doi: 10.1002/adfm.201908839
– ident: e_1_2_7_19_3
  doi: 10.1002/ange.202107848
– ident: e_1_2_7_41_2
  doi: 10.1039/D0QM00190B
– ident: e_1_2_7_67_1
– ident: e_1_2_7_8_2
  doi: 10.1002/adfm.201908677
– ident: e_1_2_7_48_2
  doi: 10.1038/s41467-019-08495-5
– ident: e_1_2_7_73_1
  doi: 10.1039/C5MH00258C
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.202004072
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.1c08486
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.202109335
– ident: e_1_2_7_63_1
– ident: e_1_2_7_65_2
  doi: 10.1002/advs.202101137
– ident: e_1_2_7_36_1
– ident: e_1_2_7_44_1
– ident: e_1_2_7_40_2
  doi: 10.1002/anie.202113206
– ident: e_1_2_7_21_2
  doi: 10.1002/anie.202108283
– ident: e_1_2_7_29_2
  doi: 10.1002/anie.202008264
– ident: e_1_2_7_46_2
  doi: 10.1038/nmat4154
– ident: e_1_2_7_56_2
  doi: 10.1002/anie.201709125
– ident: e_1_2_7_39_2
  doi: 10.1002/adfm.202103875
– ident: e_1_2_7_38_2
  doi: 10.1021/acs.orglett.0c04159
– ident: e_1_2_7_11_2
  doi: 10.1021/jacs.1c09058
– ident: e_1_2_7_23_1
  doi: 10.1038/s41566-019-0476-5
– ident: e_1_2_7_51_1
  doi: 10.1021/acsami.0c20619
– ident: e_1_2_7_35_1
  doi: 10.1002/adom.202001845
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.201911266
– ident: e_1_2_7_66_1
  doi: 10.1038/370354a0
– ident: e_1_2_7_18_3
  doi: 10.1002/ange.201806323
– ident: e_1_2_7_62_2
  doi: 10.1002/adma.202105080
– volume: 134
  start-page: e202117181
  year: 2022
  ident: e_1_2_7_43_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202117181
– ident: e_1_2_7_56_3
  doi: 10.1002/ange.201709125
– ident: e_1_2_7_68_2
  doi: 10.1038/ncomms5016
– ident: e_1_2_7_13_2
  doi: 10.1002/aelm.202101114
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.chemrev.6b00076
– ident: e_1_2_7_15_1
– volume: 59
  start-page: 17442
  year: 2020
  ident: WOS:000555866800001
  article-title: Constructing Charge-Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202007210
– volume: 143
  start-page: 17958
  year: 2021
  ident: WOS:000715845900012
  article-title: B,N-Embedded Double Hetero[7]helicenes with Strong Chiroptical Responses in the Visible Light Region
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c09058
– volume: 142
  start-page: 6588
  year: 2020
  ident: WOS:000526394200021
  article-title: A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet-Triplet Annihilation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b13704
– volume: 134
  start-page: 9130
  year: 2012
  ident: WOS:000304837800028
  article-title: Polycyclic π-Electron System with Boron at Its Center
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja3036042
– volume: 14
  start-page: 330
  year: 2015
  ident: WOS:000350136400022
  article-title: Highly efficient blue electroluminescence based on thermally activated delayed fluorescence
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT4154
– volume: 58
  start-page: 16912
  year: 2019
  ident: WOS:000492218500001
  article-title: Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911266
– volume: 59
  start-page: 17499
  year: 2020
  ident: WOS:000557993900001
  article-title: Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Aza-Fused Multi-Resonance Emitter
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202008264
– volume: 13
  start-page: 36089
  year: 2021
  ident: WOS:000683741400081
  article-title: Approaching Efficient and Narrow RGB Electroluminescence from D-A-Type TADF Emitters Containing an Identical Multiple Resonance Backbone as the Acceptor
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.1c09743
– volume: 7
  start-page: ARTN 2000261
  year: 2020
  ident: WOS:000538802400001
  article-title: Machine Learning Glove Using Self-Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.202000261
– volume: 60
  start-page: 20498
  year: 2021
  ident: WOS:000678178400001
  article-title: Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202107848
– volume: 30
  start-page: ARTN 1908677
  year: 2020
  ident: WOS:000535648400001
  article-title: Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201908677
– volume: 28
  start-page: 2777
  year: 2016
  ident: WOS:000373839600014
  article-title: Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201505491
– volume: 26
  start-page: 7931
  year: 2014
  ident: WOS:000346263100001
  article-title: Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201402532
– volume: 60
  start-page: 23142
  year: 2021
  ident: WOS:000696247200001
  article-title: Wide-Range Color Tuning of Narrowband Emission in Multi-resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202109335
– volume: 31
  start-page: ARTN 2102017
  year: 2021
  ident: WOS:000649837300001
  article-title: Peripheral Decoration of Multi-Resonance Molecules as a Versatile Approach for Simultaneous Long-Wavelength and Narrowband Emission
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202102017
– volume: 2022
  year: 1000
  ident: 000778033200001.1
  publication-title: Angew. Chem. Int. Ed
– volume: 26
  start-page: 5684
  year: 2014
  ident: WOS:000340900800013
  article-title: A Fluorescent Organic Light-Emitting Diode with 30% External Quantum Efficiency
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201401407
– volume: 128
  start-page: 3069
  year: 2016
  ident: 000778033200001.58
  publication-title: Angew. Chem
– volume: 23
  start-page: 958
  year: 2021
  ident: WOS:000629001700062
  article-title: Fully Bridged Triphenylamine Derivatives as Color-Tunable Thermally Activated Delayed Fluorescence Emitters
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.0c04159
– volume: 34
  start-page: ARTN 2105080
  year: 2022
  ident: WOS:000710320800001
  article-title: Fabrication of Circularly Polarized MR-TADF Emitters with Asymmetrical Peripheral-Lock Enhancing Helical B/N-Doped Nanographenes
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202105080
– volume: 143
  start-page: 18272
  year: 2021
  ident: WOS:000715845900045
  article-title: Boron-Containing Organic Diradicaloids: Dynamically Modulating Singlet Diradical Character by Lewis Acid-Base Coordination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c08486
– volume: 31
  start-page: ARTN 2103875
  year: 2021
  ident: WOS:000668587400001
  article-title: Chiral Thermally Activated Delayed Fluorescence Materials Based on R/S-N2,N2′-Diphenyl-[1,1′-binaphthalene]-2,2′diamine Donor with Narrow Emission Spectra for Highly Efficient Circularly Polarized Electroluminescence
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202103875
– volume: 56
  start-page: 15006
  year: 2017
  ident: WOS:000445812900038
  article-title: Combining Charge-Transfer Pathways to Achieve Unique Thermally Activated Delayed Fluorescence Emitters for High-Performance Solution-Processed, Non-doped Blue OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201709125
– volume: 133
  start-page: 23326
  year: 2021
  ident: 000778033200001.24
  publication-title: Angew. Chem
– volume: 133
  start-page: 20442
  year: 2021
  ident: 000778033200001.22
  publication-title: Angew. Chem
– volume: 13
  start-page: 678
  year: 2019
  ident: WOS:000487333400005
  article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-019-0476-5
– volume: 3
  start-page: ARTN 18003
  year: 2018
  ident: WOS:000427559200007
  article-title: Non-fullerene acceptors for organic solar cells
  publication-title: NATURE REVIEWS MATERIALS
  doi: 10.1038/natrevmats.2018.3
– volume: 492
  start-page: 234
  year: 2012
  ident: WOS:000312259300038
  article-title: Highly efficient organic light-emitting diodes from delayed fluorescence
  publication-title: NATURE
  doi: 10.1038/nature11687
– volume: 60
  start-page: 23771
  year: 2021
  ident: WOS:000697714500001
  article-title: Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Through-space Charge Transfers
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202109041
– volume: 34
  start-page: ARTN 2204355
  year: 2022
  ident: WOS:000833748300001
  article-title: SrTiO3/CuNi-Heterostructure-Based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-Machine Interaction
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202204355
– volume: 3
  start-page: 145
  year: 2016
  ident: WOS:000371611800007
  article-title: Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability
  publication-title: MATERIALS HORIZONS
  doi: 10.1039/c5mh00258c
– volume: 55
  start-page: 3017
  year: 2016
  ident: WOS:000370656200004
  article-title: Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Light-Emitting Diodes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201509231
– volume: 5
  start-page: ARTN 4016
  year: 2014
  ident: WOS:000337542700001
  article-title: High-efficiency organic light-emitting diodes with fluorescent emitters
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms5016
– volume: 133
  start-page: 18054
  year: 2021
  ident: 000778033200001.15
  publication-title: Angew. Chem
– volume: 132
  start-page: 17652
  year: 2020
  ident: 000778033200001.33
  publication-title: Angew. Chem
– volume: 32
  start-page: ARTN 2004072
  year: 2020
  ident: WOS:000564015100001
  article-title: Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202004072
– volume: 33
  start-page: ARTN 2100652
  year: 2021
  ident: WOS:000640769600001
  article-title: Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202100652
– volume: 30
  start-page: ARTN 1705250
  year: 2018
  ident: WOS:000424485100026
  article-title: Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201705250
– volume: 61
  start-page: ARTN e202113206
  year: 2022
  ident: WOS:000723906400001
  article-title: Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202113206
– volume: 9
  start-page: ARTN 2001845
  year: 2021
  ident: WOS:000599193500001
  article-title: Narrowband Emission from Organic Fluorescent Emitters with Dominant Low-Frequency Vibronic Coupling
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202001845
– volume: 44
  start-page: 6616
  year: 2015
  ident: WOS:000360654900015
  article-title: New advances in nanographene chemistry
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00183h
– volume: 130
  start-page: 11486
  year: 2018
  ident: 000778033200001.17
  publication-title: Angew. Chem
– volume: 2
  start-page: 1268
  year: 2020
  ident: WOS:000794109100015
  article-title: High-Efficiency Narrow-Band Electro-Fluorescent Devices with Thermally Activated Delayed Fluorescence Sensitizers Combined Through-Bond and Through-Space Charge Transfers
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.020.202000243
– volume: 60
  start-page: 17910
  year: 2021
  ident: WOS:000668878500001
  article-title: Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202105032
– volume: 370
  start-page: 354
  year: 1994
  ident: WOS:A1994PA30400050
  article-title: LIGHT-EMITTING-DIODES MADE FROM CADMIUM SELENIDE NANOCRYSTALS AND A SEMICONDUCTING POLYMER
  publication-title: NATURE
– volume: 8
  start-page: ARTN 1902142
  year: 2020
  ident: WOS:000531416200016
  article-title: Molecular-Structure and Device-Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.201902142
– volume: 119
  start-page: 8291
  year: 2019
  ident: WOS:000477787600004
  article-title: Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic π-Conjugated Systems
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.8b00637
– volume: 12
  start-page: 9408
  year: 2021
  ident: WOS:000662326300001
  article-title: Molecular design of thermally activated delayed fluorescent emitters for narrowband orange-red OLEDs boosted by a cyano-functionalization strategy
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d1sc02042k
– volume: 57
  start-page: 11316
  year: 2018
  ident: WOS:000442340000034
  article-title: Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201806323
– volume: 4
  start-page: 2065
  year: 2022
  ident: WOS:000810728900024
  article-title: Highly Efficient Electroluminescent Materials with High Color Purity Based on Strong Acceptor Attachment onto B-N-Containing Multiple Resonance Frameworks
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.021.202101033
– volume: 117
  start-page: 3479
  year: 2017
  ident: WOS:000394829000024
  article-title: Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00076
– volume: 60
  start-page: 20280
  year: 2021
  ident: WOS:000683177500001
  article-title: Fused-Nonacyclic Multi-Resonance Delayed Fluorescence Emitter Based on Ladder-Thiaborin Exhibiting Narrowband Sky-Blue Emission with Accelerated Reverse Intersystem Crossing
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202108283
– volume: 12
  start-page: ARTN 6640
  year: 2021
  ident: WOS:000720063500021
  article-title: Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-26689-8
– volume: 132
  start-page: 17595
  year: 2020
  ident: 000778033200001.31
  publication-title: Angew. Chem
– volume: 133
  start-page: 2918
  year: 2021
  ident: 000778033200001.40
  publication-title: Angew. Chem
– volume: 134
  start-page: 4529
  year: 2012
  ident: WOS:000301990600020
  article-title: Planarized Triarylboranes: Stabilization by Structural Constraint and Their Plane-to-Bowl Conversion
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja211944q
– volume: 8
  start-page: ARTN 2101114
  year: 2022
  ident: WOS:000721829700001
  article-title: Narrow Band Red Emission Fluorophore with Reasonable Multiple Resonance Effect
  publication-title: ADVANCED ELECTRONIC MATERIALS
  doi: 10.1002/aelm.202101114
– volume: 60
  start-page: 2882
  year: 2021
  ident: WOS:000597678700001
  article-title: Carbazole-Based DABNA Analogues as Highly Efficient Thermally Activated Delayed Fluorescence Materials for Narrowband Organic Light-Emitting Diodes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202012891
– volume: 4
  start-page: 2018
  year: 2020
  ident: WOS:000545448500008
  article-title: The design of an extended multiple resonance TADF emitter based on a polycyclic amine/carbonyl system
  publication-title: MATERIALS CHEMISTRY FRONTIERS
  doi: 10.1039/d0qm00190b
– volume: 129
  start-page: 15202
  year: 2017
  ident: 000778033200001.60
  publication-title: Angew. Chem
– volume: 134
  year: 2022
  ident: 000778033200001.44
  publication-title: Angew. Chem
– volume: 33
  start-page: ARTN 2103293
  year: 2021
  ident: WOS:000695165000001
  article-title: Approaching Nearly 40% External Quantum Efficiency in Organic Light Emitting Diodes Utilizing a Green Thermally Activated Delayed Fluorescence Emitter with an Extended Linear Donor-Acceptor-Donor Structure
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202103293
– volume: 61
  start-page: ARTN e202117181
  year: 2022
  ident: WOS:000755169600001
  article-title: Nitrogen-Embedded Multi-Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202117181
– volume: 10
  start-page: ARTN 597
  year: 2019
  ident: WOS:000457749000006
  article-title: Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-08495-5
– volume: 30
  start-page: ARTN 1908839
  year: 2020
  ident: WOS:000515672300001
  article-title: A Red Thermally Activated Delayed Fluorescence Emitter Simultaneously Having High Photoluminescence Quantum Efficiency and Preferentially Horizontal Emitting Dipole Orientation
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201908839
– volume: 8
  start-page: ARTN 2101137
  year: 2021
  ident: WOS:000684483100001
  article-title: Purely Spin-Vibronic Coupling Assisted Triplet to Singlet Up-Conversion for Real Deep Blue Organic Light-Emitting Diodes with Over 20% Efficiency and y Color Coordinate of 0.05
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.202101137
– volume: 142
  start-page: 19468
  year: 2020
  ident: WOS:000592911000007
  article-title: Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c10081
– volume: 7
  start-page: 2498
  year: 2011
  ident: WOS:000293662500019
  article-title: A Qualitative Index of Spatial Extent in Charge-Transfer Excitations
  publication-title: JOURNAL OF CHEMICAL THEORY AND COMPUTATION
  doi: 10.1021/ct200308m
– volume: 134
  year: 2022
  ident: 000778033200001.48
  publication-title: Angew. Chem
– volume: 143
  start-page: 9944
  year: 2021
  ident: WOS:000672592000026
  article-title: Boron-Doped Polycyclic π-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B-P Lewis Adducts
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c04251
– volume: 133
  start-page: 20661
  year: 2021
  ident: 000778033200001.19
  publication-title: Angew. Chem
– volume: 131
  start-page: 17068
  year: 2019
  ident: 000778033200001.28
  publication-title: Angew. Chem
– volume: 13
  start-page: 8643
  year: 2021
  ident: WOS:000623228500075
  article-title: Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c20619
– volume: 26
  start-page: 5050
  year: 2014
  ident: WOS:000340500700023
  article-title: High-Efficiency Fluorescent Organic Light-Emitting Devices Using Sensitizing Hosts with a Small Singlet-Triplet Exchange Energy
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201401476
SSID ssj0028806
Score 2.6632988
Snippet Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF),...
Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF),...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202200337
SubjectTerms Aromatic hydrocarbons
Boron
Chemistry
Chemistry, Multidisciplinary
Dipole moments
Electroluminescence
Emission spectra
Emissions
Emitters
Light emitting diodes
Molecular structure
Multiple Resonance Effect
Narrowband
Narrowband Emission
Nitrogen
Organic Light-Emitting Diodes
Oxygen
Photoluminescence
Photons
Physical Sciences
Polycyclic Aromatic Hydrocarbon
Quantum efficiency
Science & Technology
Thermally Activated Delayed fluorescence
Title Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boron‐Oxygen‐Nitrogen Embedded Polycyclic Aromatic System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200337
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000778033200001
https://www.ncbi.nlm.nih.gov/pubmed/35302704
https://www.proquest.com/docview/2671203752
https://www.proquest.com/docview/2641003925
Volume 61
WOS 000778033200001
WOSCitedRecordID wos000778033200001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xDgle-P8nMCYjDfGULbGdOHnsSqshjTKhbfQtcmyHRWoT1KZofeMj8D34VnwSfEkaVhACwZsjX-JYd_bd2Xe_A9ijVARZoCLXKqfU5VaHutJarS7PmLUHtMpYXbTv_FiMx9FkEp9cyeJv8CG6AzdcGfV-jQtcpouDH6ChmIFt_TuK0VVMbME2tcIb9GD71bvR2XHndFn5bDKMGHOxEP0auNGjB5tf2FRMv1ibPymmTVu2Vkaj2_8_jTtwqzVESb-RnLtwzRT34MZgXf_tPnztq4vc4HkDYWLff0HqEB0ybOrm2D0NA-YxtpMMaxgKzOEkstDE2_diYs4Jerfkfa6rCyIrciSnGXkjL_PZckYOre7UpCyIJKd4IDlfkUOEUvj2-cvby5WVadsY53aYDzjiLDV2e9TkpJyu1EpNc2V_u6yxZkmDuP4AzkbD08GR25Z2cBVaQC5PNdXWVkgjGegwliL2U6aF9f90pGkaBpIaKlnkKRYYEzKeZZY6Y9wgwLzdUx5CrygL8xgI95WXKU-HWaq5jHhqZCyoimLNY58q3wF3zddEtbjnWH5jmjSIzTRBFiQdCxx42dF_bBA_fku5sxaTpF35i4SGwqdYWJg68LzrtqzDixhZmHKJNNzHpGgaOPCoEa9uKIZlnITHHdi7Km9dPxp1IrLD0_pixgH_b8gG7cQR6KBygNYS-YfpJf3x62H39ORfXnoKN7Fdh9aJHehV86V5BtfVpypfzHdhS0yi3XbBfgenwz47
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgQxov_IcFBhhpiKdsie3EyWNXWnWiCxPqxt4ix3ZYpDaduhatb3wEvgffik_CXZIGCkIgxFsSX-JY_tl3tu9-R8guYzLIAx25oJwyV4AOdRVYra7IOdgDRue8Stp3OpRJEp2dxceNNyHGwtT8EO2GG46Mar7GAY4b0vvfWUMxBBsWeAzdq7i8TjYFYAlAvvn6Xf9k2K66AKB1iBHnLmaiXzE3emx__QvrmukXc_MnzbRuzFbaqH_7P7TjDrnVmKK0U2PnLrlmy3tkq7vKAHeffOno88LijgPlcs9_SSsnHdqrM-fArIYu8-jdSXsVEQVGcVJVGurteTG1pxTXt_R9YebnVM3pQI1zeqSuisliQg9Aexo6LamiI9ySnC3pAZIpfP30-e3VElANF0kB1XzAGieZhQnS0OPpeKmXelxo-O1pxTZLa871B-Sk3xt1B26T3MHVaAO5IjPMgLWQRSowYaxk7GfcSFgBmsiwLAwUs0zxyNM8sDbkIs9BOufCIsU8zCoPyUY5Le02ocLXXq49E-aZESoSmVWxZDqKjYh9pn2HuKuOTXXDfI4JOMZpzdnMUuyCtO0Ch7xq5S9qzo_fSu6scJI2Y_8yZaH0GaYWZg550RZD1-FRjCrtdIEywsewaBY45FGNr7YqjomcpCccsvsj4NpyNOtkBNWz6mjGIf7fiHWbhiPVwdwhrILkH5qXdpLDXnv3-F9eek62BqOjYTo8TN48ITfxeeVoJ3fIxny2sE_JDf1xXlzOnjXj9hsu9EFD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9Bh4AX_g4IDDDSEE_ZEtuJk8eua7WJUiq0jb1Fju2wSG06dSla3_gIfA--FZ8EX5IGCkIgxFsSX-JYPvvO9t3vB7BNqQiyQEWuNU6py60NdaX1Wl2eMesPaJWxirTvZChGo-j0NB430YSYC1PjQ7QbbjgyqvkaB7g519nud9RQTMG2CzyK4VVMXIUNjkwyHdjYfzc4HrarLqugdYoRYy4y0a-QGz26u_6Fdcv0i7v5k2Vad2YrazS4_R_acQduNa4o6da6cxeumOIe3OitGODuw5euOssN7jgQJnb8l6QK0iH9mjnHzmoYMo_RnaRfAVFgFieRhSbejhcTc0JwfUve57o8I7IkB3KSkTfyMp8upmTPWk9NZgWR5Ai3JOdLsodgCl8_fX57ubRabS9Gua3mA9Y4TY2dIDUZzyZLtVSTXNnfnlVos6TGXN-E40H_qHfgNuQOrkIfyOWpptp6C2kkAx3GUsR-yrSwK0AdaZqGgaSGShZ5igXGhIxnmZXOGDcIMW9nlQfQKWaFeQSE-8rLlKfDLNVcRjw1MhZURbHmsU-V74C76thENcjnSMAxSWrMZppgFyRtFzjwqpU_rzE_fiu5tdKTpBn7FwkNhU-RWpg68KIttl2HRzGyMLMFynAf06Jp4MDDWr_aqhgSOQmPO7D9o8K15ejWichWT6ujGQf8vxHrNQ1HqIPSAVqp5B-al3RHh_327vG_vPQcro_3B8nwcPT6CdzEx1WcndiCTjlfmKdwTX0s84v5s2bYfgNY6UC-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+37.1%25+Green+Electroluminescent+Efficiency+and+0.09+eV+Full+Width+at+Half+Maximum+Based+on+a+Ternary+Boron-Oxygen-Nitrogen+Embedded+Polycyclic+Aromatic+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cai%2C+Xinliang&rft.au=Xue%2C+Jianan&rft.au=Li%2C+Chenglong&rft.au=Liang%2C+Baoyan&rft.date=2022-06-07&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=23&rft_id=info:doi/10.1002%2Fanie.202200337&rft_id=info%3Apmid%2F35302704&rft.externalDBID=n%2Fa&rft.externalDocID=000778033200001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon