Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boron‐Oxygen‐Nitrogen Embedded Polycyclic Aromatic System
Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green em...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 61; no. 23; pp. e202200337 - n/a |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
WEINHEIM
Wiley
07.06.2022
Wiley Subscription Services, Inc |
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.
A ternary B−O−N embedded multiple resonance thermally activated delayed fluorescence emitter is developed based on the para B‐π‐B and O‐π‐O strategy. It exhibits a narrowband green emission with a full width at half maximum (FWHM) of 19 nm/0.09 eV and a preferential horizontal dipole ratio of 96 %. The corresponding organic light‐emitting diode (OLED) emits green light with a FWHM of 27 nm and a high external quantum efficiency (EQE) of 37.1 %. |
|---|---|
| AbstractList | Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-pi-boron and para oxygen-pi-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %. Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %. Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %. Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-π-boron and para oxygen-π-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %.Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF), namely DBNO, is developed by adopting the para boron-π-boron and para oxygen-π-oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light-emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF-sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %. Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF), namely DBNO, is developed by adopting the para boron‐π‐boron and para oxygen‐π‐oxygen strategy. The designed molecule presents a vivid green emission with a high photoluminescence quantum yield (96 %) and an extremely narrow full width at half maximum (FWHM) of 19 nm/0.09 eV, which surpasses all previously reported green TADF emitters to date. In addition, the long molecular structure along the transition dipole moment direction endows it with a high horizontal emitting dipole ratio of 96 %. The organic light‐emitting diode (OLED) based on DBNO reveals a narrowband green emission with a peak at 504 nm and a FWHM of 24 nm/0.12 eV. Particularly, a significantly improved device performance is achieved by the TADF‐sensitization (hyperfluorescence) mechanism, presenting a FWHM of 27 nm and a maximum external quantum efficiency (EQE) of 37.1 %. A ternary B−O−N embedded multiple resonance thermally activated delayed fluorescence emitter is developed based on the para B‐π‐B and O‐π‐O strategy. It exhibits a narrowband green emission with a full width at half maximum (FWHM) of 19 nm/0.09 eV and a preferential horizontal dipole ratio of 96 %. The corresponding organic light‐emitting diode (OLED) emits green light with a FWHM of 27 nm and a high external quantum efficiency (EQE) of 37.1 %. |
| ArticleNumber | 202200337 |
| Author | Xue, Jianan Liang, Baoyan Ying, Ao Tan, Yao Wang, Yue Gong, Shaolong Cai, Xinliang Li, Chenglong |
| Author_xml | – sequence: 1 givenname: Xinliang surname: Cai fullname: Cai, Xinliang organization: Jilin University – sequence: 2 givenname: Jianan surname: Xue fullname: Xue, Jianan organization: Jilin University – sequence: 3 givenname: Chenglong orcidid: 0000-0003-2523-6151 surname: Li fullname: Li, Chenglong email: chenglongli@jlu.edu.cn organization: Jilin University – sequence: 4 givenname: Baoyan surname: Liang fullname: Liang, Baoyan email: liangby@jihualab.ac.cn organization: Jihua Laboratory – sequence: 5 givenname: Ao surname: Ying fullname: Ying, Ao organization: Wuhan University – sequence: 6 givenname: Yao surname: Tan fullname: Tan, Yao organization: Wuhan University – sequence: 7 givenname: Shaolong surname: Gong fullname: Gong, Shaolong organization: Wuhan University – sequence: 8 givenname: Yue surname: Wang fullname: Wang, Yue email: yuewang@jlu.edu.cn organization: Jilin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35302704$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhiNURC-wZYksISSkKoMvSZwsp6PpRSotEgWWkWOfTF05dmsn0Oz6CLwHb8WT4DDTIlVCsPKR_f3-7f-c3WTLOgtJ8pLgGcGYvhNWw4xiSjFmjD9JdkhOSco4Z1uxzhhLeZmT7WQ3hKvIlyUuniXbLGeYcpztJD_m8lLDV21XiPEZeYOOPIBFSwOy984MnbYQJNgeLdtWSw1WjkhYhfAMVwg-o8PBGPRFq_4SiR4dC9Oi9-JWd0OHDkQAhZxFAl2At8KP6MB5Z3_efT-_HVcwFWc62qwmx64BpSL_wZlRjtJoiebedaKPxccx9NA9T562wgR4sVn3kk-Hy4vFcXp6fnSymJ-mMmMVT7NGUVWSsilFropK8Io0THFaxl1FmyIXFKhgJZYsByhY1raRblkGGS0Yr9he8nZ977V3NwOEvu50zMAYYcENoaZFFrNnFc0j-voReuWG-FUzUZxQzHhOI_VqQw1NB6q-9rqLadT3bYjA_hr4Bo1rw--Y4QHDGHNexv7GJmNMIl3-P73QfYzQ2YUbbB-l2VoqvQvBQ1vLzXnvhTY1wfU0VvU0VvXDWEXZ7JHs3u2vgmrzRG1g_Addz89Oln-0vwATr93u |
| CitedBy_id | crossref_primary_10_1002_chem_202202628 crossref_primary_10_1002_ange_202509606 crossref_primary_10_1002_anie_202309923 crossref_primary_10_1039_D2QM01008A crossref_primary_10_1016_j_chemphys_2024_112544 crossref_primary_10_1002_ange_202313254 crossref_primary_10_1016_j_cej_2024_155350 crossref_primary_10_1016_j_chempr_2025_102685 crossref_primary_10_1002_anie_202213697 crossref_primary_10_1002_adma_202313602 crossref_primary_10_1002_ange_202216473 crossref_primary_10_1002_adom_202403556 crossref_primary_10_1002_adom_202301084 crossref_primary_10_1002_anie_202210864 crossref_primary_10_1002_ange_202302478 crossref_primary_10_1002_anie_202304104 crossref_primary_10_1002_adma_202408816 crossref_primary_10_1002_adma_202412761 crossref_primary_10_1016_j_heliyon_2024_e30926 crossref_primary_10_1002_anie_202312666 crossref_primary_10_1002_adom_202301626 crossref_primary_10_1002_anie_202300934 crossref_primary_10_1002_anie_202515889 crossref_primary_10_1016_j_dyepig_2023_111520 crossref_primary_10_1039_D2SC06343C crossref_primary_10_1016_j_cej_2022_141074 crossref_primary_10_1016_j_cej_2024_150618 crossref_primary_10_1002_adpr_202200201 crossref_primary_10_1002_anie_202504628 crossref_primary_10_1002_anie_202415113 crossref_primary_10_1002_adom_202402317 crossref_primary_10_1002_adfm_202422973 crossref_primary_10_1021_acs_chemrev_5c00021 crossref_primary_10_1002_adma_202204253 crossref_primary_10_1002_anie_202209984 crossref_primary_10_1002_adom_202300298 crossref_primary_10_1021_acs_jcim_5c00608 crossref_primary_10_1039_D2RA05163J crossref_primary_10_1002_poc_70012 crossref_primary_10_1038_s41566_022_01106_8 crossref_primary_10_1002_jsid_1287 crossref_primary_10_1039_D3QM00131H crossref_primary_10_1002_anie_202313254 crossref_primary_10_1002_ange_202504628 crossref_primary_10_1002_ange_202213697 crossref_primary_10_1002_cptc_202500100 crossref_primary_10_1016_j_cej_2024_158958 crossref_primary_10_1002_adom_202400490 crossref_primary_10_1002_adom_202500867 crossref_primary_10_1002_anie_202215226 crossref_primary_10_1002_adom_202201714 crossref_primary_10_1002_ange_202210864 crossref_primary_10_1002_cjoc_202200356 crossref_primary_10_1002_adma_202301018 crossref_primary_10_1016_j_orgel_2023_106845 crossref_primary_10_1007_s11426_022_1447_4 crossref_primary_10_1002_adma_202511230 crossref_primary_10_1038_s41467_022_35591_w crossref_primary_10_1002_ange_202209984 crossref_primary_10_1002_anie_202408522 crossref_primary_10_1002_smll_202407220 crossref_primary_10_1002_adom_202301711 crossref_primary_10_1002_adma_202208602 crossref_primary_10_1002_ange_202215226 crossref_primary_10_1002_anie_202218947 crossref_primary_10_1039_D4SC02351J crossref_primary_10_1002_ange_202515889 crossref_primary_10_1038_s41467_023_37687_3 crossref_primary_10_1002_ange_202300934 crossref_primary_10_6023_A23040186 crossref_primary_10_1002_adma_202210489 crossref_primary_10_1002_ange_202415113 crossref_primary_10_1002_anie_202416154 crossref_primary_10_1039_D4SC05489J crossref_primary_10_1016_j_dyepig_2024_112398 crossref_primary_10_1038_s42004_022_00766_5 crossref_primary_10_1016_j_cej_2024_150785 crossref_primary_10_1002_anie_202509606 crossref_primary_10_1002_anie_202213392 crossref_primary_10_1016_j_cej_2023_142900 crossref_primary_10_1016_j_dyepig_2025_113225 crossref_primary_10_1002_adma_202502747 crossref_primary_10_1002_bio_4624 crossref_primary_10_1002_anie_202420253 crossref_primary_10_1002_anie_202423002 crossref_primary_10_1002_anie_202212575 crossref_primary_10_1016_j_orgel_2024_107084 crossref_primary_10_1007_s40843_025_3490_4 crossref_primary_10_1002_adom_202201898 crossref_primary_10_1002_anie_202302478 crossref_primary_10_1002_anie_202213823 crossref_primary_10_1002_ange_202304104 crossref_primary_10_1002_ange_202312666 crossref_primary_10_1002_ange_202416154 crossref_primary_10_1016_j_dyepig_2025_113097 crossref_primary_10_1002_anie_202216473 crossref_primary_10_1002_ange_202423002 crossref_primary_10_1039_D3QM00100H crossref_primary_10_1002_ange_202213392 crossref_primary_10_1039_D5TC01938A crossref_primary_10_1002_adom_202301217 crossref_primary_10_1002_adom_202500384 crossref_primary_10_1002_ange_202420253 crossref_primary_10_1002_anie_202500108 crossref_primary_10_1002_ange_202408522 crossref_primary_10_1002_ange_202212575 crossref_primary_10_1039_D5TC01861G crossref_primary_10_1002_ange_202213823 crossref_primary_10_1002_ange_202306413 crossref_primary_10_1002_ange_202309923 crossref_primary_10_1002_smll_202503089 crossref_primary_10_1002_chem_202201605 crossref_primary_10_1016_j_cej_2024_148567 crossref_primary_10_1002_ange_202500108 crossref_primary_10_1039_D5CY00775E crossref_primary_10_1039_D3QM00498H crossref_primary_10_1002_adom_202302811 crossref_primary_10_1002_adom_202301732 crossref_primary_10_1002_adma_202416224 crossref_primary_10_1002_adma_202212237 crossref_primary_10_1002_ange_202218947 crossref_primary_10_1002_anie_202306413 |
| Cites_doi | 10.1002/ange.202007210 10.1002/adma.202100652 10.1021/ct200308m 10.1002/adma.201705250 10.1002/ange.202108283 10.1021/jacs.0c10081 10.1002/ange.202008264 10.1002/anie.202012891 10.1002/anie.202117181 10.1002/ange.201509231 10.1039/C5CS00183H 10.1021/jacs.9b13704 10.1038/natrevmats.2018.20 10.1002/ange.202113206 10.1002/anie.202007210 10.1002/ange.202012891 10.1021/acsami.1c09743 10.1002/adma.201402532 10.1002/ange.202109041 10.1021/ja3036042 10.1002/anie.201509231 10.1002/adma.202106954 10.1002/anie.202105032 10.1002/adma.202103293 10.1002/anie.202107848 10.1039/D1SC02042K 10.1002/adma.201505491 10.1002/adom.201902142 10.1038/nature11687 10.1002/adma.201401407 10.1002/adma.201401476 10.1002/ange.202109335 10.1002/advs.201902508 10.1002/adfm.202102017 10.31635/ccschem.020.202000243 10.1021/jacs.1c04251 10.1002/anie.202109041 10.1038/s41467-021-26689-8 10.1021/acs.chemrev.8b00637 10.31635/ccschem.021.202101033 10.1021/ja211944q 10.1002/ange.202105032 10.1002/anie.201806323 10.1002/ange.201911266 10.1002/adfm.201908839 10.1002/ange.202107848 10.1039/D0QM00190B 10.1002/adfm.201908677 10.1038/s41467-019-08495-5 10.1039/C5MH00258C 10.1002/adma.202004072 10.1021/jacs.1c08486 10.1002/anie.202109335 10.1002/advs.202101137 10.1002/anie.202113206 10.1002/anie.202108283 10.1002/anie.202008264 10.1038/nmat4154 10.1002/anie.201709125 10.1002/adfm.202103875 10.1021/acs.orglett.0c04159 10.1021/jacs.1c09058 10.1038/s41566-019-0476-5 10.1021/acsami.0c20619 10.1002/adom.202001845 10.1002/anie.201911266 10.1038/370354a0 10.1002/ange.201806323 10.1002/adma.202105080 10.1002/ange.202117181 10.1002/ange.201709125 10.1038/ncomms5016 10.1002/aelm.202101114 10.1021/acs.chemrev.6b00076 10.1038/NMAT4154 10.1002/advs.202000261 10.1038/natrevmats.2018.3 10.1002/adma.202204355 10.1039/c5mh00258c 10.1039/c5cs00183h 10.1039/d1sc02042k 10.1039/d0qm00190b |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202200337 |
| DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | Web of Science ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 35302704 000778033200001 10_1002_anie_202200337 ANIE202200337 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Key RAMP;D Program of China grantid: 2020YFA0714601 – fundername: Natural Science Foundation of Chongqing, China; Natural Science Foundation of Chongqing grantid: cstc2021jcyj-msxmX0274; X190321TF190 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21935005; 52173165 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4397-4bd2d818b8a5d69a791b3d7282d8d2b65a2e2a380c35ee634ff818f34e4263793 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 123 |
| ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000778033200001 |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Sun Nov 09 13:32:19 EST 2025 Tue Oct 07 06:49:12 EDT 2025 Wed Feb 19 02:25:53 EST 2025 Tue Oct 28 00:19:37 EDT 2025 Fri Dec 05 23:00:41 EST 2025 Tue Nov 18 22:36:12 EST 2025 Sat Nov 29 02:36:39 EST 2025 Wed Jan 22 16:24:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Thermally Activated Delayed fluorescence LIGHT-EMITTING-DIODES Polycyclic Aromatic Hydrocarbon Narrowband Emission Organic Light-Emitting Diodes Multiple Resonance Effect ACTIVATED DELAYED FLUORESCENCE EMITTERS |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
| MergedId | FETCHMERGED-LOGICAL-c4397-4bd2d818b8a5d69a791b3d7282d8d2b65a2e2a380c35ee634ff818f34e4263793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2523-6151 0000-0003-1256-9440 0000-0002-1166-9047 |
| PMID | 35302704 |
| PQID | 2671203752 |
| PQPubID | 946352 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1002_anie_202200337 webofscience_primary_000778033200001 webofscience_primary_000778033200001CitationCount crossref_primary_10_1002_anie_202200337 proquest_miscellaneous_2641003925 proquest_journals_2671203752 pubmed_primary_35302704 wiley_primary_10_1002_anie_202200337_ANIE202200337 |
| PublicationCentury | 2000 |
| PublicationDate | June 7, 2022 |
| PublicationDateYYYYMMDD | 2022-06-07 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 7, 2022 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | WEINHEIM |
| PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2022 |
| Publisher | Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2021; 8 2015; 14 2021; 3 2021; 23 2020; 142 2019; 10 2019; 13 1994; 370 2020 2020; 59 132 2014; 26 2021; 143 2020; 32 2017 2017; 56 129 2019 2019; 58 131 2011; 7 2017; 117 2020; 8 2012; 492 2021; 13 2020; 7 2022 2022; 61 134 2020; 4 2018; 3 2014; 5 2021; 31 2016 2016; 55 128 2012; 134 2021; 12 2020; 2 2021; 33 2016; 3 2020; 30 2018 2018; 57 130 2022; 8 2015; 44 2022; 34 2021 2021; 60 133 2019; 119 2018; 30 2016; 28 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_19_3 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_60_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_47_1 e_1_2_7_68_2 e_1_2_7_26_2 (e_1_2_7_40_3) 2022; 134 e_1_2_7_26_3 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_71_2 e_1_2_7_71_3 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_3 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_1 e_1_2_7_58_2 e_1_2_7_56_3 e_1_2_7_37_2 e_1_2_7_37_3 e_1_2_7_39_2 (e_1_2_7_43_2) 2022; 134 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_65_2 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_67_1 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_29_3 e_1_2_7_72_2 e_1_2_7_51_1 e_1_2_7_70_2 e_1_2_7_30_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_55_3 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_57_2 e_1_2_7_38_2 Yang, ML (WOS:000696247200001) 2021; 60 Yan, ZP (WOS:000668587400001) 2021; 31 Ando, N (WOS:000672592000026) 2021; 143 Xu, YC (WOS:000810728900024) 2022; 4 Nagata, M (WOS:000683177500001) 2021; 60 Li, JK (WOS:000715845900012) 2021; 143 Tao, Y (WOS:000346263100001) 2014; 26 Hirai, M (WOS:000477787600004) 2019; 119 Gillett, AJ (WOS:000720063500021) 2021; 12 Zhang, YW (WOS:000492218500001) 2019; 58 Shiu, YJ (WOS:000370656200004) 2016; 55 Le Bahers, T (WOS:000293662500019) 2011; 7 Cai, X. (000778033200001.1) 1000; 2022 Kondo, Y (WOS:000487333400005) 2019; 13 (000778033200001.33) 2020; 132 Stavrou, K (WOS:000623228500075) 2021; 13 Sun, DM (WOS:000545448500008) 2020; 4 Chen, XL (WOS:000445812900038) 2017; 56 Zeng, X (WOS:000755169600001) 2022; 61 Zeng (000778033200001.48) 2022; 134 Zhang, YW (WOS:000557993900001) 2020; 59 Zhang, DD (WOS:000424485100026) 2018; 30 Liang, X (WOS:000442340000034) 2018; 57 Liu, Y (WOS:000662326300001) 2021; 12 Hatakeyama, T (WOS:000373839600014) 2016; 28 Chen, Y (WOS:000695165000001) 2021; 33 Yan, CQ (WOS:000427559200007) 2018; 3 Hirata, S (WOS:000350136400022) 2015; 14 (000778033200001.31) 2020; 132 Suresh, SM (WOS:000535648400001) 2020; 30 (000778033200001.60) 2017; 129 Yang, ML (WOS:000592911000007) 2020; 142 Guo, JX (WOS:000715845900045) 2021; 143 Xu, YC (WOS:000555866800001) 2020; 59 (000778033200001.15) 2021; 133 Zhang (000778033200001.44) 2022; 134 (000778033200001.28) 2019; 131 Uoyama, H (WOS:000312259300038) 2012; 492 Ikeda, N (WOS:000564015100001) 2020; 32 Zhang, YW (WOS:000723906400001) 2022; 61 Xu, YC (WOS:000640769600001) 2021; 33 Zhang, YW (WOS:000678178400001) 2021; 60 Oda, S (WOS:000597678700001) 2021; 60 Guo, XH (WOS:000833748300001) 2022; 34 Yin, C (WOS:000794109100015) 2020; 2 Zhang, DD (WOS:000340500700023) 2014; 26 COLVIN, VL (WOS:A1994PA30400050) 1994; 370 Qiu, X (WOS:000599193500001) 2021; 9 Shiu (000778033200001.58) 2016; 128 (000778033200001.22) 2021; 133 Zhang, Y (000778033200001.19) 2021; 133 Wu, XG (WOS:000710320800001) 2022; 34 Narita, A (WOS:000360654900015) 2015; 44 Huang, F (WOS:000683741400081) 2021; 13 Naveen, KR (WOS:000721829700001) 2022; 8 Pershin, A (WOS:000457749000006) 2019; 10 Nakanotani, H (WOS:000337542700001) 2014; 5 Sun, JW (WOS:000340900800013) 2014; 26 Qi, YY (WOS:000649837300001) 2021; 31 Gong, X (WOS:000515672300001) 2020; 30 (000778033200001.17) 2018; 130 Tanaka, H (WOS:000668878500001) 2021; 60 Suresh, SM (WOS:000526394200021) 2020; 142 Zhang, DD (WOS:000371611800007) 2016; 3 Patil, VV (WOS:000684483100001) 2021; 8 Yang (000778033200001.24) 2021; 133 Zou, SN (WOS:000629001700062) 2021; 23 Wen, F (WOS:000538802400001) 2020; 7 Huang, TY (WOS:000697714500001) 2021; 60 Stepien, M (WOS:000394829000024) 2017; 117 (000778033200001.40) 2021; 133 Xu, YC (WOS:000531416200016) 2020; 8 Zhou, ZG (WOS:000301990600020) 2012; 134 Saito, S (WOS:000304837800028) 2012; 134 |
| References_xml | – volume: 7 start-page: 2498 year: 2011 end-page: 2506 publication-title: J. Chem. Theory Comput. – volume: 13 start-page: 678 year: 2019 end-page: 682 publication-title: Nat. Photonics – volume: 8 year: 2022 publication-title: Adv. Electron. Mater. – volume: 26 start-page: 5684 year: 2014 end-page: 5688 publication-title: Adv. Mater. – volume: 12 start-page: 6640 year: 2021 publication-title: Nat. Commun. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 55 128 start-page: 3017 3069 year: 2016 2016 end-page: 3021 3073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 13 start-page: 8643 year: 2021 end-page: 8655 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1268 year: 2020 end-page: 1277 publication-title: CCS Chem. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 142 start-page: 19468 year: 2020 end-page: 19472 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4016 year: 2014 publication-title: Nat. Commun. – volume: 60 133 start-page: 17910 18054 year: 2021 2021 end-page: 17914 18058 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 57 130 start-page: 11316 11486 year: 2018 2018 end-page: 11320 11490 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 3479 year: 2017 end-page: 3716 publication-title: Chem. Rev. – volume: 12 start-page: 9408 year: 2021 end-page: 9412 publication-title: Chem. Sci. – volume: 13 start-page: 36089 year: 2021 end-page: 36097 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 4529 year: 2012 end-page: 4532 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 2777 year: 2016 end-page: 2781 publication-title: Adv. Mater. – volume: 59 132 start-page: 17499 17652 year: 2020 2020 end-page: 17503 17656 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 9130 year: 2012 end-page: 9133 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 5050 year: 2014 end-page: 5055 publication-title: Adv. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 26 start-page: 7931 year: 2014 end-page: 7958 publication-title: Adv. Mater. – volume: 60 133 start-page: 23771 23964 year: 2021 2021 end-page: 23776 23969 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 6616 year: 2015 end-page: 6643 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 2018 year: 2020 end-page: 2022 publication-title: Mater. Chem. Front. – volume: 60 133 start-page: 20280 20442 year: 2021 2021 end-page: 20285 20447 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 20498 20661 year: 2021 2021 end-page: 20503 20666 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 145 year: 2016 end-page: 151 publication-title: Mater. Horiz. – volume: 143 start-page: 9944 year: 2021 end-page: 9951 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 17958 year: 2021 end-page: 17963 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 2882 2918 year: 2021 2021 end-page: 2886 2922 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 6588 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 18020 year: 2018 publication-title: Nat. Rev. Mater. – volume: 56 129 start-page: 15006 15202 year: 2017 2017 end-page: 15009 15205 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 370 start-page: 354 year: 1994 end-page: 357 publication-title: Nature – volume: 143 start-page: 18272 year: 2021 end-page: 18279 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 60 133 start-page: 23142 23326 year: 2021 2021 end-page: 23147 23331 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 119 start-page: 8291 year: 2019 end-page: 8331 publication-title: Chem. Rev. – volume: 10 start-page: 597 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 2077 year: 2021 end-page: 2091 publication-title: CCS Chem. – volume: 14 start-page: 330 year: 2015 end-page: 336 publication-title: Nat. Mater. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 23 start-page: 958 year: 2021 end-page: 962 publication-title: Org. Lett. – volume: 58 131 start-page: 16912 17068 year: 2019 2019 end-page: 16917 17073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 17442 17595 year: 2020 2020 end-page: 17446 17599 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 492 start-page: 234 year: 2012 end-page: 238 publication-title: Nature – ident: e_1_2_7_28_3 doi: 10.1002/ange.202007210 – ident: e_1_2_7_30_2 doi: 10.1002/adma.202100652 – ident: e_1_2_7_42_1 doi: 10.1021/ct200308m – ident: e_1_2_7_69_2 doi: 10.1002/adma.201705250 – ident: e_1_2_7_21_3 doi: 10.1002/ange.202108283 – ident: e_1_2_7_24_1 doi: 10.1021/jacs.0c10081 – ident: e_1_2_7_29_3 doi: 10.1002/ange.202008264 – ident: e_1_2_7_37_2 doi: 10.1002/anie.202012891 – ident: e_1_2_7_43_1 doi: 10.1002/anie.202117181 – ident: e_1_2_7_55_3 doi: 10.1002/ange.201509231 – ident: e_1_2_7_2_2 doi: 10.1039/C5CS00183H – ident: e_1_2_7_50_2 doi: 10.1021/jacs.9b13704 – ident: e_1_2_7_25_1 – ident: e_1_2_7_57_2 doi: 10.1038/natrevmats.2018.20 – ident: e_1_2_7_4_1 – ident: e_1_2_7_47_1 – ident: e_1_2_7_52_1 – volume: 134 start-page: e202113206 year: 2022 ident: e_1_2_7_40_3 publication-title: Angew. Chem. doi: 10.1002/ange.202113206 – ident: e_1_2_7_28_2 doi: 10.1002/anie.202007210 – ident: e_1_2_7_37_3 doi: 10.1002/ange.202012891 – ident: e_1_2_7_60_2 doi: 10.1021/acsami.1c09743 – ident: e_1_2_7_54_2 doi: 10.1002/adma.201402532 – ident: e_1_2_7_71_3 doi: 10.1002/ange.202109041 – ident: e_1_2_7_9_2 doi: 10.1021/ja3036042 – ident: e_1_2_7_55_2 doi: 10.1002/anie.201509231 – ident: e_1_2_7_32_1 – ident: e_1_2_7_33_2 doi: 10.1002/adma.202106954 – ident: e_1_2_7_17_2 doi: 10.1002/anie.202105032 – ident: e_1_2_7_64_2 doi: 10.1002/adma.202103293 – ident: e_1_2_7_19_2 doi: 10.1002/anie.202107848 – ident: e_1_2_7_31_2 doi: 10.1039/D1SC02042K – ident: e_1_2_7_14_1 doi: 10.1002/adma.201505491 – ident: e_1_2_7_27_2 doi: 10.1002/adom.201902142 – ident: e_1_2_7_45_2 doi: 10.1038/nature11687 – ident: e_1_2_7_53_2 doi: 10.1002/adma.201401407 – ident: e_1_2_7_70_2 doi: 10.1002/adma.201401476 – ident: e_1_2_7_22_3 doi: 10.1002/ange.202109335 – ident: e_1_2_7_58_2 doi: 10.1002/advs.201902508 – ident: e_1_2_7_61_2 doi: 10.1002/adfm.202102017 – ident: e_1_2_7_72_2 doi: 10.31635/ccschem.020.202000243 – ident: e_1_2_7_3_2 doi: 10.1021/jacs.1c04251 – ident: e_1_2_7_71_2 doi: 10.1002/anie.202109041 – ident: e_1_2_7_49_2 doi: 10.1038/s41467-021-26689-8 – ident: e_1_2_7_6_2 doi: 10.1021/acs.chemrev.8b00637 – ident: e_1_2_7_20_2 doi: 10.31635/ccschem.021.202101033 – ident: e_1_2_7_59_1 – ident: e_1_2_7_10_2 doi: 10.1021/ja211944q – ident: e_1_2_7_17_3 doi: 10.1002/ange.202105032 – ident: e_1_2_7_18_2 doi: 10.1002/anie.201806323 – ident: e_1_2_7_26_3 doi: 10.1002/ange.201911266 – ident: e_1_2_7_34_2 doi: 10.1002/adfm.201908839 – ident: e_1_2_7_19_3 doi: 10.1002/ange.202107848 – ident: e_1_2_7_41_2 doi: 10.1039/D0QM00190B – ident: e_1_2_7_67_1 – ident: e_1_2_7_8_2 doi: 10.1002/adfm.201908677 – ident: e_1_2_7_48_2 doi: 10.1038/s41467-019-08495-5 – ident: e_1_2_7_73_1 doi: 10.1039/C5MH00258C – ident: e_1_2_7_1_1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_16_2 doi: 10.1002/adma.202004072 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.1c08486 – ident: e_1_2_7_22_2 doi: 10.1002/anie.202109335 – ident: e_1_2_7_63_1 – ident: e_1_2_7_65_2 doi: 10.1002/advs.202101137 – ident: e_1_2_7_36_1 – ident: e_1_2_7_44_1 – ident: e_1_2_7_40_2 doi: 10.1002/anie.202113206 – ident: e_1_2_7_21_2 doi: 10.1002/anie.202108283 – ident: e_1_2_7_29_2 doi: 10.1002/anie.202008264 – ident: e_1_2_7_46_2 doi: 10.1038/nmat4154 – ident: e_1_2_7_56_2 doi: 10.1002/anie.201709125 – ident: e_1_2_7_39_2 doi: 10.1002/adfm.202103875 – ident: e_1_2_7_38_2 doi: 10.1021/acs.orglett.0c04159 – ident: e_1_2_7_11_2 doi: 10.1021/jacs.1c09058 – ident: e_1_2_7_23_1 doi: 10.1038/s41566-019-0476-5 – ident: e_1_2_7_51_1 doi: 10.1021/acsami.0c20619 – ident: e_1_2_7_35_1 doi: 10.1002/adom.202001845 – ident: e_1_2_7_26_2 doi: 10.1002/anie.201911266 – ident: e_1_2_7_66_1 doi: 10.1038/370354a0 – ident: e_1_2_7_18_3 doi: 10.1002/ange.201806323 – ident: e_1_2_7_62_2 doi: 10.1002/adma.202105080 – volume: 134 start-page: e202117181 year: 2022 ident: e_1_2_7_43_2 publication-title: Angew. Chem. doi: 10.1002/ange.202117181 – ident: e_1_2_7_56_3 doi: 10.1002/ange.201709125 – ident: e_1_2_7_68_2 doi: 10.1038/ncomms5016 – ident: e_1_2_7_13_2 doi: 10.1002/aelm.202101114 – ident: e_1_2_7_5_2 doi: 10.1021/acs.chemrev.6b00076 – ident: e_1_2_7_15_1 – volume: 59 start-page: 17442 year: 2020 ident: WOS:000555866800001 article-title: Constructing Charge-Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007210 – volume: 143 start-page: 17958 year: 2021 ident: WOS:000715845900012 article-title: B,N-Embedded Double Hetero[7]helicenes with Strong Chiroptical Responses in the Visible Light Region publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c09058 – volume: 142 start-page: 6588 year: 2020 ident: WOS:000526394200021 article-title: A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet-Triplet Annihilation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b13704 – volume: 134 start-page: 9130 year: 2012 ident: WOS:000304837800028 article-title: Polycyclic π-Electron System with Boron at Its Center publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja3036042 – volume: 14 start-page: 330 year: 2015 ident: WOS:000350136400022 article-title: Highly efficient blue electroluminescence based on thermally activated delayed fluorescence publication-title: NATURE MATERIALS doi: 10.1038/NMAT4154 – volume: 58 start-page: 16912 year: 2019 ident: WOS:000492218500001 article-title: Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911266 – volume: 59 start-page: 17499 year: 2020 ident: WOS:000557993900001 article-title: Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Aza-Fused Multi-Resonance Emitter publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202008264 – volume: 13 start-page: 36089 year: 2021 ident: WOS:000683741400081 article-title: Approaching Efficient and Narrow RGB Electroluminescence from D-A-Type TADF Emitters Containing an Identical Multiple Resonance Backbone as the Acceptor publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.1c09743 – volume: 7 start-page: ARTN 2000261 year: 2020 ident: WOS:000538802400001 article-title: Machine Learning Glove Using Self-Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202000261 – volume: 60 start-page: 20498 year: 2021 ident: WOS:000678178400001 article-title: Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202107848 – volume: 30 start-page: ARTN 1908677 year: 2020 ident: WOS:000535648400001 article-title: Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201908677 – volume: 28 start-page: 2777 year: 2016 ident: WOS:000373839600014 article-title: Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201505491 – volume: 26 start-page: 7931 year: 2014 ident: WOS:000346263100001 article-title: Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201402532 – volume: 60 start-page: 23142 year: 2021 ident: WOS:000696247200001 article-title: Wide-Range Color Tuning of Narrowband Emission in Multi-resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202109335 – volume: 31 start-page: ARTN 2102017 year: 2021 ident: WOS:000649837300001 article-title: Peripheral Decoration of Multi-Resonance Molecules as a Versatile Approach for Simultaneous Long-Wavelength and Narrowband Emission publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202102017 – volume: 2022 year: 1000 ident: 000778033200001.1 publication-title: Angew. Chem. Int. Ed – volume: 26 start-page: 5684 year: 2014 ident: WOS:000340900800013 article-title: A Fluorescent Organic Light-Emitting Diode with 30% External Quantum Efficiency publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201401407 – volume: 128 start-page: 3069 year: 2016 ident: 000778033200001.58 publication-title: Angew. Chem – volume: 23 start-page: 958 year: 2021 ident: WOS:000629001700062 article-title: Fully Bridged Triphenylamine Derivatives as Color-Tunable Thermally Activated Delayed Fluorescence Emitters publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.0c04159 – volume: 34 start-page: ARTN 2105080 year: 2022 ident: WOS:000710320800001 article-title: Fabrication of Circularly Polarized MR-TADF Emitters with Asymmetrical Peripheral-Lock Enhancing Helical B/N-Doped Nanographenes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202105080 – volume: 143 start-page: 18272 year: 2021 ident: WOS:000715845900045 article-title: Boron-Containing Organic Diradicaloids: Dynamically Modulating Singlet Diradical Character by Lewis Acid-Base Coordination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c08486 – volume: 31 start-page: ARTN 2103875 year: 2021 ident: WOS:000668587400001 article-title: Chiral Thermally Activated Delayed Fluorescence Materials Based on R/S-N2,N2′-Diphenyl-[1,1′-binaphthalene]-2,2′diamine Donor with Narrow Emission Spectra for Highly Efficient Circularly Polarized Electroluminescence publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202103875 – volume: 56 start-page: 15006 year: 2017 ident: WOS:000445812900038 article-title: Combining Charge-Transfer Pathways to Achieve Unique Thermally Activated Delayed Fluorescence Emitters for High-Performance Solution-Processed, Non-doped Blue OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201709125 – volume: 133 start-page: 23326 year: 2021 ident: 000778033200001.24 publication-title: Angew. Chem – volume: 133 start-page: 20442 year: 2021 ident: 000778033200001.22 publication-title: Angew. Chem – volume: 13 start-page: 678 year: 2019 ident: WOS:000487333400005 article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter publication-title: NATURE PHOTONICS doi: 10.1038/s41566-019-0476-5 – volume: 3 start-page: ARTN 18003 year: 2018 ident: WOS:000427559200007 article-title: Non-fullerene acceptors for organic solar cells publication-title: NATURE REVIEWS MATERIALS doi: 10.1038/natrevmats.2018.3 – volume: 492 start-page: 234 year: 2012 ident: WOS:000312259300038 article-title: Highly efficient organic light-emitting diodes from delayed fluorescence publication-title: NATURE doi: 10.1038/nature11687 – volume: 60 start-page: 23771 year: 2021 ident: WOS:000697714500001 article-title: Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Through-space Charge Transfers publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202109041 – volume: 34 start-page: ARTN 2204355 year: 2022 ident: WOS:000833748300001 article-title: SrTiO3/CuNi-Heterostructure-Based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-Machine Interaction publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202204355 – volume: 3 start-page: 145 year: 2016 ident: WOS:000371611800007 article-title: Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability publication-title: MATERIALS HORIZONS doi: 10.1039/c5mh00258c – volume: 55 start-page: 3017 year: 2016 ident: WOS:000370656200004 article-title: Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Light-Emitting Diodes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201509231 – volume: 5 start-page: ARTN 4016 year: 2014 ident: WOS:000337542700001 article-title: High-efficiency organic light-emitting diodes with fluorescent emitters publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms5016 – volume: 133 start-page: 18054 year: 2021 ident: 000778033200001.15 publication-title: Angew. Chem – volume: 132 start-page: 17652 year: 2020 ident: 000778033200001.33 publication-title: Angew. Chem – volume: 32 start-page: ARTN 2004072 year: 2020 ident: WOS:000564015100001 article-title: Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202004072 – volume: 33 start-page: ARTN 2100652 year: 2021 ident: WOS:000640769600001 article-title: Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202100652 – volume: 30 start-page: ARTN 1705250 year: 2018 ident: WOS:000424485100026 article-title: Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201705250 – volume: 61 start-page: ARTN e202113206 year: 2022 ident: WOS:000723906400001 article-title: Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202113206 – volume: 9 start-page: ARTN 2001845 year: 2021 ident: WOS:000599193500001 article-title: Narrowband Emission from Organic Fluorescent Emitters with Dominant Low-Frequency Vibronic Coupling publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202001845 – volume: 44 start-page: 6616 year: 2015 ident: WOS:000360654900015 article-title: New advances in nanographene chemistry publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00183h – volume: 130 start-page: 11486 year: 2018 ident: 000778033200001.17 publication-title: Angew. Chem – volume: 2 start-page: 1268 year: 2020 ident: WOS:000794109100015 article-title: High-Efficiency Narrow-Band Electro-Fluorescent Devices with Thermally Activated Delayed Fluorescence Sensitizers Combined Through-Bond and Through-Space Charge Transfers publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.020.202000243 – volume: 60 start-page: 17910 year: 2021 ident: WOS:000668878500001 article-title: Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202105032 – volume: 370 start-page: 354 year: 1994 ident: WOS:A1994PA30400050 article-title: LIGHT-EMITTING-DIODES MADE FROM CADMIUM SELENIDE NANOCRYSTALS AND A SEMICONDUCTING POLYMER publication-title: NATURE – volume: 8 start-page: ARTN 1902142 year: 2020 ident: WOS:000531416200016 article-title: Molecular-Structure and Device-Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.201902142 – volume: 119 start-page: 8291 year: 2019 ident: WOS:000477787600004 article-title: Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic π-Conjugated Systems publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.8b00637 – volume: 12 start-page: 9408 year: 2021 ident: WOS:000662326300001 article-title: Molecular design of thermally activated delayed fluorescent emitters for narrowband orange-red OLEDs boosted by a cyano-functionalization strategy publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc02042k – volume: 57 start-page: 11316 year: 2018 ident: WOS:000442340000034 article-title: Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201806323 – volume: 4 start-page: 2065 year: 2022 ident: WOS:000810728900024 article-title: Highly Efficient Electroluminescent Materials with High Color Purity Based on Strong Acceptor Attachment onto B-N-Containing Multiple Resonance Frameworks publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.021.202101033 – volume: 117 start-page: 3479 year: 2017 ident: WOS:000394829000024 article-title: Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00076 – volume: 60 start-page: 20280 year: 2021 ident: WOS:000683177500001 article-title: Fused-Nonacyclic Multi-Resonance Delayed Fluorescence Emitter Based on Ladder-Thiaborin Exhibiting Narrowband Sky-Blue Emission with Accelerated Reverse Intersystem Crossing publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202108283 – volume: 12 start-page: ARTN 6640 year: 2021 ident: WOS:000720063500021 article-title: Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-26689-8 – volume: 132 start-page: 17595 year: 2020 ident: 000778033200001.31 publication-title: Angew. Chem – volume: 133 start-page: 2918 year: 2021 ident: 000778033200001.40 publication-title: Angew. Chem – volume: 134 start-page: 4529 year: 2012 ident: WOS:000301990600020 article-title: Planarized Triarylboranes: Stabilization by Structural Constraint and Their Plane-to-Bowl Conversion publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja211944q – volume: 8 start-page: ARTN 2101114 year: 2022 ident: WOS:000721829700001 article-title: Narrow Band Red Emission Fluorophore with Reasonable Multiple Resonance Effect publication-title: ADVANCED ELECTRONIC MATERIALS doi: 10.1002/aelm.202101114 – volume: 60 start-page: 2882 year: 2021 ident: WOS:000597678700001 article-title: Carbazole-Based DABNA Analogues as Highly Efficient Thermally Activated Delayed Fluorescence Materials for Narrowband Organic Light-Emitting Diodes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202012891 – volume: 4 start-page: 2018 year: 2020 ident: WOS:000545448500008 article-title: The design of an extended multiple resonance TADF emitter based on a polycyclic amine/carbonyl system publication-title: MATERIALS CHEMISTRY FRONTIERS doi: 10.1039/d0qm00190b – volume: 129 start-page: 15202 year: 2017 ident: 000778033200001.60 publication-title: Angew. Chem – volume: 134 year: 2022 ident: 000778033200001.44 publication-title: Angew. Chem – volume: 33 start-page: ARTN 2103293 year: 2021 ident: WOS:000695165000001 article-title: Approaching Nearly 40% External Quantum Efficiency in Organic Light Emitting Diodes Utilizing a Green Thermally Activated Delayed Fluorescence Emitter with an Extended Linear Donor-Acceptor-Donor Structure publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202103293 – volume: 61 start-page: ARTN e202117181 year: 2022 ident: WOS:000755169600001 article-title: Nitrogen-Embedded Multi-Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202117181 – volume: 10 start-page: ARTN 597 year: 2019 ident: WOS:000457749000006 article-title: Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-08495-5 – volume: 30 start-page: ARTN 1908839 year: 2020 ident: WOS:000515672300001 article-title: A Red Thermally Activated Delayed Fluorescence Emitter Simultaneously Having High Photoluminescence Quantum Efficiency and Preferentially Horizontal Emitting Dipole Orientation publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201908839 – volume: 8 start-page: ARTN 2101137 year: 2021 ident: WOS:000684483100001 article-title: Purely Spin-Vibronic Coupling Assisted Triplet to Singlet Up-Conversion for Real Deep Blue Organic Light-Emitting Diodes with Over 20% Efficiency and y Color Coordinate of 0.05 publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202101137 – volume: 142 start-page: 19468 year: 2020 ident: WOS:000592911000007 article-title: Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c10081 – volume: 7 start-page: 2498 year: 2011 ident: WOS:000293662500019 article-title: A Qualitative Index of Spatial Extent in Charge-Transfer Excitations publication-title: JOURNAL OF CHEMICAL THEORY AND COMPUTATION doi: 10.1021/ct200308m – volume: 134 year: 2022 ident: 000778033200001.48 publication-title: Angew. Chem – volume: 143 start-page: 9944 year: 2021 ident: WOS:000672592000026 article-title: Boron-Doped Polycyclic π-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B-P Lewis Adducts publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c04251 – volume: 133 start-page: 20661 year: 2021 ident: 000778033200001.19 publication-title: Angew. Chem – volume: 131 start-page: 17068 year: 2019 ident: 000778033200001.28 publication-title: Angew. Chem – volume: 13 start-page: 8643 year: 2021 ident: WOS:000623228500075 article-title: Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c20619 – volume: 26 start-page: 5050 year: 2014 ident: WOS:000340500700023 article-title: High-Efficiency Fluorescent Organic Light-Emitting Devices Using Sensitizing Hosts with a Small Singlet-Triplet Exchange Energy publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201401476 |
| SSID | ssj0028806 |
| Score | 2.6632988 |
| Snippet | Herein, a ternary boron‐oxygen‐nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR‐TADF),... Herein, a ternary boron-oxygen-nitrogen embedded polycyclic aromatic hydrocarbon with multiple resonance thermally activated delayed fluorescence (MR-TADF),... |
| Source | Web of Science |
| SourceID | proquest pubmed webofscience crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202200337 |
| SubjectTerms | Aromatic hydrocarbons Boron Chemistry Chemistry, Multidisciplinary Dipole moments Electroluminescence Emission spectra Emissions Emitters Light emitting diodes Molecular structure Multiple Resonance Effect Narrowband Narrowband Emission Nitrogen Organic Light-Emitting Diodes Oxygen Photoluminescence Photons Physical Sciences Polycyclic Aromatic Hydrocarbon Quantum efficiency Science & Technology Thermally Activated Delayed fluorescence |
| Title | Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boron‐Oxygen‐Nitrogen Embedded Polycyclic Aromatic System |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200337 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000778033200001 https://www.ncbi.nlm.nih.gov/pubmed/35302704 https://www.proquest.com/docview/2671203752 https://www.proquest.com/docview/2641003925 |
| Volume | 61 |
| WOS | 000778033200001 |
| WOSCitedRecordID | wos000778033200001 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xDgle-P8nMCYjDfGULbGdOHnsSqshjTKhbfQtcmyHRWoT1KZofeMj8D34VnwSfEkaVhACwZsjX-JYd_bd2Xe_A9ijVARZoCLXKqfU5VaHutJarS7PmLUHtMpYXbTv_FiMx9FkEp9cyeJv8CG6AzdcGfV-jQtcpouDH6ChmIFt_TuK0VVMbME2tcIb9GD71bvR2XHndFn5bDKMGHOxEP0auNGjB5tf2FRMv1ibPymmTVu2Vkaj2_8_jTtwqzVESb-RnLtwzRT34MZgXf_tPnztq4vc4HkDYWLff0HqEB0ybOrm2D0NA-YxtpMMaxgKzOEkstDE2_diYs4Jerfkfa6rCyIrciSnGXkjL_PZckYOre7UpCyIJKd4IDlfkUOEUvj2-cvby5WVadsY53aYDzjiLDV2e9TkpJyu1EpNc2V_u6yxZkmDuP4AzkbD08GR25Z2cBVaQC5PNdXWVkgjGegwliL2U6aF9f90pGkaBpIaKlnkKRYYEzKeZZY6Y9wgwLzdUx5CrygL8xgI95WXKU-HWaq5jHhqZCyoimLNY58q3wF3zddEtbjnWH5jmjSIzTRBFiQdCxx42dF_bBA_fku5sxaTpF35i4SGwqdYWJg68LzrtqzDixhZmHKJNNzHpGgaOPCoEa9uKIZlnITHHdi7Km9dPxp1IrLD0_pixgH_b8gG7cQR6KBygNYS-YfpJf3x62H39ORfXnoKN7Fdh9aJHehV86V5BtfVpypfzHdhS0yi3XbBfgenwz47 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgQxov_IcFBhhpiKdsie3EyWNXWnWiCxPqxt4ix3ZYpDaduhatb3wEvgffik_CXZIGCkIgxFsSX-JY_tl3tu9-R8guYzLIAx25oJwyV4AOdRVYra7IOdgDRue8Stp3OpRJEp2dxceNNyHGwtT8EO2GG46Mar7GAY4b0vvfWUMxBBsWeAzdq7i8TjYFYAlAvvn6Xf9k2K66AKB1iBHnLmaiXzE3emx__QvrmukXc_MnzbRuzFbaqH_7P7TjDrnVmKK0U2PnLrlmy3tkq7vKAHeffOno88LijgPlcs9_SSsnHdqrM-fArIYu8-jdSXsVEQVGcVJVGurteTG1pxTXt_R9YebnVM3pQI1zeqSuisliQg9Aexo6LamiI9ySnC3pAZIpfP30-e3VElANF0kB1XzAGieZhQnS0OPpeKmXelxo-O1pxTZLa871B-Sk3xt1B26T3MHVaAO5IjPMgLWQRSowYaxk7GfcSFgBmsiwLAwUs0zxyNM8sDbkIs9BOufCIsU8zCoPyUY5Le02ocLXXq49E-aZESoSmVWxZDqKjYh9pn2HuKuOTXXDfI4JOMZpzdnMUuyCtO0Ch7xq5S9qzo_fSu6scJI2Y_8yZaH0GaYWZg550RZD1-FRjCrtdIEywsewaBY45FGNr7YqjomcpCccsvsj4NpyNOtkBNWz6mjGIf7fiHWbhiPVwdwhrILkH5qXdpLDXnv3-F9eek62BqOjYTo8TN48ITfxeeVoJ3fIxny2sE_JDf1xXlzOnjXj9hsu9EFD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9Bh4AX_g4IDDDSEE_ZEtuJk8eua7WJUiq0jb1Fju2wSG06dSla3_gIfA--FZ8EX5IGCkIgxFsSX-JYPvvO9t3vB7BNqQiyQEWuNU6py60NdaX1Wl2eMesPaJWxirTvZChGo-j0NB430YSYC1PjQ7QbbjgyqvkaB7g519nud9RQTMG2CzyK4VVMXIUNjkwyHdjYfzc4HrarLqugdYoRYy4y0a-QGz26u_6Fdcv0i7v5k2Vad2YrazS4_R_acQduNa4o6da6cxeumOIe3OitGODuw5euOssN7jgQJnb8l6QK0iH9mjnHzmoYMo_RnaRfAVFgFieRhSbejhcTc0JwfUve57o8I7IkB3KSkTfyMp8upmTPWk9NZgWR5Ai3JOdLsodgCl8_fX57ubRabS9Gua3mA9Y4TY2dIDUZzyZLtVSTXNnfnlVos6TGXN-E40H_qHfgNuQOrkIfyOWpptp6C2kkAx3GUsR-yrSwK0AdaZqGgaSGShZ5igXGhIxnmZXOGDcIMW9nlQfQKWaFeQSE-8rLlKfDLNVcRjw1MhZURbHmsU-V74C76thENcjnSMAxSWrMZppgFyRtFzjwqpU_rzE_fiu5tdKTpBn7FwkNhU-RWpg68KIttl2HRzGyMLMFynAf06Jp4MDDWr_aqhgSOQmPO7D9o8K15ejWichWT6ujGQf8vxHrNQ1HqIPSAVqp5B-al3RHh_327vG_vPQcro_3B8nwcPT6CdzEx1WcndiCTjlfmKdwTX0s84v5s2bYfgNY6UC- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+37.1%25+Green+Electroluminescent+Efficiency+and+0.09+eV+Full+Width+at+Half+Maximum+Based+on+a+Ternary+Boron-Oxygen-Nitrogen+Embedded+Polycyclic+Aromatic+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cai%2C+Xinliang&rft.au=Xue%2C+Jianan&rft.au=Li%2C+Chenglong&rft.au=Liang%2C+Baoyan&rft.date=2022-06-07&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=23&rft_id=info:doi/10.1002%2Fanie.202200337&rft_id=info%3Apmid%2F35302704&rft.externalDBID=n%2Fa&rft.externalDocID=000778033200001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |