Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the local...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 33; číslo 6; s. e2000086 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.02.2021
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research. |
|---|---|
| AbstractList | Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.
The recent advances in applying the surface plasmon resonance effect from plasmonic nanostructures for enhanced photocatalysis and electrocatalysis are comprehensively summarized, highlighting the synthesis strategies of plasmonic nanomaterials along with future directions of plasmon‐related research. Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O dissociation and oxidation reactions, H dissociation and hydrogenation reactions, N fixation and NH decomposition, and CO reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion. Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O 2 dissociation and oxidation reactions, H 2 dissociation and hydrogenation reactions, N 2 fixation and NH 3 decomposition, and CO 2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO 2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion. Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion. |
| Author | Miao, Peng Wu, Jie Zhang, Yuanyuan Li, Siwei Zhang, Bin Du, Yunchen Han, Xijiang Sun, Jianmin Xu, Ping |
| Author_xml | – sequence: 1 givenname: Siwei surname: Li fullname: Li, Siwei organization: Harbin Institute of Technology – sequence: 2 givenname: Peng surname: Miao fullname: Miao, Peng organization: Harbin Institute of Technology – sequence: 3 givenname: Yuanyuan surname: Zhang fullname: Zhang, Yuanyuan organization: Harbin Institute of Technology – sequence: 4 givenname: Jie surname: Wu fullname: Wu, Jie organization: Harbin Institute of Technology – sequence: 5 givenname: Bin surname: Zhang fullname: Zhang, Bin organization: Harbin Institute of Technology – sequence: 6 givenname: Yunchen surname: Du fullname: Du, Yunchen organization: Harbin Institute of Technology – sequence: 7 givenname: Xijiang surname: Han fullname: Han, Xijiang organization: Harbin Institute of Technology – sequence: 8 givenname: Jianmin surname: Sun fullname: Sun, Jianmin organization: Harbin Institute of Technology – sequence: 9 givenname: Ping orcidid: 0000-0002-1516-4986 surname: Xu fullname: Xu, Ping email: pxu@hit.edu.cn organization: Harbin Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32201994$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9rFTEQx4NU7Gv16lEWvHjZZ35tNjk-2ucPqFqkRyFMs7M0ZTepSVZ5_715vNZCQcxlIPP5DMN8T8hRiAEJec3omlHK38Mww5pTTuvT6hlZsY6zVlLTHZEVNaJrjZL6mJzkfFsRo6h6QY4F55QZI1fkx3d0GEqzGX5BcJgbH5rLCfIcg3fNVwgxl7S4sqTaG2NqtuFmDw7N5U0s0UGBaZd9biAMzXZCV9Lj50vyfIQp46v7ekquPmyvzj61F98-fj7bXLROCqNa0AYGRgGoNnykelQoBsa4EbKXoAV2g8GeohQdl-ZaIfajAQlMoBLjKE7Ju8PYuxR_LpiLnX12OE0QMC7ZcqGZ7up9-oq-fYLexiWFupzlUvdSqL7TlXpzTy3XMw72LvkZ0s4-nK0C8gC4FHNOOFrnCxQfQ0ngJ8uo3adj9-nYv-lUbf1Ee5j8T8EchN9-wt1_aLs5_7J5dP8AeFOhpw |
| CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_110632 crossref_primary_10_1016_j_mssp_2021_106134 crossref_primary_10_1063_5_0218539 crossref_primary_10_1007_s11244_023_01839_y crossref_primary_10_1063_5_0205461 crossref_primary_10_1002_adfm_202307903 crossref_primary_10_1021_jacs_0c12282 crossref_primary_10_1039_D5NJ01939G crossref_primary_10_1002_anie_202409484 crossref_primary_10_1038_s41557_022_01124_7 crossref_primary_10_1002_adfm_202105054 crossref_primary_10_1016_j_optcom_2023_129851 crossref_primary_10_1002_adom_202202429 crossref_primary_10_3390_photonics9020112 crossref_primary_10_1002_smll_202007055 crossref_primary_10_3390_nano12173012 crossref_primary_10_1007_s10854_024_12919_4 crossref_primary_10_3390_nano13212839 crossref_primary_10_1007_s00339_023_06861_1 crossref_primary_10_1515_nanoph_2022_0592 crossref_primary_10_1016_j_vacuum_2025_114537 crossref_primary_10_1002_advs_202302568 crossref_primary_10_1021_acsaom_4c00399 crossref_primary_10_1016_j_seppur_2022_122988 crossref_primary_10_1039_D4QI03188A crossref_primary_10_1007_s00339_021_05253_7 crossref_primary_10_1007_s12274_022_4896_z crossref_primary_10_1007_s12598_024_02841_3 crossref_primary_10_1364_JOSAB_550317 crossref_primary_10_1002_cphc_202200565 crossref_primary_10_1039_D1NR03760A crossref_primary_10_3390_catal13030458 crossref_primary_10_1002_anie_202314352 crossref_primary_10_1002_smll_202412106 crossref_primary_10_1039_D4QI00608A crossref_primary_10_1002_cjoc_202100167 crossref_primary_10_1016_j_apcatb_2025_125206 crossref_primary_10_1021_acsanm_5c03039 crossref_primary_10_3390_catal12020126 crossref_primary_10_1016_j_apsusc_2024_161708 crossref_primary_10_1016_j_jcis_2021_06_049 crossref_primary_10_1002_ange_202409484 crossref_primary_10_3390_nano12213730 crossref_primary_10_1016_j_optlastec_2024_111752 crossref_primary_10_1063_5_0213838 crossref_primary_10_1002_adma_202313086 crossref_primary_10_1016_j_mattod_2022_11_011 crossref_primary_10_1002_adfm_202112683 crossref_primary_10_1109_TIM_2025_3555724 crossref_primary_10_1107_S2052252522002901 crossref_primary_10_1016_j_cej_2025_168220 crossref_primary_10_1002_adma_202008145 crossref_primary_10_1007_s12274_023_6014_2 crossref_primary_10_1007_s12274_022_5253_y crossref_primary_10_1142_S1793604721300176 crossref_primary_10_1002_smll_202307289 crossref_primary_10_1016_j_ccr_2021_214381 crossref_primary_10_3390_ijms231911741 crossref_primary_10_1007_s11426_024_2199_7 crossref_primary_10_1039_D4EE00783B crossref_primary_10_1039_D1RA03569J crossref_primary_10_1007_s12274_022_4700_0 crossref_primary_10_1002_sstr_202200045 crossref_primary_10_1002_cey2_567 crossref_primary_10_1002_cey2_208 crossref_primary_10_1016_j_apsusc_2022_153745 crossref_primary_10_1039_D0QI00945H crossref_primary_10_1039_D5SC03065J crossref_primary_10_1002_smll_202301050 crossref_primary_10_1002_smll_202201882 crossref_primary_10_1039_D5SC00610D crossref_primary_10_1016_j_cej_2023_142613 crossref_primary_10_1002_solr_202000487 crossref_primary_10_1016_j_cej_2022_137063 crossref_primary_10_3390_photonics11070618 crossref_primary_10_3390_nano12101761 crossref_primary_10_1021_acsnano_5c05497 crossref_primary_10_1016_j_apsusc_2020_147934 crossref_primary_10_1080_10408347_2022_2063683 crossref_primary_10_1002_cctc_202100699 crossref_primary_10_1002_cctc_202400638 crossref_primary_10_1007_s40843_022_2372_3 crossref_primary_10_1016_j_cej_2023_148152 crossref_primary_10_1016_j_ijbiomac_2024_135929 crossref_primary_10_1007_s00604_021_04964_1 crossref_primary_10_1039_D1EE02512K crossref_primary_10_1002_cphc_202200881 crossref_primary_10_1002_aesr_202100092 crossref_primary_10_1016_j_apcata_2025_120351 crossref_primary_10_1016_j_apsusc_2023_158916 crossref_primary_10_1002_anie_202217569 crossref_primary_10_1007_s12274_023_5620_3 crossref_primary_10_1038_s41598_024_81091_w crossref_primary_10_3390_photonics10101088 crossref_primary_10_3390_mi14101811 crossref_primary_10_1039_D5GC00299K crossref_primary_10_1039_D3NR02876C crossref_primary_10_1007_s11467_024_1413_8 crossref_primary_10_1007_s10854_024_14117_8 crossref_primary_10_1002_smll_202201269 crossref_primary_10_1002_adfm_202203418 crossref_primary_10_1002_elsa_202100079 crossref_primary_10_1007_s40820_023_01038_0 crossref_primary_10_1002_ange_202217569 crossref_primary_10_1039_D1RA08576J crossref_primary_10_1016_j_catcom_2022_106565 crossref_primary_10_1002_ente_202000607 crossref_primary_10_1016_j_apsusc_2020_147720 crossref_primary_10_3390_catal13060946 crossref_primary_10_1002_cjoc_202400177 crossref_primary_10_3390_catal12121549 crossref_primary_10_1016_j_apsusc_2021_152100 crossref_primary_10_1002_admi_202102383 crossref_primary_10_3390_polym17010081 crossref_primary_10_1016_j_apcatb_2022_121612 crossref_primary_10_1002_adfm_202411854 crossref_primary_10_1016_j_snb_2024_137069 crossref_primary_10_1038_s41467_025_57569_0 crossref_primary_10_1016_j_apsusc_2021_151811 crossref_primary_10_1007_s12274_022_4371_x crossref_primary_10_1016_j_jphotochem_2022_114369 crossref_primary_10_1016_j_apsusc_2022_155454 crossref_primary_10_3390_photonics11080713 crossref_primary_10_13005_ojc_400208 crossref_primary_10_1021_acsnanoscienceau_5c00031 crossref_primary_10_3390_ijms24044142 crossref_primary_10_1002_ente_202201393 crossref_primary_10_1002_pssa_202400633 crossref_primary_10_1002_smll_202002236 crossref_primary_10_1016_j_jwpe_2022_103469 crossref_primary_10_3390_ma16041735 crossref_primary_10_1002_cssc_202201535 crossref_primary_10_1002_smsc_202300048 crossref_primary_10_1016_j_chemosphere_2021_132781 crossref_primary_10_1002_cplu_202400020 crossref_primary_10_1002_adfm_202416091 crossref_primary_10_1016_j_scriptamat_2024_115985 crossref_primary_10_1109_TIM_2024_3457970 crossref_primary_10_1038_s41598_024_55000_0 crossref_primary_10_1016_j_mtsust_2023_100466 crossref_primary_10_1016_j_apsusc_2024_159720 crossref_primary_10_1002_smll_202303153 crossref_primary_10_1021_acselectrochem_5c00190 crossref_primary_10_1007_s40843_024_3021_1 crossref_primary_10_1016_j_cej_2021_130188 crossref_primary_10_1002_adma_202005738 crossref_primary_10_1038_s43246_024_00510_7 crossref_primary_10_1016_j_nxmate_2025_100509 crossref_primary_10_1016_j_optlastec_2024_111331 crossref_primary_10_1038_s41467_022_31474_2 crossref_primary_10_1063_5_0167003 crossref_primary_10_1002_cplu_202000811 crossref_primary_10_3390_molecules28135245 crossref_primary_10_1016_j_fuel_2024_134178 crossref_primary_10_3390_nano14080695 crossref_primary_10_1016_j_trechm_2021_08_006 crossref_primary_10_1002_ange_202314352 crossref_primary_10_1002_admt_202101147 crossref_primary_10_1016_j_jece_2024_112742 crossref_primary_10_1039_D3NR04226J crossref_primary_10_1038_s41467_020_20444_1 crossref_primary_10_1002_adom_202300841 crossref_primary_10_1016_j_jcis_2023_01_130 crossref_primary_10_3389_fchem_2021_732162 crossref_primary_10_1002_cssc_202402436 crossref_primary_10_1002_cssc_202102158 crossref_primary_10_3390_photonics10070821 crossref_primary_10_1039_D5CS00512D crossref_primary_10_1007_s11356_022_24686_y crossref_primary_10_3103_S1068335621120046 crossref_primary_10_1016_j_saa_2021_120252 crossref_primary_10_1088_0256_307X_42_8_080802 crossref_primary_10_1002_cplu_202300324 crossref_primary_10_1016_j_jece_2023_111563 crossref_primary_10_1016_j_colsurfa_2023_131392 crossref_primary_10_1038_s42004_024_01157_8 crossref_primary_10_1039_D4MH00515E crossref_primary_10_1016_j_sna_2024_115594 crossref_primary_10_1016_j_foodchem_2023_138319 crossref_primary_10_1002_adma_202418705 crossref_primary_10_29026_oea_2023_230094 crossref_primary_10_1002_aenm_202500176 crossref_primary_10_3390_s23062969 crossref_primary_10_3390_bios12050282 crossref_primary_10_1007_s11051_022_05466_8 crossref_primary_10_1002_aenm_202301276 crossref_primary_10_1007_s12274_022_5169_6 crossref_primary_10_1002_mame_202100351 crossref_primary_10_1016_j_cattod_2024_115122 crossref_primary_10_1002_advs_202402840 crossref_primary_10_1021_jacs_1c11333 crossref_primary_10_1002_solr_202100611 crossref_primary_10_1002_smll_202206377 crossref_primary_10_1016_j_saa_2024_123985 crossref_primary_10_1002_celc_202300182 crossref_primary_10_1002_aenm_202103289 crossref_primary_10_3390_bios15060362 crossref_primary_10_3390_nano11113130 crossref_primary_10_1140_epjp_s13360_024_05921_6 crossref_primary_10_1002_lpor_202500333 crossref_primary_10_1002_adhm_202001897 crossref_primary_10_1016_j_jece_2024_112142 crossref_primary_10_1039_D4RA02808B crossref_primary_10_1016_j_ccr_2024_215879 crossref_primary_10_1039_D5LF00044K crossref_primary_10_1039_D2CC02708A crossref_primary_10_1039_D2EE00358A crossref_primary_10_1039_D5TA05084G crossref_primary_10_1016_j_ccr_2022_214615 crossref_primary_10_1007_s12274_023_5492_6 |
| Cites_doi | 10.1021/ja511719g 10.1021/jacs.5b07521 10.1016/j.apcatb.2019.03.003 10.1021/acscatal.8b00541 10.1021/ja3075902 10.1038/35104607 10.1021/acs.chemrev.6b00398 10.1021/cs501189m 10.1016/j.cplett.2010.10.006 10.1039/C2EE23513G 10.1038/nnano.2012.131 10.1039/C8TA00499D 10.1021/jp9050929 10.1021/cs300682d 10.1021/jacs.9b01375 10.1021/acscatal.5b02643 10.1021/acscatal.7b02575 10.1021/acsenergylett.8b00461 10.1002/jrs.2937 10.1039/C7TA01217A 10.1002/cctc.201600172 10.1016/j.jphotochemrev.2016.04.001 10.1016/j.nanoen.2016.05.045 10.1063/1.4864395 10.1016/j.apmt.2017.08.008 10.1021/acsami.8b13472 10.1038/srep02997 10.1021/jacs.9b02585 10.1021/nl303940z 10.1038/lsa.2015.115 10.1038/s41467-018-05542-5 10.1021/jacs.5b01732 10.1016/j.mtener.2017.05.005 10.1039/C6CS00328A 10.1126/science.1231631 10.1021/ar800121r 10.1002/anie.201810886 10.1016/j.scib.2018.09.016 10.1039/C3CS60395D 10.1021/cr200061k 10.1021/nl047955q 10.1021/acscatal.7b01823 10.1002/smll.201803783 10.1016/j.electacta.2016.01.043 10.1021/acs.chemrev.7b00613 10.1021/acsnano.7b04461 10.1021/jacs.6b09080 10.1038/nmat4281 10.1038/s41929-018-0138-x 10.1039/C7NR08474A 10.1039/c0ee00558d 10.1038/nmat3151 10.1021/acscatal.7b00411 10.1021/acsnano.7b04960 10.1021/nl401145j 10.1021/jacs.6b03714 10.1021/jacs.9b02518 10.1021/cs400993w 10.1039/c3cc40732b 10.1002/anie.201310097 10.1021/acs.nanolett.8b03499 10.1021/cs2001434 10.1016/j.jcat.2017.08.024 10.1002/adma.201800527 10.1021/nl104005n 10.1002/anie.201309759 10.1021/jacs.8b06723 10.1021/cs300227s 10.1016/j.isci.2018.09.022 10.1021/acs.accounts.9b00153 10.1021/acs.chemrev.5b00462 10.1038/238037a0 10.1002/cctc.201403032 10.1002/adma.201704663 10.1002/celc.201701345 10.1039/b706023h 10.1038/35005040 10.1002/anie.201504933 10.1016/j.joule.2019.03.003 10.1038/nchem.2607 10.1021/ja305225s 10.1002/anie.201906134 10.1021/jp405773p 10.1021/acscatal.9b02039 10.1038/s41467-018-03793-w 10.1002/anie.201502077 10.1016/j.apcatb.2016.11.062 10.1039/C9CC00331B 10.1002/anie.201713229 10.1016/j.scib.2019.03.008 10.1021/cr100275d 10.1039/C7TA07264C 10.1002/adma.201806482 10.1149/2.0501614jes 10.1021/acssuschemeng.8b06117 10.1021/acscatal.7b02128 10.1021/acsenergylett.9b00515 10.1021/jacs.8b08937 10.1038/srep16019 10.1039/C8CC01814F 10.1002/adma.201802227 10.1021/acs.nanolett.8b05053 10.1021/jacs.7b11293 10.1021/jacs.8b04711 10.1021/acsnano.9b04224 10.1002/anie.201507807 10.1039/C7TA07705J 10.1002/anie.201703864 10.1021/ja1083514 10.1002/adma.201700803 10.1002/chem.201700651 10.1016/j.isci.2019.06.042 10.1039/C8TA08006B 10.1002/adma.201700311 10.1039/C9CP00129H 10.1021/acs.nanolett.7b04776 10.1002/anie.201300239 10.1039/C4CS00448E 10.1002/anie.201811234 10.1021/acscatal.9b03876 10.1002/chem.201803022 10.1002/adma.201600305 10.1021/j100099a038 10.1021/ja5128133 10.1021/acs.nanolett.8b00241 10.1039/C6TA10122D 10.1021/ja101107z 10.1038/s41467-017-00055-z 10.1021/ja500924t 10.1021/acsnano.6b08010 10.1038/nmat3454 10.1002/adma.201805513 10.1021/bi00168a001 10.1039/C1EE02875H 10.1039/c1jm10983a 10.1021/ar3002393 10.1038/ncomms8570 10.1126/science.aar6611 10.1002/adma.201505187 10.1039/C9TA06088J 10.1039/C8CS00607E 10.1021/jz5003346 10.1021/ja076134v 10.1039/C5CP00908A 10.1021/acs.accounts.9b00280 10.1038/nchem.1032 10.1021/jacs.8b02076 10.1002/adfm.201801573 10.1021/acscatal.7b01053 10.1002/anie.200802248 10.1002/adma.201901796 10.1038/nnano.2014.311 10.1021/nl303517v 10.1021/acsami.7b13043 10.1002/anie.201903290 10.1016/j.joule.2019.06.023 10.1038/ncomms14542 10.1002/anie.201601740 10.1039/C8TA03125H 10.1002/adma.201003695 10.1016/j.apcatb.2005.09.014 10.1002/cctc.201800482 10.1016/j.cattod.2013.10.085 10.1021/acsphotonics.7b01439 10.1021/ja801262r 10.1021/jp409311x 10.1039/C5TA00777A 10.1021/jacs.6b02532 10.1002/adma.201701774 10.1002/adfm.200500426 10.1002/celc.201800611 10.1021/jacs.8b13062 10.1038/s41565-019-0366-5 10.1021/ja076503n 10.1016/j.chempr.2016.10.007 10.1002/anie.201705002 10.1039/c0cc05302c 10.3390/polym10020189 10.1021/acs.jpcc.5b09604 10.1021/jacs.6b05190 10.1021/acs.jpclett.6b01453 10.1021/jacs.8b03537 10.1021/acscatal.9b04558 10.1021/la904479q 10.1002/adfm.201202148 10.1126/science.1077229 10.1016/j.scib.2018.12.008 10.1016/j.scib.2018.10.006 10.1021/nn901850u 10.1016/j.nanoen.2018.11.060 10.1021/jp211730r 10.1021/ja411017b 10.1126/science.aat6967 10.1021/acsenergylett.7b00741 |
| ContentType | Journal Article |
| Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202000086 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 32201994 10_1002_adma_202000086 ADMA202000086 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21471039; 21571043; 21671047; 21871065 – fundername: National Natural Science Foundation of China grantid: 21471039 – fundername: National Natural Science Foundation of China grantid: 21871065 – fundername: National Natural Science Foundation of China grantid: 21571043 – fundername: National Natural Science Foundation of China grantid: 21671047 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 395 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563703000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Oct 02 09:45:21 EDT 2025 Fri Jul 25 04:52:30 EDT 2025 Mon Jul 21 06:01:45 EDT 2025 Sat Nov 29 07:19:07 EST 2025 Tue Nov 18 22:19:57 EST 2025 Wed Jan 22 16:32:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | catalysis plasmon-driven photocatalytic reactions plasmonic materials plasmon-enhanced electrocatalytic reactions surface plasmon |
| Language | English |
| License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4396-a89ad10aa0892f08f6e3d11293474a83e5d9e70e435249b6ee7f9a4a13e63ff3 |
| Notes | Dedicated to the 100th anniversary of Harbin Institute of Technology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1516-4986 |
| PMID | 32201994 |
| PQID | 2487436758 |
| PQPubID | 2045203 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2381850087 proquest_journals_2487436758 pubmed_primary_32201994 crossref_citationtrail_10_1002_adma_202000086 crossref_primary_10_1002_adma_202000086 wiley_primary_10_1002_adma_202000086_ADMA202000086 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 3 2010; 500 2019; 14 2019; 17 2008; 37 2019; 19 2009; 113 2020; 14 2020; 10 2012; 12 2012; 11 2013; 6 2014; 136 2011; 111 2018; 6 2018; 9 2018; 8 2018; 3 2010; 26 2012; 134 2018; 5 2015; 137 2018; 1 2019; 21 2000; 404 2013; 117 2013; 52 2018; 30 2010; 4 2017; 204 2001; 414 2019; 7 2019; 9 2018; 28 2019; 4 2019; 3 2019; 6 2011; 1 2019; 31 2015; 54 2011; 4 2011; 3 2016; 163 2014; 43 2017; 139 2018; 24 2018; 18 2016; 6 2016; 7 2016; 1 2013; 339 2018; 118 2019; 48 2017; 56 2005; 5 2008; 41 2016; 28 2018; 10 2016; 27 2012; 116 2016; 26 2008; 130 2016; 8 1994; 98 2018; 14 2018; 362 2017; 5 2017; 7 2017; 8 2017; 2 2018; 360 2019; 52 2019; 55 2013; 23 2019; 56 2017; 46 2019; 58 2011; 11 2011; 10 2017; 354 2017; 9 2009; 48 2014; 5 2006; 63 2014; 4 2019; 64 2013; 13 2015; 44 1994; 33 2011; 21 2011; 23 2016; 116 2016; 192 2014; 53 2015; 14 2015; 6 2007; 129 2015; 17 2015; 5 2018; 140 2015; 4 2013; 49 2015; 3 2013; 46 2006; 16 2002; 298 2015; 10 2017; 23 2018; 63 2017; 29 2019; 141 2015; 7 1972; 238 2016; 120 2016; 55 2012; 2 2017; 11 2011; 42 2010; 132 2016; 138 2011; 47 2019; 250 2012; 7 2018; 54 2012; 5 2014; 104 2014; 225 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
| References_xml | – volume: 204 start-page: 548 year: 2017 publication-title: Appl. Catal., B – volume: 24 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 140 start-page: 9203 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 2224 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 656 year: 2018 publication-title: Nat. Catal. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 118 start-page: 3121 year: 2018 publication-title: Chem. Rev. – volume: 138 start-page: 7965 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 7813 year: 2014 publication-title: Chem. Soc. Rev. – volume: 14 year: 2018 publication-title: Small – volume: 5 start-page: 72 year: 2017 publication-title: Mater. Today Energy – volume: 7 start-page: 6128 year: 2017 publication-title: ACS Catal. – volume: 5 start-page: 1115 year: 2018 publication-title: ACS Photonics – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 33 start-page: 389 year: 1994 publication-title: Biochemistry – volume: 10 start-page: 907 year: 2020 publication-title: ACS Catal. – volume: 10 start-page: 189 year: 2018 publication-title: Polymers – volume: 7 start-page: 5391 year: 2017 publication-title: ACS Catal. – volume: 14 start-page: 354 year: 2019 publication-title: Nat. Nanotechnol. – volume: 52 start-page: 2881 year: 2019 publication-title: Acc. Chem. Res. – volume: 5 start-page: 5133 year: 2012 publication-title: Energy Environ. Sci. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 42 start-page: 1205 year: 2011 publication-title: J. Raman Spectrosc. – volume: 53 start-page: 2353 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 60 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 5374 year: 2018 publication-title: ACS Catal. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 3943 year: 2019 publication-title: Chem. Commun. – volume: 21 start-page: 7502 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 136 start-page: 64 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 9244 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2236 year: 2018 publication-title: Nanoscale – volume: 7 start-page: 1004 year: 2015 publication-title: ChemCatChem – volume: 8 start-page: 27 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 1191 year: 2018 publication-title: ChemElectroChem – volume: 140 start-page: 8497 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 3076 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 286 year: 2019 publication-title: Nano Energy – volume: 54 start-page: 6909 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 120 start-page: 2343 year: 2016 publication-title: J. Phys. Chem. C – volume: 7 start-page: 2294 year: 2017 publication-title: ACS Catal. – volume: 49 start-page: 3389 year: 2013 publication-title: Chem. Commun. – volume: 163 year: 2016 publication-title: J. Electrochem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1259 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 1098 year: 2019 publication-title: ACS Energy Lett. – volume: 7 start-page: 3710 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 7 start-page: 3179 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 64 start-page: 391 year: 2019 publication-title: Sci. Bull. – volume: 23 start-page: 1612 year: 2013 publication-title: Adv. Funct. Mater. – volume: 362 start-page: 69 year: 2018 publication-title: Science – volume: 11 start-page: 1111 year: 2011 publication-title: Nano Lett. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 28 start-page: 6781 year: 2016 publication-title: Adv. Mater. – volume: 41 start-page: 1742 year: 2008 publication-title: Acc. Chem. Res. – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 339 start-page: 1590 year: 2013 publication-title: Science – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 9390 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 start-page: 116 year: 2014 publication-title: ACS Catal. – volume: 3 start-page: 2997 year: 2013 publication-title: Sci. Rep. – volume: 138 start-page: 6822 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 6000 year: 2012 publication-title: Nano Lett. – volume: 13 start-page: 240 year: 2013 publication-title: Nano Lett. – volume: 18 start-page: 2545 year: 2018 publication-title: Nano Lett. – volume: 9 year: 2019 publication-title: ACS Catal. – volume: 6 start-page: 241 year: 2019 publication-title: ChemElectroChem – volume: 9 start-page: 7618 year: 2019 publication-title: ACS Catal. – volume: 500 start-page: 277 year: 2010 publication-title: Chem. Phys. Lett. – volume: 4 year: 2015 publication-title: Light: Sci. Appl. – volume: 136 start-page: 6798 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 1972 year: 2019 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1398 year: 2018 publication-title: Nat. Commun. – volume: 21 start-page: 9079 year: 2011 publication-title: J. Mater. Chem. – volume: 2 start-page: 1654 year: 2012 publication-title: ACS Catal. – volume: 26 start-page: 7737 year: 2010 publication-title: Langmuir – volume: 360 year: 2018 publication-title: Science – volume: 9 start-page: 3027 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 120 year: 2017 publication-title: Nat. Chem. – volume: 7 start-page: 8549 year: 2017 publication-title: ACS Catal. – volume: 98 year: 1994 publication-title: J. Phys. Chem. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 130 start-page: 6928 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 404 start-page: 265 year: 2000 publication-title: Nature – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 911 year: 2011 publication-title: Nat. Mater. – volume: 2 start-page: 2251 year: 2017 publication-title: ACS Energy Lett. – volume: 3 start-page: 920 year: 2019 publication-title: Joule – volume: 27 start-page: 100 year: 2016 publication-title: J. Photochem. Photobiol., C – volume: 192 start-page: 15 year: 2016 publication-title: Electrochim. Acta – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 1415 year: 2018 publication-title: ACS Energy Lett. – volume: 137 start-page: 948 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2520 year: 2011 publication-title: Chem. Commun. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 9434 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3815 year: 2014 publication-title: ACS Catal. – volume: 10 start-page: 408 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 25 year: 2015 publication-title: Nat. Nanotechnol. – volume: 63 start-page: 137 year: 2006 publication-title: Appl. Catal., B – volume: 141 start-page: 8053 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2886 year: 2017 publication-title: ACS Nano – volume: 4 start-page: 1321 year: 2010 publication-title: ACS Nano – volume: 14 start-page: 567 year: 2015 publication-title: Nat. Mater. – volume: 17 start-page: 267 year: 2019 publication-title: iScience – volume: 130 start-page: 1676 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7364 year: 2018 publication-title: J. Mater. Chem. A – volume: 354 start-page: 160 year: 2017 publication-title: J. Catal. – volume: 5 start-page: 379 year: 2005 publication-title: Nano Lett. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 28 start-page: 3703 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 467 year: 2011 publication-title: Nat. Chem. – volume: 141 start-page: 7807 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 7185 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 54 start-page: 5197 year: 2018 publication-title: Chem. Commun. – volume: 250 start-page: 10 year: 2019 publication-title: Appl. Catal., B – volume: 1 start-page: 929 year: 2011 publication-title: ACS Catal. – volume: 4 start-page: 3167 year: 2011 publication-title: Energy Environ. Sci. – volume: 298 start-page: 2176 year: 2002 publication-title: Science – volume: 19 start-page: 1371 year: 2019 publication-title: Nano Lett. – volume: 63 start-page: 1358 year: 2018 publication-title: Sci. Bull. – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 116 start-page: 4774 year: 2012 publication-title: J. Phys. Chem. C – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1744 year: 2016 publication-title: ACS Catal. – volume: 53 start-page: 2910 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 414 start-page: 338 year: 2001 publication-title: Nature – volume: 8 start-page: 1819 year: 2016 publication-title: ChemCatChem – volume: 1 start-page: 699 year: 2016 publication-title: Chem – volume: 37 start-page: 1061 year: 2008 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 7570 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 3520 year: 2018 publication-title: ChemCatChem – volume: 5 start-page: 8946 year: 2017 publication-title: J. Mater. Chem. A – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 9128 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7365 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1606 year: 2019 publication-title: Joule – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 9239 year: 2017 publication-title: ACS Nano – volume: 13 start-page: 2837 year: 2013 publication-title: Nano Lett. – volume: 52 start-page: 2784 year: 2019 publication-title: Acc. Chem. Res. – volume: 58 start-page: 8794 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 5083 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 625 year: 2013 publication-title: Energy Environ. Sci. – volume: 140 start-page: 864 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 6464 year: 2017 publication-title: ACS Catal. – volume: 225 start-page: 158 year: 2014 publication-title: Catal. Today – volume: 14 start-page: 28 year: 2020 publication-title: ACS Nano – volume: 26 start-page: 398 year: 2016 publication-title: Nano Energy – volume: 63 start-page: 1397 year: 2018 publication-title: Sci. Bull. – volume: 52 start-page: 6689 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 1044 year: 2012 publication-title: Nat. Mater. – volume: 18 start-page: 1714 year: 2018 publication-title: Nano Lett. – volume: 3 start-page: 10 year: 2013 publication-title: ACS Catal. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 113 year: 2009 publication-title: J. Phys. Chem. C – volume: 111 start-page: 3913 year: 2011 publication-title: Chem. Rev. – volume: 46 start-page: 1890 year: 2013 publication-title: Acc. Chem. Res. – volume: 18 start-page: 7289 year: 2018 publication-title: Nano Lett. – volume: 55 start-page: 7111 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 583 year: 2012 publication-title: Nat. Nanotechnol. – volume: 23 start-page: 1044 year: 2011 publication-title: Adv. Mater. – volume: 111 start-page: 3669 year: 2011 publication-title: Chem. Rev. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 54 year: 2019 publication-title: Sci. Bull. – volume: 16 start-page: 640 year: 2006 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 5278 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 4800 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 213 year: 2018 publication-title: iScience – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 251 year: 2017 publication-title: Appl. Mater. Today – ident: e_1_2_8_18_1 doi: 10.1021/ja511719g – ident: e_1_2_8_100_1 doi: 10.1021/jacs.5b07521 – ident: e_1_2_8_128_1 doi: 10.1016/j.apcatb.2019.03.003 – ident: e_1_2_8_147_1 doi: 10.1021/acscatal.8b00541 – ident: e_1_2_8_25_1 doi: 10.1021/ja3075902 – ident: e_1_2_8_3_1 doi: 10.1038/35104607 – ident: e_1_2_8_173_1 doi: 10.1021/acs.chemrev.6b00398 – ident: e_1_2_8_40_1 doi: 10.1021/cs501189m – ident: e_1_2_8_55_1 doi: 10.1016/j.cplett.2010.10.006 – ident: e_1_2_8_157_1 doi: 10.1039/C2EE23513G – ident: e_1_2_8_70_1 doi: 10.1038/nnano.2012.131 – ident: e_1_2_8_152_1 doi: 10.1039/C8TA00499D – ident: e_1_2_8_52_1 doi: 10.1021/jp9050929 – ident: e_1_2_8_94_1 doi: 10.1021/cs300682d – ident: e_1_2_8_115_1 doi: 10.1021/jacs.9b01375 – ident: e_1_2_8_28_1 doi: 10.1021/acscatal.5b02643 – ident: e_1_2_8_175_1 doi: 10.1021/acscatal.7b02575 – ident: e_1_2_8_13_1 doi: 10.1021/acsenergylett.8b00461 – ident: e_1_2_8_54_1 doi: 10.1002/jrs.2937 – ident: e_1_2_8_119_1 doi: 10.1039/C7TA01217A – ident: e_1_2_8_74_1 doi: 10.1002/cctc.201600172 – ident: e_1_2_8_60_1 doi: 10.1016/j.jphotochemrev.2016.04.001 – ident: e_1_2_8_145_1 doi: 10.1016/j.nanoen.2016.05.045 – ident: e_1_2_8_37_1 doi: 10.1063/1.4864395 – ident: e_1_2_8_75_1 doi: 10.1016/j.apmt.2017.08.008 – ident: e_1_2_8_179_1 doi: 10.1021/acsami.8b13472 – ident: e_1_2_8_56_1 doi: 10.1038/srep02997 – ident: e_1_2_8_79_1 doi: 10.1021/jacs.9b02585 – ident: e_1_2_8_95_1 doi: 10.1021/nl303940z – ident: e_1_2_8_72_1 doi: 10.1038/lsa.2015.115 – ident: e_1_2_8_135_1 doi: 10.1038/s41467-018-05542-5 – ident: e_1_2_8_158_1 doi: 10.1021/jacs.5b01732 – ident: e_1_2_8_77_1 doi: 10.1016/j.mtener.2017.05.005 – ident: e_1_2_8_172_1 doi: 10.1039/C6CS00328A – ident: e_1_2_8_87_1 doi: 10.1126/science.1231631 – ident: e_1_2_8_84_1 doi: 10.1021/ar800121r – ident: e_1_2_8_143_1 doi: 10.1002/anie.201810886 – ident: e_1_2_8_151_1 doi: 10.1016/j.scib.2018.09.016 – ident: e_1_2_8_141_1 doi: 10.1039/C3CS60395D – ident: e_1_2_8_5_1 doi: 10.1021/cr200061k – ident: e_1_2_8_21_1 doi: 10.1021/nl047955q – ident: e_1_2_8_155_1 doi: 10.1021/acscatal.7b01823 – ident: e_1_2_8_176_1 doi: 10.1002/smll.201803783 – ident: e_1_2_8_189_1 doi: 10.1016/j.electacta.2016.01.043 – ident: e_1_2_8_15_1 doi: 10.1021/acs.chemrev.7b00613 – ident: e_1_2_8_32_1 doi: 10.1021/acsnano.7b04461 – ident: e_1_2_8_171_1 doi: 10.1021/jacs.6b09080 – ident: e_1_2_8_9_1 doi: 10.1038/nmat4281 – ident: e_1_2_8_6_1 doi: 10.1038/s41929-018-0138-x – ident: e_1_2_8_160_1 doi: 10.1039/C7NR08474A – ident: e_1_2_8_163_1 doi: 10.1039/c0ee00558d – ident: e_1_2_8_10_1 doi: 10.1038/nmat3151 – ident: e_1_2_8_19_1 doi: 10.1021/acscatal.7b00411 – ident: e_1_2_8_98_1 doi: 10.1021/acsnano.7b04960 – ident: e_1_2_8_34_1 doi: 10.1021/nl401145j – ident: e_1_2_8_154_1 doi: 10.1021/jacs.6b03714 – ident: e_1_2_8_80_1 doi: 10.1021/jacs.9b02518 – ident: e_1_2_8_17_1 doi: 10.1021/cs400993w – ident: e_1_2_8_66_1 doi: 10.1039/c3cc40732b – ident: e_1_2_8_63_1 doi: 10.1002/anie.201310097 – ident: e_1_2_8_106_1 doi: 10.1021/acs.nanolett.8b03499 – ident: e_1_2_8_132_1 doi: 10.1021/cs2001434 – ident: e_1_2_8_166_1 doi: 10.1016/j.jcat.2017.08.024 – ident: e_1_2_8_127_1 doi: 10.1002/adma.201800527 – ident: e_1_2_8_47_1 doi: 10.1021/nl104005n – ident: e_1_2_8_116_1 doi: 10.1002/anie.201309759 – ident: e_1_2_8_125_1 doi: 10.1021/jacs.8b06723 – ident: e_1_2_8_169_1 doi: 10.1021/cs300227s – ident: e_1_2_8_194_1 doi: 10.1016/j.isci.2018.09.022 – ident: e_1_2_8_26_1 doi: 10.1021/acs.accounts.9b00153 – ident: e_1_2_8_165_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_8_2_1 doi: 10.1038/238037a0 – ident: e_1_2_8_67_1 doi: 10.1002/cctc.201403032 – ident: e_1_2_8_126_1 doi: 10.1002/adma.201704663 – ident: e_1_2_8_187_1 doi: 10.1002/celc.201701345 – ident: e_1_2_8_29_1 doi: 10.1039/b706023h – ident: e_1_2_8_140_1 doi: 10.1038/35005040 – ident: e_1_2_8_142_1 doi: 10.1002/anie.201504933 – ident: e_1_2_8_1_1 doi: 10.1016/j.joule.2019.03.003 – ident: e_1_2_8_123_1 doi: 10.1038/nchem.2607 – ident: e_1_2_8_93_1 doi: 10.1021/ja305225s – ident: e_1_2_8_159_1 doi: 10.1002/anie.201906134 – ident: e_1_2_8_35_1 doi: 10.1021/jp405773p – ident: e_1_2_8_183_1 doi: 10.1021/acscatal.9b02039 – ident: e_1_2_8_146_1 doi: 10.1038/s41467-018-03793-w – ident: e_1_2_8_68_1 doi: 10.1002/anie.201502077 – ident: e_1_2_8_130_1 doi: 10.1016/j.apcatb.2016.11.062 – ident: e_1_2_8_188_1 doi: 10.1039/C9CC00331B – ident: e_1_2_8_112_1 doi: 10.1002/anie.201713229 – ident: e_1_2_8_16_1 doi: 10.1016/j.scib.2019.03.008 – ident: e_1_2_8_22_1 doi: 10.1021/cr100275d – ident: e_1_2_8_118_1 doi: 10.1039/C7TA07264C – ident: e_1_2_8_109_1 doi: 10.1002/adma.201806482 – ident: e_1_2_8_190_1 doi: 10.1149/2.0501614jes – ident: e_1_2_8_156_1 doi: 10.1021/acssuschemeng.8b06117 – ident: e_1_2_8_101_1 doi: 10.1021/acscatal.7b02128 – ident: e_1_2_8_192_1 doi: 10.1021/acsenergylett.9b00515 – ident: e_1_2_8_36_1 doi: 10.1021/jacs.8b08937 – ident: e_1_2_8_83_1 doi: 10.1038/srep16019 – ident: e_1_2_8_92_1 doi: 10.1039/C8CC01814F – ident: e_1_2_8_12_1 doi: 10.1002/adma.201802227 – ident: e_1_2_8_170_1 doi: 10.1021/acs.nanolett.8b05053 – ident: e_1_2_8_102_1 doi: 10.1021/jacs.7b11293 – ident: e_1_2_8_117_1 doi: 10.1021/jacs.8b04711 – ident: e_1_2_8_57_1 doi: 10.1021/acsnano.9b04224 – ident: e_1_2_8_73_1 doi: 10.1002/anie.201507807 – ident: e_1_2_8_161_1 doi: 10.1039/C7TA07705J – ident: e_1_2_8_182_1 doi: 10.1002/anie.201703864 – ident: e_1_2_8_89_1 doi: 10.1021/ja1083514 – ident: e_1_2_8_49_1 doi: 10.1002/adma.201700803 – ident: e_1_2_8_76_1 doi: 10.1002/chem.201700651 – ident: e_1_2_8_193_1 doi: 10.1016/j.isci.2019.06.042 – ident: e_1_2_8_184_1 doi: 10.1039/C8TA08006B – ident: e_1_2_8_153_1 doi: 10.1002/adma.201700311 – ident: e_1_2_8_88_1 doi: 10.1039/C9CP00129H – ident: e_1_2_8_27_1 doi: 10.1021/acs.nanolett.7b04776 – ident: e_1_2_8_91_1 doi: 10.1002/anie.201300239 – ident: e_1_2_8_149_1 doi: 10.1039/C4CS00448E – ident: e_1_2_8_11_1 doi: 10.1002/anie.201811234 – ident: e_1_2_8_174_1 doi: 10.1021/acscatal.9b03876 – ident: e_1_2_8_139_1 doi: 10.1002/chem.201803022 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201600305 – ident: e_1_2_8_58_1 doi: 10.1021/j100099a038 – ident: e_1_2_8_122_1 doi: 10.1021/ja5128133 – ident: e_1_2_8_129_1 doi: 10.1021/acs.nanolett.8b00241 – ident: e_1_2_8_81_1 doi: 10.1039/C6TA10122D – ident: e_1_2_8_61_1 doi: 10.1021/ja101107z – ident: e_1_2_8_138_1 doi: 10.1038/s41467-017-00055-z – ident: e_1_2_8_133_1 doi: 10.1021/ja500924t – ident: e_1_2_8_31_1 doi: 10.1021/acsnano.6b08010 – ident: e_1_2_8_86_1 doi: 10.1038/nmat3454 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201805513 – ident: e_1_2_8_111_1 doi: 10.1021/bi00168a001 – ident: e_1_2_8_48_1 doi: 10.1039/C1EE02875H – ident: e_1_2_8_90_1 doi: 10.1039/c1jm10983a – ident: e_1_2_8_8_1 doi: 10.1021/ar3002393 – ident: e_1_2_8_42_1 doi: 10.1038/ncomms8570 – ident: e_1_2_8_107_1 doi: 10.1126/science.aar6611 – ident: e_1_2_8_137_1 doi: 10.1002/adma.201505187 – ident: e_1_2_8_180_1 doi: 10.1039/C9TA06088J – ident: e_1_2_8_134_1 doi: 10.1039/C8CS00607E – ident: e_1_2_8_64_1 doi: 10.1021/jz5003346 – ident: e_1_2_8_71_1 doi: 10.1021/ja076134v – ident: e_1_2_8_82_1 doi: 10.1039/C5CP00908A – ident: e_1_2_8_59_1 doi: 10.1021/acs.accounts.9b00280 – ident: e_1_2_8_85_1 doi: 10.1038/nchem.1032 – ident: e_1_2_8_108_1 doi: 10.1021/jacs.8b02076 – ident: e_1_2_8_178_1 doi: 10.1002/adfm.201801573 – ident: e_1_2_8_103_1 doi: 10.1021/acscatal.7b01053 – ident: e_1_2_8_23_1 doi: 10.1002/anie.200802248 – ident: e_1_2_8_124_1 doi: 10.1002/adma.201901796 – ident: e_1_2_8_30_1 doi: 10.1038/nnano.2014.311 – ident: e_1_2_8_97_1 doi: 10.1021/nl303517v – ident: e_1_2_8_144_1 doi: 10.1021/acsami.7b13043 – ident: e_1_2_8_185_1 doi: 10.1002/anie.201903290 – ident: e_1_2_8_4_1 doi: 10.1016/j.joule.2019.06.023 – ident: e_1_2_8_136_1 doi: 10.1038/ncomms14542 – ident: e_1_2_8_41_1 doi: 10.1002/anie.201601740 – ident: e_1_2_8_120_1 doi: 10.1039/C8TA03125H – ident: e_1_2_8_20_1 doi: 10.1002/adma.201003695 – ident: e_1_2_8_181_1 doi: 10.1016/j.apcatb.2005.09.014 – ident: e_1_2_8_78_1 doi: 10.1002/cctc.201800482 – ident: e_1_2_8_51_1 doi: 10.1016/j.cattod.2013.10.085 – ident: e_1_2_8_39_1 doi: 10.1021/acsphotonics.7b01439 – ident: e_1_2_8_45_1 doi: 10.1021/ja801262r – ident: e_1_2_8_131_1 doi: 10.1021/jp409311x – ident: e_1_2_8_104_1 doi: 10.1039/C5TA00777A – ident: e_1_2_8_105_1 doi: 10.1021/jacs.6b02532 – ident: e_1_2_8_110_1 doi: 10.1002/adma.201701774 – ident: e_1_2_8_44_1 doi: 10.1002/adfm.200500426 – ident: e_1_2_8_186_1 doi: 10.1002/celc.201800611 – ident: e_1_2_8_114_1 doi: 10.1021/jacs.8b13062 – ident: e_1_2_8_99_1 doi: 10.1038/s41565-019-0366-5 – ident: e_1_2_8_50_1 doi: 10.1021/ja076503n – ident: e_1_2_8_148_1 doi: 10.1016/j.chempr.2016.10.007 – ident: e_1_2_8_121_1 doi: 10.1002/anie.201705002 – ident: e_1_2_8_62_1 doi: 10.1039/c0cc05302c – ident: e_1_2_8_43_1 doi: 10.3390/polym10020189 – ident: e_1_2_8_38_1 doi: 10.1021/acs.jpcc.5b09604 – ident: e_1_2_8_177_1 doi: 10.1021/jacs.6b05190 – ident: e_1_2_8_65_1 doi: 10.1021/acs.jpclett.6b01453 – ident: e_1_2_8_113_1 doi: 10.1021/jacs.8b03537 – ident: e_1_2_8_168_1 doi: 10.1021/acscatal.9b04558 – ident: e_1_2_8_53_1 doi: 10.1021/la904479q – ident: e_1_2_8_46_1 doi: 10.1002/adfm.201202148 – ident: e_1_2_8_24_1 doi: 10.1126/science.1077229 – ident: e_1_2_8_167_1 doi: 10.1016/j.scib.2018.12.008 – ident: e_1_2_8_150_1 doi: 10.1016/j.scib.2018.10.006 – ident: e_1_2_8_164_1 doi: 10.1021/nn901850u – ident: e_1_2_8_191_1 doi: 10.1016/j.nanoen.2018.11.060 – ident: e_1_2_8_69_1 doi: 10.1021/jp211730r – ident: e_1_2_8_96_1 doi: 10.1021/ja411017b – ident: e_1_2_8_33_1 doi: 10.1126/science.aat6967 – ident: e_1_2_8_162_1 doi: 10.1021/acsenergylett.7b00741 |
| SSID | ssj0009606 |
| Score | 2.71338 |
| SecondaryResourceType | review_article |
| Snippet | Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2000086 |
| SubjectTerms | Ammonia Carbon dioxide catalysis Chemical reactions Decomposition reactions Energy conversion Energy storage Heterostructures Hydrogen evolution reactions Materials science Nanomaterials Nanostructure Nitrogenation Oxidation Oxygen evolution reactions Oxygen reduction reactions Photochemical reactions plasmonic materials Plasmonics Plasmons plasmon‐driven photocatalytic reactions plasmon‐enhanced electrocatalytic reactions surface plasmon |
| Title | Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000086 https://www.ncbi.nlm.nih.gov/pubmed/32201994 https://www.proquest.com/docview/2487436758 https://www.proquest.com/docview/2381850087 |
| Volume | 33 |
| WOSCitedRecordID | wos000563703000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD646YM-eL_UGxEEn4pd2qbp43AbPqgMmbAHoaRJygbaip3-fk_SrjpEBH1sm7bhXJLvJCffATinUoVKptTtREK5QYgxq2BSuIrJWKONpFJKW2wiurvj43E8_HKKv-KHaBbcjGfY8do4uEjLy0_SUKEsbxC1qIe1YJmi8YZtWO7dDx5uPol3ma2vafb73JgFfE7c6NHLxS8sTkzf0OYieLWzz2Dj__3ehPUaeZJuZSpbsKTzbVj7wke4A48IInESIt0qMaAk05wMEV4_G_5cggNxUdHNvmGMThDtkn4-sRkEZDgpZoVdCjIMJ0TkivSrAjvNzV0YDfqjq2u3Lr_gSkQpqDMeC9XxhPB4TDOPZ0z7ysAzP4gCwX0dqlhHnkbAhTFcyrSOslgEouNr5meZvwftvMj1ARBBGYreSzGYQ4AoBc-CDmVcozVkiAdDB9y56BNZU5ObChlPSUWqTBMjtKQRmgMXTfuXipTjx5bHc00mtXOWCcUgLfBNpOTAWfMY3crslYhcF2_YxiIZQ9jnwH5lAc2vcAz0DKWyA9Qq-pc-JN3ebbe5OvzLS0ewSk0ujc0WP4Y26lqfwIp8n03L11NoRWN-Whv-By6YAXQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqgP3i_1GkHwqaxN27R9LLqhuI0hE3wQSpakKGgrTv39nqRd5xARxMe2aRvOJflOcvIdgFMqZCDFiNpuyKXtBxizcia4LZmIFdrISAhhik2E_X50dxcPqmxCfRam5IeoF9y0Z5jxWju4XpBuTVlDuTTEQdTAHjYPTR9tCY28eXHTue1OmXeZKbCpN_zsmPnRhLnRoa3ZL8zOTN_g5ix6NdNPZ_UfOr4GKxX2JElpLOswp_INWP7CSLgJ9wgjcRoiSZkaMCaPORkgwH7WDLoEh-KiJJx9xyidIN4l7fzB5BCQwUPxVpjFIM1xQnguSbsssVPf3IJhpz08v7SrAgy2QJyCWotiLl2HcyeKaeZEGVOe1ADN80OfR54KZKxCRyHkwihuxJQKs5j73PUU87LM24ZGXuRqFwinDGXvjDCcQ4goeJT5LmWRQnvIEBEGFtgT2aeiIifXNTKe0pJWmaZaaGktNAvO6vYvJS3Hjy0PJqpMK_ccpxTDNN_TsZIFJ_VjdCy9W8JzVbxjG4NlNGWfBTulCdS_wlHQ0aTKFlCj6V_6kCYXvaS-2vvLS8eweDnsddPuVf96H5aozqwxueMH0EC9q0NYEB9vj-PXo8r-PwGSvQR8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqIP3i_VqREEn8q6tEvbx-E2FOcYMsEHoWRJygbaDrf5-z1Ju84hIoiPbdM2nEvyneTkOwBXVMi6FANq13wuba-OMStngtuSiVChjQyEEKbYhN_tBs_PYS_PJtRnYTJ-iGLBTXuGGa-1g6uxjKsL1lAuDXEQNbCHrULZ05VkSlBuPrafOgvmXWYKbOoNPztkXjBnbnRodfkLyzPTN7i5jF7N9NPe_oeO78BWjj1JIzOWXVhRyR5sfmEk3IcXhJE4DZFGlhowIaOE9BBgv2kGXYJDcZoRzs4wSieId0krGZocAtIbptPULAZpjhPCE0laWYmd4uYB9Nut_s2tnRdgsAXiFNRaEHJZczh3gpDGThAz5UoN0FzP93jgqroMle8ohFwYxQ2YUn4cco_XXMXcOHYPoZSkiToGwilD2TsDDOcQIgoexF6NskChPcSICOsW2HPZRyInJ9c1Ml6jjFaZRlpoUSE0C66L9uOMluPHlpW5KqPcPScRxTDNc3WsZMFl8RgdS--W8ESlM2xjsIym7LPgKDOB4lc4CjqaVNkCajT9Sx-iRvOhUVyd_OWlC1jvNdtR5657fwobVCfWmNTxCpRQ7eoM1sTHdDR5P8_N_xMVyQP3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Plasmonic+Nanostructures+for+Enhanced+Photocatalysis+and+Electrocatalysis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Siwei&rft.au=Miao%2C+Peng&rft.au=Zhang%2C+Yuanyuan&rft.au=Wu%2C+Jie&rft.date=2021-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202000086&rft.externalDBID=10.1002%252Fadma.202000086&rft.externalDocID=ADMA202000086 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |