Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes

We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 62; no. 13; pp. e202300054 - n/a
Main Authors: Zhang, Guike, Li, Xiaotian, Chen, Kai, Guo, Yali, Ma, Dongwei, Chu, Ke
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 20.03.2023
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3− to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3−‐to‐NH3 conversion. MBenes are demonstrated to be a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). Taking FeB2 as the proof‐of‐concept paradigm, mechanistic studies unveil that the synergistic tandem effect of Fe and B atoms promotes NO3− activation and intermediate hydrogenation to enhance the NO3RR activity and selectivity.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202300054