Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis

Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the local...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 33; číslo 6; s. e2000086 - n/a
Hlavní autoři: Li, Siwei, Miao, Peng, Zhang, Yuanyuan, Wu, Jie, Zhang, Bin, Du, Yunchen, Han, Xijiang, Sun, Jianmin, Xu, Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.02.2021
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.
AbstractList Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research.
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O dissociation and oxidation reactions, H dissociation and hydrogenation reactions, N fixation and NH decomposition, and CO reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O 2 dissociation and oxidation reactions, H 2 dissociation and hydrogenation reactions, N 2 fixation and NH 3 decomposition, and CO 2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO 2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.
Author Miao, Peng
Wu, Jie
Zhang, Yuanyuan
Li, Siwei
Zhang, Bin
Du, Yunchen
Han, Xijiang
Sun, Jianmin
Xu, Ping
Author_xml – sequence: 1
  givenname: Siwei
  surname: Li
  fullname: Li, Siwei
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Peng
  surname: Miao
  fullname: Miao, Peng
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Yuanyuan
  surname: Zhang
  fullname: Zhang, Yuanyuan
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Yunchen
  surname: Du
  fullname: Du, Yunchen
  organization: Harbin Institute of Technology
– sequence: 7
  givenname: Xijiang
  surname: Han
  fullname: Han, Xijiang
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Jianmin
  surname: Sun
  fullname: Sun, Jianmin
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Ping
  orcidid: 0000-0002-1516-4986
  surname: Xu
  fullname: Xu, Ping
  email: pxu@hit.edu.cn
  organization: Harbin Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32201994$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFTEQx4NU7Gv16lEWvHjZZ35tNjk-2ucPqFqkRyFMs7M0ZTepSVZ5_715vNZCQcxlIPP5DMN8T8hRiAEJec3omlHK38Mww5pTTuvT6hlZsY6zVlLTHZEVNaJrjZL6mJzkfFsRo6h6QY4F55QZI1fkx3d0GEqzGX5BcJgbH5rLCfIcg3fNVwgxl7S4sqTaG2NqtuFmDw7N5U0s0UGBaZd9biAMzXZCV9Lj50vyfIQp46v7ekquPmyvzj61F98-fj7bXLROCqNa0AYGRgGoNnykelQoBsa4EbKXoAV2g8GeohQdl-ZaIfajAQlMoBLjKE7Ju8PYuxR_LpiLnX12OE0QMC7ZcqGZ7up9-oq-fYLexiWFupzlUvdSqL7TlXpzTy3XMw72LvkZ0s4-nK0C8gC4FHNOOFrnCxQfQ0ngJ8uo3adj9-nYv-lUbf1Ee5j8T8EchN9-wt1_aLs5_7J5dP8AeFOhpw
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_110632
crossref_primary_10_1016_j_mssp_2021_106134
crossref_primary_10_1063_5_0218539
crossref_primary_10_1007_s11244_023_01839_y
crossref_primary_10_1063_5_0205461
crossref_primary_10_1002_adfm_202307903
crossref_primary_10_1021_jacs_0c12282
crossref_primary_10_1039_D5NJ01939G
crossref_primary_10_1002_anie_202409484
crossref_primary_10_1038_s41557_022_01124_7
crossref_primary_10_1002_adfm_202105054
crossref_primary_10_1016_j_optcom_2023_129851
crossref_primary_10_1002_adom_202202429
crossref_primary_10_3390_photonics9020112
crossref_primary_10_1002_smll_202007055
crossref_primary_10_3390_nano12173012
crossref_primary_10_1007_s10854_024_12919_4
crossref_primary_10_3390_nano13212839
crossref_primary_10_1007_s00339_023_06861_1
crossref_primary_10_1515_nanoph_2022_0592
crossref_primary_10_1016_j_vacuum_2025_114537
crossref_primary_10_1002_advs_202302568
crossref_primary_10_1021_acsaom_4c00399
crossref_primary_10_1016_j_seppur_2022_122988
crossref_primary_10_1039_D4QI03188A
crossref_primary_10_1007_s00339_021_05253_7
crossref_primary_10_1007_s12274_022_4896_z
crossref_primary_10_1007_s12598_024_02841_3
crossref_primary_10_1364_JOSAB_550317
crossref_primary_10_1002_cphc_202200565
crossref_primary_10_1039_D1NR03760A
crossref_primary_10_3390_catal13030458
crossref_primary_10_1002_anie_202314352
crossref_primary_10_1002_smll_202412106
crossref_primary_10_1039_D4QI00608A
crossref_primary_10_1002_cjoc_202100167
crossref_primary_10_1016_j_apcatb_2025_125206
crossref_primary_10_1021_acsanm_5c03039
crossref_primary_10_3390_catal12020126
crossref_primary_10_1016_j_apsusc_2024_161708
crossref_primary_10_1016_j_jcis_2021_06_049
crossref_primary_10_1002_ange_202409484
crossref_primary_10_3390_nano12213730
crossref_primary_10_1016_j_optlastec_2024_111752
crossref_primary_10_1063_5_0213838
crossref_primary_10_1002_adma_202313086
crossref_primary_10_1016_j_mattod_2022_11_011
crossref_primary_10_1002_adfm_202112683
crossref_primary_10_1109_TIM_2025_3555724
crossref_primary_10_1107_S2052252522002901
crossref_primary_10_1016_j_cej_2025_168220
crossref_primary_10_1002_adma_202008145
crossref_primary_10_1007_s12274_023_6014_2
crossref_primary_10_1007_s12274_022_5253_y
crossref_primary_10_1142_S1793604721300176
crossref_primary_10_1002_smll_202307289
crossref_primary_10_1016_j_ccr_2021_214381
crossref_primary_10_3390_ijms231911741
crossref_primary_10_1007_s11426_024_2199_7
crossref_primary_10_1039_D4EE00783B
crossref_primary_10_1039_D1RA03569J
crossref_primary_10_1007_s12274_022_4700_0
crossref_primary_10_1002_sstr_202200045
crossref_primary_10_1002_cey2_567
crossref_primary_10_1002_cey2_208
crossref_primary_10_1016_j_apsusc_2022_153745
crossref_primary_10_1039_D0QI00945H
crossref_primary_10_1039_D5SC03065J
crossref_primary_10_1002_smll_202301050
crossref_primary_10_1002_smll_202201882
crossref_primary_10_1039_D5SC00610D
crossref_primary_10_1016_j_cej_2023_142613
crossref_primary_10_1002_solr_202000487
crossref_primary_10_1016_j_cej_2022_137063
crossref_primary_10_3390_photonics11070618
crossref_primary_10_3390_nano12101761
crossref_primary_10_1021_acsnano_5c05497
crossref_primary_10_1016_j_apsusc_2020_147934
crossref_primary_10_1080_10408347_2022_2063683
crossref_primary_10_1002_cctc_202100699
crossref_primary_10_1002_cctc_202400638
crossref_primary_10_1007_s40843_022_2372_3
crossref_primary_10_1016_j_cej_2023_148152
crossref_primary_10_1016_j_ijbiomac_2024_135929
crossref_primary_10_1007_s00604_021_04964_1
crossref_primary_10_1039_D1EE02512K
crossref_primary_10_1002_cphc_202200881
crossref_primary_10_1002_aesr_202100092
crossref_primary_10_1016_j_apcata_2025_120351
crossref_primary_10_1016_j_apsusc_2023_158916
crossref_primary_10_1002_anie_202217569
crossref_primary_10_1007_s12274_023_5620_3
crossref_primary_10_1038_s41598_024_81091_w
crossref_primary_10_3390_photonics10101088
crossref_primary_10_3390_mi14101811
crossref_primary_10_1039_D5GC00299K
crossref_primary_10_1039_D3NR02876C
crossref_primary_10_1007_s11467_024_1413_8
crossref_primary_10_1007_s10854_024_14117_8
crossref_primary_10_1002_smll_202201269
crossref_primary_10_1002_adfm_202203418
crossref_primary_10_1002_elsa_202100079
crossref_primary_10_1007_s40820_023_01038_0
crossref_primary_10_1002_ange_202217569
crossref_primary_10_1039_D1RA08576J
crossref_primary_10_1016_j_catcom_2022_106565
crossref_primary_10_1002_ente_202000607
crossref_primary_10_1016_j_apsusc_2020_147720
crossref_primary_10_3390_catal13060946
crossref_primary_10_1002_cjoc_202400177
crossref_primary_10_3390_catal12121549
crossref_primary_10_1016_j_apsusc_2021_152100
crossref_primary_10_1002_admi_202102383
crossref_primary_10_3390_polym17010081
crossref_primary_10_1016_j_apcatb_2022_121612
crossref_primary_10_1002_adfm_202411854
crossref_primary_10_1016_j_snb_2024_137069
crossref_primary_10_1038_s41467_025_57569_0
crossref_primary_10_1016_j_apsusc_2021_151811
crossref_primary_10_1007_s12274_022_4371_x
crossref_primary_10_1016_j_jphotochem_2022_114369
crossref_primary_10_1016_j_apsusc_2022_155454
crossref_primary_10_3390_photonics11080713
crossref_primary_10_13005_ojc_400208
crossref_primary_10_1021_acsnanoscienceau_5c00031
crossref_primary_10_3390_ijms24044142
crossref_primary_10_1002_ente_202201393
crossref_primary_10_1002_pssa_202400633
crossref_primary_10_1002_smll_202002236
crossref_primary_10_1016_j_jwpe_2022_103469
crossref_primary_10_3390_ma16041735
crossref_primary_10_1002_cssc_202201535
crossref_primary_10_1002_smsc_202300048
crossref_primary_10_1016_j_chemosphere_2021_132781
crossref_primary_10_1002_cplu_202400020
crossref_primary_10_1002_adfm_202416091
crossref_primary_10_1016_j_scriptamat_2024_115985
crossref_primary_10_1109_TIM_2024_3457970
crossref_primary_10_1038_s41598_024_55000_0
crossref_primary_10_1016_j_mtsust_2023_100466
crossref_primary_10_1016_j_apsusc_2024_159720
crossref_primary_10_1002_smll_202303153
crossref_primary_10_1021_acselectrochem_5c00190
crossref_primary_10_1007_s40843_024_3021_1
crossref_primary_10_1016_j_cej_2021_130188
crossref_primary_10_1002_adma_202005738
crossref_primary_10_1038_s43246_024_00510_7
crossref_primary_10_1016_j_nxmate_2025_100509
crossref_primary_10_1016_j_optlastec_2024_111331
crossref_primary_10_1038_s41467_022_31474_2
crossref_primary_10_1063_5_0167003
crossref_primary_10_1002_cplu_202000811
crossref_primary_10_3390_molecules28135245
crossref_primary_10_1016_j_fuel_2024_134178
crossref_primary_10_3390_nano14080695
crossref_primary_10_1016_j_trechm_2021_08_006
crossref_primary_10_1002_ange_202314352
crossref_primary_10_1002_admt_202101147
crossref_primary_10_1016_j_jece_2024_112742
crossref_primary_10_1039_D3NR04226J
crossref_primary_10_1038_s41467_020_20444_1
crossref_primary_10_1002_adom_202300841
crossref_primary_10_1016_j_jcis_2023_01_130
crossref_primary_10_3389_fchem_2021_732162
crossref_primary_10_1002_cssc_202402436
crossref_primary_10_1002_cssc_202102158
crossref_primary_10_3390_photonics10070821
crossref_primary_10_1039_D5CS00512D
crossref_primary_10_1007_s11356_022_24686_y
crossref_primary_10_3103_S1068335621120046
crossref_primary_10_1016_j_saa_2021_120252
crossref_primary_10_1088_0256_307X_42_8_080802
crossref_primary_10_1002_cplu_202300324
crossref_primary_10_1016_j_jece_2023_111563
crossref_primary_10_1016_j_colsurfa_2023_131392
crossref_primary_10_1038_s42004_024_01157_8
crossref_primary_10_1039_D4MH00515E
crossref_primary_10_1016_j_sna_2024_115594
crossref_primary_10_1016_j_foodchem_2023_138319
crossref_primary_10_1002_adma_202418705
crossref_primary_10_29026_oea_2023_230094
crossref_primary_10_1002_aenm_202500176
crossref_primary_10_3390_s23062969
crossref_primary_10_3390_bios12050282
crossref_primary_10_1007_s11051_022_05466_8
crossref_primary_10_1002_aenm_202301276
crossref_primary_10_1007_s12274_022_5169_6
crossref_primary_10_1002_mame_202100351
crossref_primary_10_1016_j_cattod_2024_115122
crossref_primary_10_1002_advs_202402840
crossref_primary_10_1021_jacs_1c11333
crossref_primary_10_1002_solr_202100611
crossref_primary_10_1002_smll_202206377
crossref_primary_10_1016_j_saa_2024_123985
crossref_primary_10_1002_celc_202300182
crossref_primary_10_1002_aenm_202103289
crossref_primary_10_3390_bios15060362
crossref_primary_10_3390_nano11113130
crossref_primary_10_1140_epjp_s13360_024_05921_6
crossref_primary_10_1002_lpor_202500333
crossref_primary_10_1002_adhm_202001897
crossref_primary_10_1016_j_jece_2024_112142
crossref_primary_10_1039_D4RA02808B
crossref_primary_10_1016_j_ccr_2024_215879
crossref_primary_10_1039_D5LF00044K
crossref_primary_10_1039_D2CC02708A
crossref_primary_10_1039_D2EE00358A
crossref_primary_10_1039_D5TA05084G
crossref_primary_10_1016_j_ccr_2022_214615
crossref_primary_10_1007_s12274_023_5492_6
Cites_doi 10.1021/ja511719g
10.1021/jacs.5b07521
10.1016/j.apcatb.2019.03.003
10.1021/acscatal.8b00541
10.1021/ja3075902
10.1038/35104607
10.1021/acs.chemrev.6b00398
10.1021/cs501189m
10.1016/j.cplett.2010.10.006
10.1039/C2EE23513G
10.1038/nnano.2012.131
10.1039/C8TA00499D
10.1021/jp9050929
10.1021/cs300682d
10.1021/jacs.9b01375
10.1021/acscatal.5b02643
10.1021/acscatal.7b02575
10.1021/acsenergylett.8b00461
10.1002/jrs.2937
10.1039/C7TA01217A
10.1002/cctc.201600172
10.1016/j.jphotochemrev.2016.04.001
10.1016/j.nanoen.2016.05.045
10.1063/1.4864395
10.1016/j.apmt.2017.08.008
10.1021/acsami.8b13472
10.1038/srep02997
10.1021/jacs.9b02585
10.1021/nl303940z
10.1038/lsa.2015.115
10.1038/s41467-018-05542-5
10.1021/jacs.5b01732
10.1016/j.mtener.2017.05.005
10.1039/C6CS00328A
10.1126/science.1231631
10.1021/ar800121r
10.1002/anie.201810886
10.1016/j.scib.2018.09.016
10.1039/C3CS60395D
10.1021/cr200061k
10.1021/nl047955q
10.1021/acscatal.7b01823
10.1002/smll.201803783
10.1016/j.electacta.2016.01.043
10.1021/acs.chemrev.7b00613
10.1021/acsnano.7b04461
10.1021/jacs.6b09080
10.1038/nmat4281
10.1038/s41929-018-0138-x
10.1039/C7NR08474A
10.1039/c0ee00558d
10.1038/nmat3151
10.1021/acscatal.7b00411
10.1021/acsnano.7b04960
10.1021/nl401145j
10.1021/jacs.6b03714
10.1021/jacs.9b02518
10.1021/cs400993w
10.1039/c3cc40732b
10.1002/anie.201310097
10.1021/acs.nanolett.8b03499
10.1021/cs2001434
10.1016/j.jcat.2017.08.024
10.1002/adma.201800527
10.1021/nl104005n
10.1002/anie.201309759
10.1021/jacs.8b06723
10.1021/cs300227s
10.1016/j.isci.2018.09.022
10.1021/acs.accounts.9b00153
10.1021/acs.chemrev.5b00462
10.1038/238037a0
10.1002/cctc.201403032
10.1002/adma.201704663
10.1002/celc.201701345
10.1039/b706023h
10.1038/35005040
10.1002/anie.201504933
10.1016/j.joule.2019.03.003
10.1038/nchem.2607
10.1021/ja305225s
10.1002/anie.201906134
10.1021/jp405773p
10.1021/acscatal.9b02039
10.1038/s41467-018-03793-w
10.1002/anie.201502077
10.1016/j.apcatb.2016.11.062
10.1039/C9CC00331B
10.1002/anie.201713229
10.1016/j.scib.2019.03.008
10.1021/cr100275d
10.1039/C7TA07264C
10.1002/adma.201806482
10.1149/2.0501614jes
10.1021/acssuschemeng.8b06117
10.1021/acscatal.7b02128
10.1021/acsenergylett.9b00515
10.1021/jacs.8b08937
10.1038/srep16019
10.1039/C8CC01814F
10.1002/adma.201802227
10.1021/acs.nanolett.8b05053
10.1021/jacs.7b11293
10.1021/jacs.8b04711
10.1021/acsnano.9b04224
10.1002/anie.201507807
10.1039/C7TA07705J
10.1002/anie.201703864
10.1021/ja1083514
10.1002/adma.201700803
10.1002/chem.201700651
10.1016/j.isci.2019.06.042
10.1039/C8TA08006B
10.1002/adma.201700311
10.1039/C9CP00129H
10.1021/acs.nanolett.7b04776
10.1002/anie.201300239
10.1039/C4CS00448E
10.1002/anie.201811234
10.1021/acscatal.9b03876
10.1002/chem.201803022
10.1002/adma.201600305
10.1021/j100099a038
10.1021/ja5128133
10.1021/acs.nanolett.8b00241
10.1039/C6TA10122D
10.1021/ja101107z
10.1038/s41467-017-00055-z
10.1021/ja500924t
10.1021/acsnano.6b08010
10.1038/nmat3454
10.1002/adma.201805513
10.1021/bi00168a001
10.1039/C1EE02875H
10.1039/c1jm10983a
10.1021/ar3002393
10.1038/ncomms8570
10.1126/science.aar6611
10.1002/adma.201505187
10.1039/C9TA06088J
10.1039/C8CS00607E
10.1021/jz5003346
10.1021/ja076134v
10.1039/C5CP00908A
10.1021/acs.accounts.9b00280
10.1038/nchem.1032
10.1021/jacs.8b02076
10.1002/adfm.201801573
10.1021/acscatal.7b01053
10.1002/anie.200802248
10.1002/adma.201901796
10.1038/nnano.2014.311
10.1021/nl303517v
10.1021/acsami.7b13043
10.1002/anie.201903290
10.1016/j.joule.2019.06.023
10.1038/ncomms14542
10.1002/anie.201601740
10.1039/C8TA03125H
10.1002/adma.201003695
10.1016/j.apcatb.2005.09.014
10.1002/cctc.201800482
10.1016/j.cattod.2013.10.085
10.1021/acsphotonics.7b01439
10.1021/ja801262r
10.1021/jp409311x
10.1039/C5TA00777A
10.1021/jacs.6b02532
10.1002/adma.201701774
10.1002/adfm.200500426
10.1002/celc.201800611
10.1021/jacs.8b13062
10.1038/s41565-019-0366-5
10.1021/ja076503n
10.1016/j.chempr.2016.10.007
10.1002/anie.201705002
10.1039/c0cc05302c
10.3390/polym10020189
10.1021/acs.jpcc.5b09604
10.1021/jacs.6b05190
10.1021/acs.jpclett.6b01453
10.1021/jacs.8b03537
10.1021/acscatal.9b04558
10.1021/la904479q
10.1002/adfm.201202148
10.1126/science.1077229
10.1016/j.scib.2018.12.008
10.1016/j.scib.2018.10.006
10.1021/nn901850u
10.1016/j.nanoen.2018.11.060
10.1021/jp211730r
10.1021/ja411017b
10.1126/science.aat6967
10.1021/acsenergylett.7b00741
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202000086
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32201994
10_1002_adma_202000086
ADMA202000086
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21471039; 21571043; 21671047; 21871065
– fundername: National Natural Science Foundation of China
  grantid: 21471039
– fundername: National Natural Science Foundation of China
  grantid: 21871065
– fundername: National Natural Science Foundation of China
  grantid: 21571043
– fundername: National Natural Science Foundation of China
  grantid: 21671047
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3
IEDL.DBID DRFUL
ISICitedReferencesCount 395
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563703000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Oct 02 09:45:21 EDT 2025
Fri Jul 25 04:52:30 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Sat Nov 29 07:19:07 EST 2025
Tue Nov 18 22:19:57 EST 2025
Wed Jan 22 16:32:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords catalysis
plasmon-driven photocatalytic reactions
plasmonic materials
plasmon-enhanced electrocatalytic reactions
surface plasmon
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3
Notes Dedicated to the 100th anniversary of Harbin Institute of Technology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1516-4986
PMID 32201994
PQID 2487436758
PQPubID 2045203
PageCount 19
ParticipantIDs proquest_miscellaneous_2381850087
proquest_journals_2487436758
pubmed_primary_32201994
crossref_citationtrail_10_1002_adma_202000086
crossref_primary_10_1002_adma_202000086
wiley_primary_10_1002_adma_202000086_ADMA202000086
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2010; 500
2019; 14
2019; 17
2008; 37
2019; 19
2009; 113
2020; 14
2020; 10
2012; 12
2012; 11
2013; 6
2014; 136
2011; 111
2018; 6
2018; 9
2018; 8
2018; 3
2010; 26
2012; 134
2018; 5
2015; 137
2018; 1
2019; 21
2000; 404
2013; 117
2013; 52
2018; 30
2010; 4
2017; 204
2001; 414
2019; 7
2019; 9
2018; 28
2019; 4
2019; 3
2019; 6
2011; 1
2019; 31
2015; 54
2011; 4
2011; 3
2016; 163
2014; 43
2017; 139
2018; 24
2018; 18
2016; 6
2016; 7
2016; 1
2013; 339
2018; 118
2019; 48
2017; 56
2005; 5
2008; 41
2016; 28
2018; 10
2016; 27
2012; 116
2016; 26
2008; 130
2016; 8
1994; 98
2018; 14
2018; 362
2017; 5
2017; 7
2017; 8
2017; 2
2018; 360
2019; 52
2019; 55
2013; 23
2019; 56
2017; 46
2019; 58
2011; 11
2011; 10
2017; 354
2017; 9
2009; 48
2014; 5
2006; 63
2014; 4
2019; 64
2013; 13
2015; 44
1994; 33
2011; 21
2011; 23
2016; 116
2016; 192
2014; 53
2015; 14
2015; 6
2007; 129
2015; 17
2015; 5
2018; 140
2015; 4
2013; 49
2015; 3
2013; 46
2006; 16
2002; 298
2015; 10
2017; 23
2018; 63
2017; 29
2019; 141
2015; 7
1972; 238
2016; 120
2016; 55
2012; 2
2017; 11
2011; 42
2010; 132
2016; 138
2011; 47
2019; 250
2012; 7
2018; 54
2012; 5
2014; 104
2014; 225
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 204
  start-page: 548
  year: 2017
  publication-title: Appl. Catal., B
– volume: 24
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 140
  start-page: 9203
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 2224
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 656
  year: 2018
  publication-title: Nat. Catal.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 118
  start-page: 3121
  year: 2018
  publication-title: Chem. Rev.
– volume: 138
  start-page: 7965
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 7813
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 5
  start-page: 72
  year: 2017
  publication-title: Mater. Today Energy
– volume: 7
  start-page: 6128
  year: 2017
  publication-title: ACS Catal.
– volume: 5
  start-page: 1115
  year: 2018
  publication-title: ACS Photonics
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 33
  start-page: 389
  year: 1994
  publication-title: Biochemistry
– volume: 10
  start-page: 907
  year: 2020
  publication-title: ACS Catal.
– volume: 10
  start-page: 189
  year: 2018
  publication-title: Polymers
– volume: 7
  start-page: 5391
  year: 2017
  publication-title: ACS Catal.
– volume: 14
  start-page: 354
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 52
  start-page: 2881
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 5133
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 42
  start-page: 1205
  year: 2011
  publication-title: J. Raman Spectrosc.
– volume: 53
  start-page: 2353
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 60
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 5374
  year: 2018
  publication-title: ACS Catal.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 3943
  year: 2019
  publication-title: Chem. Commun.
– volume: 21
  start-page: 7502
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 136
  start-page: 64
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 9244
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2236
  year: 2018
  publication-title: Nanoscale
– volume: 7
  start-page: 1004
  year: 2015
  publication-title: ChemCatChem
– volume: 8
  start-page: 27
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1191
  year: 2018
  publication-title: ChemElectroChem
– volume: 140
  start-page: 8497
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 3076
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 286
  year: 2019
  publication-title: Nano Energy
– volume: 54
  start-page: 6909
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 120
  start-page: 2343
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 2294
  year: 2017
  publication-title: ACS Catal.
– volume: 49
  start-page: 3389
  year: 2013
  publication-title: Chem. Commun.
– volume: 163
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1259
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 1098
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 3710
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  start-page: 3179
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 64
  start-page: 391
  year: 2019
  publication-title: Sci. Bull.
– volume: 23
  start-page: 1612
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 362
  start-page: 69
  year: 2018
  publication-title: Science
– volume: 11
  start-page: 1111
  year: 2011
  publication-title: Nano Lett.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 28
  start-page: 6781
  year: 2016
  publication-title: Adv. Mater.
– volume: 41
  start-page: 1742
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 339
  start-page: 1590
  year: 2013
  publication-title: Science
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 9390
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 116
  year: 2014
  publication-title: ACS Catal.
– volume: 3
  start-page: 2997
  year: 2013
  publication-title: Sci. Rep.
– volume: 138
  start-page: 6822
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 6000
  year: 2012
  publication-title: Nano Lett.
– volume: 13
  start-page: 240
  year: 2013
  publication-title: Nano Lett.
– volume: 18
  start-page: 2545
  year: 2018
  publication-title: Nano Lett.
– volume: 9
  year: 2019
  publication-title: ACS Catal.
– volume: 6
  start-page: 241
  year: 2019
  publication-title: ChemElectroChem
– volume: 9
  start-page: 7618
  year: 2019
  publication-title: ACS Catal.
– volume: 500
  start-page: 277
  year: 2010
  publication-title: Chem. Phys. Lett.
– volume: 4
  year: 2015
  publication-title: Light: Sci. Appl.
– volume: 136
  start-page: 6798
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1972
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1398
  year: 2018
  publication-title: Nat. Commun.
– volume: 21
  start-page: 9079
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 1654
  year: 2012
  publication-title: ACS Catal.
– volume: 26
  start-page: 7737
  year: 2010
  publication-title: Langmuir
– volume: 360
  year: 2018
  publication-title: Science
– volume: 9
  start-page: 3027
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 120
  year: 2017
  publication-title: Nat. Chem.
– volume: 7
  start-page: 8549
  year: 2017
  publication-title: ACS Catal.
– volume: 98
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 130
  start-page: 6928
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 404
  start-page: 265
  year: 2000
  publication-title: Nature
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 911
  year: 2011
  publication-title: Nat. Mater.
– volume: 2
  start-page: 2251
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 920
  year: 2019
  publication-title: Joule
– volume: 27
  start-page: 100
  year: 2016
  publication-title: J. Photochem. Photobiol., C
– volume: 192
  start-page: 15
  year: 2016
  publication-title: Electrochim. Acta
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 1415
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 137
  start-page: 948
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2520
  year: 2011
  publication-title: Chem. Commun.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 9434
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3815
  year: 2014
  publication-title: ACS Catal.
– volume: 10
  start-page: 408
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 25
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 63
  start-page: 137
  year: 2006
  publication-title: Appl. Catal., B
– volume: 141
  start-page: 8053
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2886
  year: 2017
  publication-title: ACS Nano
– volume: 4
  start-page: 1321
  year: 2010
  publication-title: ACS Nano
– volume: 14
  start-page: 567
  year: 2015
  publication-title: Nat. Mater.
– volume: 17
  start-page: 267
  year: 2019
  publication-title: iScience
– volume: 130
  start-page: 1676
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7364
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 354
  start-page: 160
  year: 2017
  publication-title: J. Catal.
– volume: 5
  start-page: 379
  year: 2005
  publication-title: Nano Lett.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 28
  start-page: 3703
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 467
  year: 2011
  publication-title: Nat. Chem.
– volume: 141
  start-page: 7807
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 7185
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 54
  start-page: 5197
  year: 2018
  publication-title: Chem. Commun.
– volume: 250
  start-page: 10
  year: 2019
  publication-title: Appl. Catal., B
– volume: 1
  start-page: 929
  year: 2011
  publication-title: ACS Catal.
– volume: 4
  start-page: 3167
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 298
  start-page: 2176
  year: 2002
  publication-title: Science
– volume: 19
  start-page: 1371
  year: 2019
  publication-title: Nano Lett.
– volume: 63
  start-page: 1358
  year: 2018
  publication-title: Sci. Bull.
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 116
  start-page: 4774
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1744
  year: 2016
  publication-title: ACS Catal.
– volume: 53
  start-page: 2910
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 414
  start-page: 338
  year: 2001
  publication-title: Nature
– volume: 8
  start-page: 1819
  year: 2016
  publication-title: ChemCatChem
– volume: 1
  start-page: 699
  year: 2016
  publication-title: Chem
– volume: 37
  start-page: 1061
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 7570
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3520
  year: 2018
  publication-title: ChemCatChem
– volume: 5
  start-page: 8946
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 9128
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7365
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1606
  year: 2019
  publication-title: Joule
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 9239
  year: 2017
  publication-title: ACS Nano
– volume: 13
  start-page: 2837
  year: 2013
  publication-title: Nano Lett.
– volume: 52
  start-page: 2784
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 58
  start-page: 8794
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 5083
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 625
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 140
  start-page: 864
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 6464
  year: 2017
  publication-title: ACS Catal.
– volume: 225
  start-page: 158
  year: 2014
  publication-title: Catal. Today
– volume: 14
  start-page: 28
  year: 2020
  publication-title: ACS Nano
– volume: 26
  start-page: 398
  year: 2016
  publication-title: Nano Energy
– volume: 63
  start-page: 1397
  year: 2018
  publication-title: Sci. Bull.
– volume: 52
  start-page: 6689
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 1044
  year: 2012
  publication-title: Nat. Mater.
– volume: 18
  start-page: 1714
  year: 2018
  publication-title: Nano Lett.
– volume: 3
  start-page: 10
  year: 2013
  publication-title: ACS Catal.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 113
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 111
  start-page: 3913
  year: 2011
  publication-title: Chem. Rev.
– volume: 46
  start-page: 1890
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 7289
  year: 2018
  publication-title: Nano Lett.
– volume: 55
  start-page: 7111
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 583
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 23
  start-page: 1044
  year: 2011
  publication-title: Adv. Mater.
– volume: 111
  start-page: 3669
  year: 2011
  publication-title: Chem. Rev.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 54
  year: 2019
  publication-title: Sci. Bull.
– volume: 16
  start-page: 640
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 5278
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 4800
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 213
  year: 2018
  publication-title: iScience
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 251
  year: 2017
  publication-title: Appl. Mater. Today
– ident: e_1_2_8_18_1
  doi: 10.1021/ja511719g
– ident: e_1_2_8_100_1
  doi: 10.1021/jacs.5b07521
– ident: e_1_2_8_128_1
  doi: 10.1016/j.apcatb.2019.03.003
– ident: e_1_2_8_147_1
  doi: 10.1021/acscatal.8b00541
– ident: e_1_2_8_25_1
  doi: 10.1021/ja3075902
– ident: e_1_2_8_3_1
  doi: 10.1038/35104607
– ident: e_1_2_8_173_1
  doi: 10.1021/acs.chemrev.6b00398
– ident: e_1_2_8_40_1
  doi: 10.1021/cs501189m
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cplett.2010.10.006
– ident: e_1_2_8_157_1
  doi: 10.1039/C2EE23513G
– ident: e_1_2_8_70_1
  doi: 10.1038/nnano.2012.131
– ident: e_1_2_8_152_1
  doi: 10.1039/C8TA00499D
– ident: e_1_2_8_52_1
  doi: 10.1021/jp9050929
– ident: e_1_2_8_94_1
  doi: 10.1021/cs300682d
– ident: e_1_2_8_115_1
  doi: 10.1021/jacs.9b01375
– ident: e_1_2_8_28_1
  doi: 10.1021/acscatal.5b02643
– ident: e_1_2_8_175_1
  doi: 10.1021/acscatal.7b02575
– ident: e_1_2_8_13_1
  doi: 10.1021/acsenergylett.8b00461
– ident: e_1_2_8_54_1
  doi: 10.1002/jrs.2937
– ident: e_1_2_8_119_1
  doi: 10.1039/C7TA01217A
– ident: e_1_2_8_74_1
  doi: 10.1002/cctc.201600172
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jphotochemrev.2016.04.001
– ident: e_1_2_8_145_1
  doi: 10.1016/j.nanoen.2016.05.045
– ident: e_1_2_8_37_1
  doi: 10.1063/1.4864395
– ident: e_1_2_8_75_1
  doi: 10.1016/j.apmt.2017.08.008
– ident: e_1_2_8_179_1
  doi: 10.1021/acsami.8b13472
– ident: e_1_2_8_56_1
  doi: 10.1038/srep02997
– ident: e_1_2_8_79_1
  doi: 10.1021/jacs.9b02585
– ident: e_1_2_8_95_1
  doi: 10.1021/nl303940z
– ident: e_1_2_8_72_1
  doi: 10.1038/lsa.2015.115
– ident: e_1_2_8_135_1
  doi: 10.1038/s41467-018-05542-5
– ident: e_1_2_8_158_1
  doi: 10.1021/jacs.5b01732
– ident: e_1_2_8_77_1
  doi: 10.1016/j.mtener.2017.05.005
– ident: e_1_2_8_172_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_8_87_1
  doi: 10.1126/science.1231631
– ident: e_1_2_8_84_1
  doi: 10.1021/ar800121r
– ident: e_1_2_8_143_1
  doi: 10.1002/anie.201810886
– ident: e_1_2_8_151_1
  doi: 10.1016/j.scib.2018.09.016
– ident: e_1_2_8_141_1
  doi: 10.1039/C3CS60395D
– ident: e_1_2_8_5_1
  doi: 10.1021/cr200061k
– ident: e_1_2_8_21_1
  doi: 10.1021/nl047955q
– ident: e_1_2_8_155_1
  doi: 10.1021/acscatal.7b01823
– ident: e_1_2_8_176_1
  doi: 10.1002/smll.201803783
– ident: e_1_2_8_189_1
  doi: 10.1016/j.electacta.2016.01.043
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.chemrev.7b00613
– ident: e_1_2_8_32_1
  doi: 10.1021/acsnano.7b04461
– ident: e_1_2_8_171_1
  doi: 10.1021/jacs.6b09080
– ident: e_1_2_8_9_1
  doi: 10.1038/nmat4281
– ident: e_1_2_8_6_1
  doi: 10.1038/s41929-018-0138-x
– ident: e_1_2_8_160_1
  doi: 10.1039/C7NR08474A
– ident: e_1_2_8_163_1
  doi: 10.1039/c0ee00558d
– ident: e_1_2_8_10_1
  doi: 10.1038/nmat3151
– ident: e_1_2_8_19_1
  doi: 10.1021/acscatal.7b00411
– ident: e_1_2_8_98_1
  doi: 10.1021/acsnano.7b04960
– ident: e_1_2_8_34_1
  doi: 10.1021/nl401145j
– ident: e_1_2_8_154_1
  doi: 10.1021/jacs.6b03714
– ident: e_1_2_8_80_1
  doi: 10.1021/jacs.9b02518
– ident: e_1_2_8_17_1
  doi: 10.1021/cs400993w
– ident: e_1_2_8_66_1
  doi: 10.1039/c3cc40732b
– ident: e_1_2_8_63_1
  doi: 10.1002/anie.201310097
– ident: e_1_2_8_106_1
  doi: 10.1021/acs.nanolett.8b03499
– ident: e_1_2_8_132_1
  doi: 10.1021/cs2001434
– ident: e_1_2_8_166_1
  doi: 10.1016/j.jcat.2017.08.024
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.201800527
– ident: e_1_2_8_47_1
  doi: 10.1021/nl104005n
– ident: e_1_2_8_116_1
  doi: 10.1002/anie.201309759
– ident: e_1_2_8_125_1
  doi: 10.1021/jacs.8b06723
– ident: e_1_2_8_169_1
  doi: 10.1021/cs300227s
– ident: e_1_2_8_194_1
  doi: 10.1016/j.isci.2018.09.022
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.accounts.9b00153
– ident: e_1_2_8_165_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_8_2_1
  doi: 10.1038/238037a0
– ident: e_1_2_8_67_1
  doi: 10.1002/cctc.201403032
– ident: e_1_2_8_126_1
  doi: 10.1002/adma.201704663
– ident: e_1_2_8_187_1
  doi: 10.1002/celc.201701345
– ident: e_1_2_8_29_1
  doi: 10.1039/b706023h
– ident: e_1_2_8_140_1
  doi: 10.1038/35005040
– ident: e_1_2_8_142_1
  doi: 10.1002/anie.201504933
– ident: e_1_2_8_1_1
  doi: 10.1016/j.joule.2019.03.003
– ident: e_1_2_8_123_1
  doi: 10.1038/nchem.2607
– ident: e_1_2_8_93_1
  doi: 10.1021/ja305225s
– ident: e_1_2_8_159_1
  doi: 10.1002/anie.201906134
– ident: e_1_2_8_35_1
  doi: 10.1021/jp405773p
– ident: e_1_2_8_183_1
  doi: 10.1021/acscatal.9b02039
– ident: e_1_2_8_146_1
  doi: 10.1038/s41467-018-03793-w
– ident: e_1_2_8_68_1
  doi: 10.1002/anie.201502077
– ident: e_1_2_8_130_1
  doi: 10.1016/j.apcatb.2016.11.062
– ident: e_1_2_8_188_1
  doi: 10.1039/C9CC00331B
– ident: e_1_2_8_112_1
  doi: 10.1002/anie.201713229
– ident: e_1_2_8_16_1
  doi: 10.1016/j.scib.2019.03.008
– ident: e_1_2_8_22_1
  doi: 10.1021/cr100275d
– ident: e_1_2_8_118_1
  doi: 10.1039/C7TA07264C
– ident: e_1_2_8_109_1
  doi: 10.1002/adma.201806482
– ident: e_1_2_8_190_1
  doi: 10.1149/2.0501614jes
– ident: e_1_2_8_156_1
  doi: 10.1021/acssuschemeng.8b06117
– ident: e_1_2_8_101_1
  doi: 10.1021/acscatal.7b02128
– ident: e_1_2_8_192_1
  doi: 10.1021/acsenergylett.9b00515
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.8b08937
– ident: e_1_2_8_83_1
  doi: 10.1038/srep16019
– ident: e_1_2_8_92_1
  doi: 10.1039/C8CC01814F
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201802227
– ident: e_1_2_8_170_1
  doi: 10.1021/acs.nanolett.8b05053
– ident: e_1_2_8_102_1
  doi: 10.1021/jacs.7b11293
– ident: e_1_2_8_117_1
  doi: 10.1021/jacs.8b04711
– ident: e_1_2_8_57_1
  doi: 10.1021/acsnano.9b04224
– ident: e_1_2_8_73_1
  doi: 10.1002/anie.201507807
– ident: e_1_2_8_161_1
  doi: 10.1039/C7TA07705J
– ident: e_1_2_8_182_1
  doi: 10.1002/anie.201703864
– ident: e_1_2_8_89_1
  doi: 10.1021/ja1083514
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201700803
– ident: e_1_2_8_76_1
  doi: 10.1002/chem.201700651
– ident: e_1_2_8_193_1
  doi: 10.1016/j.isci.2019.06.042
– ident: e_1_2_8_184_1
  doi: 10.1039/C8TA08006B
– ident: e_1_2_8_153_1
  doi: 10.1002/adma.201700311
– ident: e_1_2_8_88_1
  doi: 10.1039/C9CP00129H
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.nanolett.7b04776
– ident: e_1_2_8_91_1
  doi: 10.1002/anie.201300239
– ident: e_1_2_8_149_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.201811234
– ident: e_1_2_8_174_1
  doi: 10.1021/acscatal.9b03876
– ident: e_1_2_8_139_1
  doi: 10.1002/chem.201803022
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201600305
– ident: e_1_2_8_58_1
  doi: 10.1021/j100099a038
– ident: e_1_2_8_122_1
  doi: 10.1021/ja5128133
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.nanolett.8b00241
– ident: e_1_2_8_81_1
  doi: 10.1039/C6TA10122D
– ident: e_1_2_8_61_1
  doi: 10.1021/ja101107z
– ident: e_1_2_8_138_1
  doi: 10.1038/s41467-017-00055-z
– ident: e_1_2_8_133_1
  doi: 10.1021/ja500924t
– ident: e_1_2_8_31_1
  doi: 10.1021/acsnano.6b08010
– ident: e_1_2_8_86_1
  doi: 10.1038/nmat3454
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201805513
– ident: e_1_2_8_111_1
  doi: 10.1021/bi00168a001
– ident: e_1_2_8_48_1
  doi: 10.1039/C1EE02875H
– ident: e_1_2_8_90_1
  doi: 10.1039/c1jm10983a
– ident: e_1_2_8_8_1
  doi: 10.1021/ar3002393
– ident: e_1_2_8_42_1
  doi: 10.1038/ncomms8570
– ident: e_1_2_8_107_1
  doi: 10.1126/science.aar6611
– ident: e_1_2_8_137_1
  doi: 10.1002/adma.201505187
– ident: e_1_2_8_180_1
  doi: 10.1039/C9TA06088J
– ident: e_1_2_8_134_1
  doi: 10.1039/C8CS00607E
– ident: e_1_2_8_64_1
  doi: 10.1021/jz5003346
– ident: e_1_2_8_71_1
  doi: 10.1021/ja076134v
– ident: e_1_2_8_82_1
  doi: 10.1039/C5CP00908A
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.accounts.9b00280
– ident: e_1_2_8_85_1
  doi: 10.1038/nchem.1032
– ident: e_1_2_8_108_1
  doi: 10.1021/jacs.8b02076
– ident: e_1_2_8_178_1
  doi: 10.1002/adfm.201801573
– ident: e_1_2_8_103_1
  doi: 10.1021/acscatal.7b01053
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.200802248
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.201901796
– ident: e_1_2_8_30_1
  doi: 10.1038/nnano.2014.311
– ident: e_1_2_8_97_1
  doi: 10.1021/nl303517v
– ident: e_1_2_8_144_1
  doi: 10.1021/acsami.7b13043
– ident: e_1_2_8_185_1
  doi: 10.1002/anie.201903290
– ident: e_1_2_8_4_1
  doi: 10.1016/j.joule.2019.06.023
– ident: e_1_2_8_136_1
  doi: 10.1038/ncomms14542
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.201601740
– ident: e_1_2_8_120_1
  doi: 10.1039/C8TA03125H
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201003695
– ident: e_1_2_8_181_1
  doi: 10.1016/j.apcatb.2005.09.014
– ident: e_1_2_8_78_1
  doi: 10.1002/cctc.201800482
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cattod.2013.10.085
– ident: e_1_2_8_39_1
  doi: 10.1021/acsphotonics.7b01439
– ident: e_1_2_8_45_1
  doi: 10.1021/ja801262r
– ident: e_1_2_8_131_1
  doi: 10.1021/jp409311x
– ident: e_1_2_8_104_1
  doi: 10.1039/C5TA00777A
– ident: e_1_2_8_105_1
  doi: 10.1021/jacs.6b02532
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.201701774
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.200500426
– ident: e_1_2_8_186_1
  doi: 10.1002/celc.201800611
– ident: e_1_2_8_114_1
  doi: 10.1021/jacs.8b13062
– ident: e_1_2_8_99_1
  doi: 10.1038/s41565-019-0366-5
– ident: e_1_2_8_50_1
  doi: 10.1021/ja076503n
– ident: e_1_2_8_148_1
  doi: 10.1016/j.chempr.2016.10.007
– ident: e_1_2_8_121_1
  doi: 10.1002/anie.201705002
– ident: e_1_2_8_62_1
  doi: 10.1039/c0cc05302c
– ident: e_1_2_8_43_1
  doi: 10.3390/polym10020189
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.jpcc.5b09604
– ident: e_1_2_8_177_1
  doi: 10.1021/jacs.6b05190
– ident: e_1_2_8_65_1
  doi: 10.1021/acs.jpclett.6b01453
– ident: e_1_2_8_113_1
  doi: 10.1021/jacs.8b03537
– ident: e_1_2_8_168_1
  doi: 10.1021/acscatal.9b04558
– ident: e_1_2_8_53_1
  doi: 10.1021/la904479q
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.201202148
– ident: e_1_2_8_24_1
  doi: 10.1126/science.1077229
– ident: e_1_2_8_167_1
  doi: 10.1016/j.scib.2018.12.008
– ident: e_1_2_8_150_1
  doi: 10.1016/j.scib.2018.10.006
– ident: e_1_2_8_164_1
  doi: 10.1021/nn901850u
– ident: e_1_2_8_191_1
  doi: 10.1016/j.nanoen.2018.11.060
– ident: e_1_2_8_69_1
  doi: 10.1021/jp211730r
– ident: e_1_2_8_96_1
  doi: 10.1021/ja411017b
– ident: e_1_2_8_33_1
  doi: 10.1126/science.aat6967
– ident: e_1_2_8_162_1
  doi: 10.1021/acsenergylett.7b00741
SSID ssj0009606
Score 2.71338
SecondaryResourceType review_article
Snippet Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000086
SubjectTerms Ammonia
Carbon dioxide
catalysis
Chemical reactions
Decomposition reactions
Energy conversion
Energy storage
Heterostructures
Hydrogen evolution reactions
Materials science
Nanomaterials
Nanostructure
Nitrogenation
Oxidation
Oxygen evolution reactions
Oxygen reduction reactions
Photochemical reactions
plasmonic materials
Plasmonics
Plasmons
plasmon‐driven photocatalytic reactions
plasmon‐enhanced electrocatalytic reactions
surface plasmon
Title Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000086
https://www.ncbi.nlm.nih.gov/pubmed/32201994
https://www.proquest.com/docview/2487436758
https://www.proquest.com/docview/2381850087
Volume 33
WOSCitedRecordID wos000563703000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD646YM-eL_UGxEEn4pd2qbp43AbPqgMmbAHoaRJygbaip3-fk_SrjpEBH1sm7bhXJLvJCffATinUoVKptTtREK5QYgxq2BSuIrJWKONpFJKW2wiurvj43E8_HKKv-KHaBbcjGfY8do4uEjLy0_SUKEsbxC1qIe1YJmi8YZtWO7dDx5uPol3ma2vafb73JgFfE7c6NHLxS8sTkzf0OYieLWzz2Dj__3ehPUaeZJuZSpbsKTzbVj7wke4A48IInESIt0qMaAk05wMEV4_G_5cggNxUdHNvmGMThDtkn4-sRkEZDgpZoVdCjIMJ0TkivSrAjvNzV0YDfqjq2u3Lr_gSkQpqDMeC9XxhPB4TDOPZ0z7ysAzP4gCwX0dqlhHnkbAhTFcyrSOslgEouNr5meZvwftvMj1ARBBGYreSzGYQ4AoBc-CDmVcozVkiAdDB9y56BNZU5ObChlPSUWqTBMjtKQRmgMXTfuXipTjx5bHc00mtXOWCcUgLfBNpOTAWfMY3crslYhcF2_YxiIZQ9jnwH5lAc2vcAz0DKWyA9Qq-pc-JN3ebbe5OvzLS0ewSk0ujc0WP4Y26lqfwIp8n03L11NoRWN-Whv-By6YAXQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqgP3i_1GkHwqaxN27R9LLqhuI0hE3wQSpakKGgrTv39nqRd5xARxMe2aRvOJflOcvIdgFMqZCDFiNpuyKXtBxizcia4LZmIFdrISAhhik2E_X50dxcPqmxCfRam5IeoF9y0Z5jxWju4XpBuTVlDuTTEQdTAHjYPTR9tCY28eXHTue1OmXeZKbCpN_zsmPnRhLnRoa3ZL8zOTN_g5ix6NdNPZ_UfOr4GKxX2JElpLOswp_INWP7CSLgJ9wgjcRoiSZkaMCaPORkgwH7WDLoEh-KiJJx9xyidIN4l7fzB5BCQwUPxVpjFIM1xQnguSbsssVPf3IJhpz08v7SrAgy2QJyCWotiLl2HcyeKaeZEGVOe1ADN80OfR54KZKxCRyHkwihuxJQKs5j73PUU87LM24ZGXuRqFwinDGXvjDCcQ4goeJT5LmWRQnvIEBEGFtgT2aeiIifXNTKe0pJWmaZaaGktNAvO6vYvJS3Hjy0PJqpMK_ccpxTDNN_TsZIFJ_VjdCy9W8JzVbxjG4NlNGWfBTulCdS_wlHQ0aTKFlCj6V_6kCYXvaS-2vvLS8eweDnsddPuVf96H5aozqwxueMH0EC9q0NYEB9vj-PXo8r-PwGSvQR8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqIP3i_VqREEn8q6tEvbx-E2FOcYMsEHoWRJygbaDrf5-z1Ju84hIoiPbdM2nEvyneTkOwBXVMi6FANq13wuba-OMStngtuSiVChjQyEEKbYhN_tBs_PYS_PJtRnYTJ-iGLBTXuGGa-1g6uxjKsL1lAuDXEQNbCHrULZ05VkSlBuPrafOgvmXWYKbOoNPztkXjBnbnRodfkLyzPTN7i5jF7N9NPe_oeO78BWjj1JIzOWXVhRyR5sfmEk3IcXhJE4DZFGlhowIaOE9BBgv2kGXYJDcZoRzs4wSieId0krGZocAtIbptPULAZpjhPCE0laWYmd4uYB9Nut_s2tnRdgsAXiFNRaEHJZczh3gpDGThAz5UoN0FzP93jgqroMle8ohFwYxQ2YUn4cco_XXMXcOHYPoZSkiToGwilD2TsDDOcQIgoexF6NskChPcSICOsW2HPZRyInJ9c1Ml6jjFaZRlpoUSE0C66L9uOMluPHlpW5KqPcPScRxTDNc3WsZMFl8RgdS--W8ESlM2xjsIym7LPgKDOB4lc4CjqaVNkCajT9Sx-iRvOhUVyd_OWlC1jvNdtR5657fwobVCfWmNTxCpRQ7eoM1sTHdDR5P8_N_xMVyQP3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Plasmonic+Nanostructures+for+Enhanced+Photocatalysis+and+Electrocatalysis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Siwei&rft.au=Miao%2C+Peng&rft.au=Zhang%2C+Yuanyuan&rft.au=Wu%2C+Jie&rft.date=2021-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202000086&rft.externalDBID=10.1002%252Fadma.202000086&rft.externalDocID=ADMA202000086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon