Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding...
Uloženo v:
| Vydáno v: | Angewandte Chemie International Edition Ročník 62; číslo 13; s. e202300054 - n/a |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
20.03.2023
|
| Vydání: | International ed. in English |
| Témata: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3− to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3−‐to‐NH3 conversion.
MBenes are demonstrated to be a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). Taking FeB2 as the proof‐of‐concept paradigm, mechanistic studies unveil that the synergistic tandem effect of Fe and B atoms promotes NO3− activation and intermediate hydrogenation to enhance the NO3RR activity and selectivity. |
|---|---|
| AbstractList | We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO
RR). As a proof of concept, FeB
is first employed as a model MBene catalyst for the NO
RR, showing a maximum NH
-Faradaic efficiency of 96.8 % with a corresponding NH
yield of 25.5 mg h
cm
at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO
RR activity of FeB
arises from the tandem catalysis mechanism, that is, B sites activate NO
to form intermediates, while Fe sites dissociate H
O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO
-to-NH
conversion. We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3− to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3−‐to‐NH3 conversion. We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3− to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3−‐to‐NH3 conversion. MBenes are demonstrated to be a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). Taking FeB2 as the proof‐of‐concept paradigm, mechanistic studies unveil that the synergistic tandem effect of Fe and B atoms promotes NO3− activation and intermediate hydrogenation to enhance the NO3RR activity and selectivity. We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3 RR, showing a maximum NH3 -Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h-1 cm-2 at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3 RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 - to form intermediates, while Fe sites dissociate H2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3 - -to-NH3 conversion.We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3 RR, showing a maximum NH3 -Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h-1 cm-2 at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3 RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 - to form intermediates, while Fe sites dissociate H2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3 - -to-NH3 conversion. We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO 3 RR). As a proof of concept, FeB 2 is first employed as a model MBene catalyst for the NO 3 RR, showing a maximum NH 3 ‐Faradaic efficiency of 96.8 % with a corresponding NH 3 yield of 25.5 mg h −1 cm −2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO 3 RR activity of FeB 2 arises from the tandem catalysis mechanism, that is, B sites activate NO 3 − to form intermediates, while Fe sites dissociate H 2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO 3 − ‐to‐NH 3 conversion. |
| Author | Guo, Yali Chu, Ke Zhang, Guike Chen, Kai Ma, Dongwei Li, Xiaotian |
| Author_xml | – sequence: 1 givenname: Guike surname: Zhang fullname: Zhang, Guike organization: Lanzhou Jiaotong University – sequence: 2 givenname: Xiaotian surname: Li fullname: Li, Xiaotian organization: Lanzhou Jiaotong University – sequence: 3 givenname: Kai surname: Chen fullname: Chen, Kai organization: Lanzhou Jiaotong University – sequence: 4 givenname: Yali surname: Guo fullname: Guo, Yali organization: Lanzhou Jiaotong University – sequence: 5 givenname: Dongwei surname: Ma fullname: Ma, Dongwei email: madw@henu.edu.cn organization: Henan University – sequence: 6 givenname: Ke orcidid: 0000-0002-0606-2689 surname: Chu fullname: Chu, Ke email: chuk630@mail.lzjtu.cn organization: Lanzhou Jiaotong University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36734975$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1LwzAYgINMdFOvHqXgxUtnvtq0F2GOqYM5Qea5ZOlbyGiT2aTI_r0ZmxMG4iUf8DxvwjNAPWMNIHRN8JBgTO-l0TCkmDKMccJPUJ8klMRMCNYLZ85YLLKEnKOBc6vAZxlOz9A5SwXjuUj66GEhTQlNNKlB-dYq6WW98VpFc-1b6SF6h7JTXlsTeRuNmsYaLaNwe30EA-4SnVaydnC13y_Qx9NkMX6JZ2_P0_FoFivOch6rClcpW7JMKk6XklIheFIRWgqRhJWUnBLGuSrTXKSSpxIIC1CuEkwBl4xdoLvd3HVrPztwvmi0U1DX0oDtXBEGMkJEgnFAb4_Qle1aE34XqCzFKcOCB-pmT3XLBspi3epGtpvip0wAhjtAtda5FqoDQnCxTV9s0xeH9EHgR4LSXm7LhZC6_lvLd9qXrmHzzyPFaD6d_LrfyGiVIQ |
| CitedBy_id | crossref_primary_10_1002_anie_202308436 crossref_primary_10_1038_s41467_025_63013_0 crossref_primary_10_1016_j_jcis_2025_138597 crossref_primary_10_1016_j_envres_2024_120279 crossref_primary_10_1002_adfm_202403718 crossref_primary_10_1016_j_cej_2023_143889 crossref_primary_10_1021_acssuschemeng_4c10366 crossref_primary_10_1021_acssuschemeng_5c01612 crossref_primary_10_1016_j_cej_2024_155354 crossref_primary_10_1002_adma_202313844 crossref_primary_10_59717_j_xinn_mater_2024_100058 crossref_primary_10_1002_anie_202410251 crossref_primary_10_1016_j_apcatb_2024_124390 crossref_primary_10_1002_adfm_202516629 crossref_primary_10_1002_ange_202501578 crossref_primary_10_1002_smll_202401327 crossref_primary_10_1007_s12274_023_6261_2 crossref_primary_10_1002_adfm_202413070 crossref_primary_10_1016_j_chemphys_2024_112311 crossref_primary_10_1002_ange_202316910 crossref_primary_10_1039_D3QI00268C crossref_primary_10_1039_D5RA02327K crossref_primary_10_1039_D4SE00565A crossref_primary_10_1007_s42114_025_01311_3 crossref_primary_10_1002_adfm_202401094 crossref_primary_10_1002_adma_202412363 crossref_primary_10_1002_advs_202303789 crossref_primary_10_1016_j_ijhydene_2024_08_146 crossref_primary_10_1039_D4NR05000B crossref_primary_10_1016_j_ccr_2024_215723 crossref_primary_10_1007_s11426_023_1924_7 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1016_j_cej_2024_150434 crossref_primary_10_1002_aenm_202302608 crossref_primary_10_1002_idm2_12152 crossref_primary_10_1038_s41467_025_55889_9 crossref_primary_10_1016_j_compositesb_2024_112108 crossref_primary_10_1021_acscatal_5c04411 crossref_primary_10_1039_D4QI01632G crossref_primary_10_1002_adfm_202516068 crossref_primary_10_1016_j_cej_2024_153713 crossref_primary_10_1002_ange_202505156 crossref_primary_10_1002_adfm_202410941 crossref_primary_10_1002_anie_202414392 crossref_primary_10_1016_j_cej_2024_149560 crossref_primary_10_1002_anie_202404819 crossref_primary_10_1016_j_jallcom_2024_176970 crossref_primary_10_1002_adfm_202406438 crossref_primary_10_1002_aenm_202401591 crossref_primary_10_1002_aenm_202405031 crossref_primary_10_1002_cssc_202401979 crossref_primary_10_1002_adfm_202408732 crossref_primary_10_1002_ange_202406046 crossref_primary_10_1002_cssc_202402031 crossref_primary_10_1039_D4RA00287C crossref_primary_10_1002_anie_202505156 crossref_primary_10_1002_adfm_202506817 crossref_primary_10_1016_j_jcis_2024_07_125 crossref_primary_10_1002_adfm_202513341 crossref_primary_10_1002_celc_202300419 crossref_primary_10_1002_ange_202411068 crossref_primary_10_1002_anie_202400206 crossref_primary_10_1016_j_cej_2025_160652 crossref_primary_10_1002_adfm_202504632 crossref_primary_10_1002_ange_202414392 crossref_primary_10_1002_anie_202412740 crossref_primary_10_1002_anie_202504568 crossref_primary_10_1002_smll_202311439 crossref_primary_10_1002_ange_202318989 crossref_primary_10_1002_anie_202425262 crossref_primary_10_1016_j_jhazmat_2025_138266 crossref_primary_10_1002_adfm_202305372 crossref_primary_10_1016_j_jcis_2023_06_160 crossref_primary_10_1021_acscatal_5c02252 crossref_primary_10_26599_NR_2025_94907265 crossref_primary_10_1002_adfm_202302651 crossref_primary_10_1002_pssa_202400786 crossref_primary_10_3390_molecules30132831 crossref_primary_10_1016_j_jcis_2024_06_213 crossref_primary_10_1039_D4EE00784K crossref_primary_10_1038_s41467_024_53833_x crossref_primary_10_1016_j_seppur_2024_127813 crossref_primary_10_1039_D4EE04382K crossref_primary_10_1002_anie_202307952 crossref_primary_10_1038_s44221_023_00169_3 crossref_primary_10_1002_adfm_202308072 crossref_primary_10_1021_acs_inorgchem_4c02578 crossref_primary_10_1021_jacs_4c04023 crossref_primary_10_1039_D3QI00793F crossref_primary_10_1002_advs_202404178 crossref_primary_10_1016_j_ces_2024_120501 crossref_primary_10_1002_anie_202509213 crossref_primary_10_1002_adfm_202409696 crossref_primary_10_3390_molecules30081778 crossref_primary_10_1039_D3EE01301D crossref_primary_10_1002_chem_202303381 crossref_primary_10_1016_j_jcis_2025_137626 crossref_primary_10_1016_j_mtchem_2024_102418 crossref_primary_10_1002_anie_202508240 crossref_primary_10_1016_j_jcis_2025_138258 crossref_primary_10_1002_anie_202408382 crossref_primary_10_1002_adfm_202509200 crossref_primary_10_1016_j_cej_2024_149768 crossref_primary_10_1016_j_jcis_2024_05_223 crossref_primary_10_1016_j_jcis_2024_10_098 crossref_primary_10_1016_j_jmst_2024_02_093 crossref_primary_10_1021_acscatal_5c00405 crossref_primary_10_1002_aesr_202300173 crossref_primary_10_1002_ange_202412740 crossref_primary_10_1002_advs_202416053 crossref_primary_10_1007_s12274_023_5556_7 crossref_primary_10_1002_cctc_202501002 crossref_primary_10_1002_adsu_202500581 crossref_primary_10_1002_adma_202304021 crossref_primary_10_1007_s42823_023_00681_2 crossref_primary_10_1021_acsnano_5c08871 crossref_primary_10_1016_j_jcis_2024_07_160 crossref_primary_10_1002_aenm_202403295 crossref_primary_10_1002_ange_202408382 crossref_primary_10_1002_anie_202318989 crossref_primary_10_1002_ange_202425262 crossref_primary_10_1002_aesr_202300284 crossref_primary_10_1002_gch2_202500245 crossref_primary_10_1016_j_jcis_2023_12_184 crossref_primary_10_1002_adfm_202506735 crossref_primary_10_1002_adfm_202401194 crossref_primary_10_1039_D3NR05254K crossref_primary_10_1039_D5TA02418H crossref_primary_10_1038_s41467_025_63317_1 crossref_primary_10_1002_adma_202311914 crossref_primary_10_1016_j_surfin_2024_104730 crossref_primary_10_1039_D4EE01878H crossref_primary_10_1039_D3QM01038D crossref_primary_10_1002_smll_202402006 crossref_primary_10_1016_j_jcis_2023_08_132 crossref_primary_10_1002_metm_12 crossref_primary_10_1007_s12274_024_6661_y crossref_primary_10_1002_adfm_202516242 crossref_primary_10_1002_ange_202509213 crossref_primary_10_1002_ange_202508240 crossref_primary_10_26599_NR_2025_94907623 crossref_primary_10_1002_ange_202504568 crossref_primary_10_1002_anie_202411068 crossref_primary_10_1038_s41467_025_59052_2 crossref_primary_10_1002_smll_202401603 crossref_primary_10_1002_smll_202502787 crossref_primary_10_1016_j_cej_2025_164635 crossref_primary_10_1016_j_seppur_2024_129074 crossref_primary_10_1002_smll_202404792 crossref_primary_10_1002_anie_202510478 crossref_primary_10_1002_smll_202412606 crossref_primary_10_1088_2053_1583_ad7b54 crossref_primary_10_1002_ange_202408758 crossref_primary_10_1002_anie_202409515 crossref_primary_10_1016_j_jcis_2023_09_071 crossref_primary_10_1039_D3QI01425H crossref_primary_10_1002_aenm_202402294 crossref_primary_10_1016_j_jallcom_2025_180314 crossref_primary_10_1002_ange_202400206 crossref_primary_10_1002_adma_202417623 crossref_primary_10_1002_anie_202406046 crossref_primary_10_1002_anie_202316910 crossref_primary_10_1002_aenm_202400790 crossref_primary_10_1002_aenm_202402970 crossref_primary_10_1016_j_cej_2024_152460 crossref_primary_10_1016_j_apcatb_2024_123810 crossref_primary_10_1002_adfm_202507619 crossref_primary_10_1002_cctc_202400956 crossref_primary_10_1016_j_cej_2024_155735 crossref_primary_10_1021_acs_nanolett_5c00926 crossref_primary_10_1039_D5SE00564G crossref_primary_10_1039_D5TA04141D crossref_primary_10_1002_adma_202409697 crossref_primary_10_1002_anie_202423706 crossref_primary_10_1002_adfm_202425459 crossref_primary_10_1016_j_jcis_2025_137534 crossref_primary_10_1002_smll_202302295 crossref_primary_10_1039_D4QI02881C crossref_primary_10_1002_smll_202502527 crossref_primary_10_1002_adfm_202303480 crossref_primary_10_1016_j_chempr_2023_05_037 crossref_primary_10_1002_adfm_202501527 crossref_primary_10_1002_adma_202503291 crossref_primary_10_1016_j_cej_2024_148883 crossref_primary_10_1002_cctc_202300970 crossref_primary_10_1002_adfm_202500553 crossref_primary_10_1002_smll_202309007 crossref_primary_10_1002_ange_202307952 crossref_primary_10_1002_ange_202410251 crossref_primary_10_1039_D3QI01536J crossref_primary_10_1002_ange_202404819 crossref_primary_10_1016_j_cej_2024_148857 crossref_primary_10_1002_anie_202501578 crossref_primary_10_1002_ange_202423706 crossref_primary_10_1002_advs_202507720 crossref_primary_10_1021_acsnano_5c00187 crossref_primary_10_1002_adfm_202417486 crossref_primary_10_1021_acscatal_5c00591 crossref_primary_10_1002_ange_202409515 crossref_primary_10_1039_D5NR01682G crossref_primary_10_1016_j_cej_2024_156005 crossref_primary_10_1039_D3EY00184A crossref_primary_10_1039_D3CY01232H crossref_primary_10_1002_anie_202408758 crossref_primary_10_1038_s41467_025_56548_9 crossref_primary_10_1002_ange_202510478 crossref_primary_10_1016_j_watres_2024_123077 crossref_primary_10_1002_ange_202308775 crossref_primary_10_1038_s41467_024_48035_4 crossref_primary_10_1002_agt2_70016 crossref_primary_10_1016_j_jcis_2025_137355 crossref_primary_10_1039_D5TA02848E crossref_primary_10_1016_j_jcis_2023_11_082 crossref_primary_10_1016_j_jechem_2023_07_006 crossref_primary_10_1021_jacs_5c01863 crossref_primary_10_1016_j_apsusc_2023_158664 crossref_primary_10_1016_j_fuel_2024_132746 crossref_primary_10_1016_j_nanoen_2025_110683 crossref_primary_10_1021_acscatal_5c04811 crossref_primary_10_1007_s11426_024_2552_2 crossref_primary_10_1155_2024_5685619 crossref_primary_10_1002_adfm_202415046 crossref_primary_10_1016_j_fuel_2024_133394 crossref_primary_10_1002_anie_202308775 crossref_primary_10_1002_advs_202509323 crossref_primary_10_1016_j_jcis_2024_05_189 crossref_primary_10_1002_ange_202504499 crossref_primary_10_1002_smll_202308084 crossref_primary_10_1002_aenm_202502344 crossref_primary_10_1002_aenm_202401717 crossref_primary_10_1002_adma_202418233 crossref_primary_10_1002_aenm_202402805 crossref_primary_10_1007_s10562_024_04772_1 crossref_primary_10_1002_aenm_202401834 crossref_primary_10_1039_D2QI02757G crossref_primary_10_1039_D4SC07619B crossref_primary_10_26599_NR_2025_94907647 crossref_primary_10_1007_s11426_024_2040_8 crossref_primary_10_1039_D5CC01394A crossref_primary_10_1002_ange_202308436 crossref_primary_10_1007_s12274_023_6094_z crossref_primary_10_1039_D3QI01474F crossref_primary_10_1002_anie_202504499 crossref_primary_10_1039_D4QM00502C crossref_primary_10_1002_aenm_202400065 crossref_primary_10_1002_advs_202308979 crossref_primary_10_1038_s41467_025_58372_7 crossref_primary_10_1021_acs_inorgchem_5c01524 crossref_primary_10_1002_advs_202417773 crossref_primary_10_1016_j_jcis_2023_09_095 |
| Cites_doi | 10.1016/j.apsusc.2019.144248 10.26599/NRE.2022.9120017 10.1021/acs.chemmater.1c00424 10.1016/j.apcatb.2022.121651 10.1039/C8NR02142B 10.26599/NRE.2022.9120028 10.1039/D1CS00116G 10.1021/jacs.9b13347 10.1002/anie.202202604 10.1021/acsnano.2c00101 10.1038/s41565-022-01121-4 10.1002/aenm.201700513 10.1021/acsnano.1c08814 10.1016/j.apcatb.2022.122241 10.1002/anie.202202556 10.1021/acs.accounts.1c00543 10.1039/D2DT01431A 10.1002/smtd.202100699 10.1038/s41467-021-24400-5 10.1016/j.jcis.2022.09.012 10.1021/acs.jpcc.1c02749 10.1039/D2QI02118H 10.1002/ange.202205923 10.1016/j.joule.2020.12.025 10.1039/D1CS00857A 10.1038/s41467-021-23115-x 10.1021/jacs.0c00418 10.1016/j.mtphys.2022.100854 10.1002/adfm.202211537 10.1002/smll.202102363 10.1002/sstr.202200358 10.1021/acscatal.9b04103 10.1007/s12274-023-5384-9 10.1039/D2TA08027C 10.1039/D1TA06746J 10.1002/eem2.12268 10.1002/aenm.202103022 10.1016/j.jechem.2020.05.009 10.1038/s41467-022-29926-w 10.1021/acs.chemrev.9b00659 10.1021/acscatal.9b00959 10.1039/D0EE03596C 10.1002/adma.202205767 10.1002/adfm.202008056 10.26599/NRE.2022.9120033 10.1021/acsnano.2c07911 10.26599/NRE.2022.9120010 10.26599/NRE.2022.9120022 10.1021/acsenergylett.2c02882 10.1002/adma.202000381 10.1038/s41467-019-11846-x 10.1016/j.jcis.2022.09.049 10.1002/adma.202007650 10.1039/D0CC05853J 10.1002/anie.202205923 10.1021/acs.inorgchem.2c03714 10.1016/j.chempr.2021.01.009 10.1039/D1TA03662A 10.1021/acs.nanolett.2c04444 10.1039/D2TA04006A 10.1002/ange.202202604 10.1002/adfm.202209890 10.1021/acsami.2c12772 10.1002/aenm.201803369 10.1039/D0NH00242A 10.1016/j.cej.2022.140333 10.1039/D2QI01798A 10.1021/acsnano.2c00596 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202300054 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 36734975 10_1002_anie_202300054 ANIE202300054 |
| Genre | shortCommunication Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52161025 – fundername: Fundamental Researches Top Talent Program of Lanzhou Jiaotong University funderid: 2022JC03 – fundername: Longyuan Youth Innovative and Entrepreneurial Talents Project funderid: [2021]17 – fundername: National Natural Science Foundation of China grantid: 52161025 – fundername: Longyuan Youth Innovative and Entrepreneurial Talents Project grantid: [2021]17 – fundername: Fundamental Researches Top Talent Program of Lanzhou Jiaotong University grantid: 2022JC03 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM YIN 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4394-cf0f63b38ac42ba227745f12d77512d1d421344cd6976a46ae132279c502e0d33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 452 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000930851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Thu Jul 10 19:24:40 EDT 2025 Tue Oct 07 07:15:37 EDT 2025 Wed Feb 19 02:24:20 EST 2025 Sat Nov 29 03:03:44 EST 2025 Tue Nov 18 21:54:51 EST 2025 Wed Jan 22 16:22:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Electrocatalytic Nitrate Reduction to Ammonia MBenes Tandem Catalysts Operando Electrochemical Characterizations Theoretical Computations |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4394-cf0f63b38ac42ba227745f12d77512d1d421344cd6976a46ae132279c502e0d33 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0606-2689 |
| PMID | 36734975 |
| PQID | 2786063074 |
| PQPubID | 946352 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2773117500 proquest_journals_2786063074 pubmed_primary_36734975 crossref_primary_10_1002_anie_202300054 crossref_citationtrail_10_1002_anie_202300054 wiley_primary_10_1002_anie_202300054_ANIE202300054 |
| PublicationCentury | 2000 |
| PublicationDate | March 20, 2023 |
| PublicationDateYYYYMMDD | 2023-03-20 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 20, 2023 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2023; 10 2021; 7 2017; 7 2019; 9 2021; 5 2023; 11 2023; 17 2020; 120 2023; 6 2020; 142 2022; 51 2021; 125 2019; 10 2023; 8 2020; 500 2023; 324 2020; 56 2020; 10 2021; 50 2023; 629 2022; 316 2022; 28 2021; 14 2023; 62 2022 2022; 61 134 2020; 5 2021; 31 2021; 53 2021; 12 2021; 33 2023 2022; 61 2023; 454 2021; 17 2022; 12 2022; 34 2022; 13 2022; 14 2022; 1 2022; 10 2022; 55 2018; 10 2022; 16 2022; 17 e_1_2_3_50_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_4_1 e_1_2_3_18_1 e_1_2_3_12_1 e_1_2_3_35_1 e_1_2_3_58_1 e_1_2_3_56_1 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_37_1 e_1_2_3_31_1 e_1_2_3_52_1 e_1_2_3_10_1 e_1_2_3_33_1 e_1_2_3_54_1 e_1_2_3_62_1 e_1_2_3_60_1 (e_1_2_3_29_2) 2022; 134 (e_1_2_3_10_2) 2022; 134 e_1_2_3_28_1 e_1_2_3_49_1 e_1_2_3_24_1 e_1_2_3_45_1 e_1_2_3_26_1 e_1_2_3_47_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_66_1 e_1_2_3_22_1 e_1_2_3_43_1 e_1_2_3_64_1 e_1_2_3_51_1 e_1_2_3_1_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_38_1 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_57_1 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_34_1 e_1_2_3_59_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_36_1 e_1_2_3_30_1 e_1_2_3_53_1 e_1_2_3_55_1 e_1_2_3_11_1 e_1_2_3_32_1 e_1_2_3_61_1 e_1_2_3_40_1 e_1_2_3_27_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_42_1 e_1_2_3_65_1 e_1_2_3_21_1 e_1_2_3_44_1 e_1_2_3_63_1 |
| References_xml | – volume: 55 start-page: 56 year: 2022 publication-title: Acc. Chem. Res. – volume: 14 start-page: 46595 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 629 start-page: 563 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 142 start-page: 5702 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 82 year: 2021 publication-title: J. Energy Chem. – year: 2023 publication-title: Nano Lett. – volume: 17 start-page: 759 year: 2022 publication-title: Nat. Nanotechnol. – volume: 33 start-page: 4023 year: 2021 publication-title: Chem. Mater. – volume: 62 start-page: 653 year: 2023 publication-title: Inorg. Chem. – volume: 12 start-page: 4080 year: 2021 publication-title: Nat. Commun. – volume: 125 start-page: 19183 year: 2021 publication-title: J. Phys. Chem. C – volume: 56 start-page: 13009 year: 2020 publication-title: Chem. Commun. – volume: 11 start-page: 1817 year: 2023 publication-title: J. Mater. Chem. A – year: 2023 publication-title: Nano Res. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 10 start-page: 3898 year: 2019 publication-title: Nat. Commun. – volume: 50 start-page: 6720 year: 2021 publication-title: Chem. Soc. Rev. – year: 2023 publication-title: Small Struct. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 16 start-page: 1072 year: 2022 publication-title: ACS Nano – volume: 16 start-page: 4795 year: 2022 publication-title: ACS Nano – volume: 5 start-page: 1106 year: 2020 publication-title: Nanoscale Horiz. – volume: 500 year: 2020 publication-title: Appl. Surf. Sci. – volume: 9 start-page: 15955 year: 2021 publication-title: J. Mater. Chem. A – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 1176 year: 2021 publication-title: Energy Environ. Sci. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1742 year: 2022 publication-title: J. Mater. Chem. A – volume: 454 year: 2023 publication-title: Chem. Eng. J. – year: 2023 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 280 year: 2023 publication-title: Inorg. Chem. Front. – year: 2023 publication-title: Inorg. Chem. Front. – volume: 316 year: 2022 publication-title: Appl. Catal. B – volume: 5 start-page: 290 year: 2021 publication-title: Joule – volume: 17 year: 2021 publication-title: Small – volume: 12 start-page: 2870 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 11544 year: 2018 publication-title: Nanoscale – volume: 7 start-page: 1708 year: 2021 publication-title: Chem – volume: 16 start-page: 7915 year: 2022 publication-title: ACS Nano – volume: 13 start-page: 2338 year: 2022 publication-title: Nat. Commun. – volume: 6 year: 2023 publication-title: Energy Environ. Mater. – volume: 10 start-page: 18690 year: 2022 publication-title: J. Mater. Chem. A – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 10 start-page: 1847 year: 2020 publication-title: ACS Catal. – volume: 17 start-page: 1081 year: 2023 publication-title: ACS Nano – volume: 8 start-page: 1281 year: 2023 publication-title: ACS Energy Lett. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 120 start-page: 5437 year: 2020 publication-title: Chem. Rev. – volume: 5 year: 2021 publication-title: Small Methods – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 7036 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2710 year: 2022 publication-title: Chem. Soc. Rev. – volume: 629 start-page: 950 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 28 year: 2022 publication-title: Mater. Today Phys. – volume: 324 year: 2023 publication-title: Appl. Catal. B – volume: 1 year: 2022 publication-title: Nano Res. Energy – volume: 9 start-page: 7311 year: 2019 publication-title: ACS Catal. – volume: 51 start-page: 9206 year: 2022 publication-title: Dalton Trans. – ident: e_1_2_3_40_1 doi: 10.1016/j.apsusc.2019.144248 – ident: e_1_2_3_56_1 doi: 10.26599/NRE.2022.9120017 – ident: e_1_2_3_41_1 doi: 10.1021/acs.chemmater.1c00424 – ident: e_1_2_3_9_1 doi: 10.1016/j.apcatb.2022.121651 – ident: e_1_2_3_35_1 doi: 10.1039/C8NR02142B – ident: e_1_2_3_55_1 doi: 10.26599/NRE.2022.9120028 – ident: e_1_2_3_16_1 doi: 10.1039/D1CS00116G – ident: e_1_2_3_21_1 doi: 10.1021/jacs.9b13347 – ident: e_1_2_3_29_1 doi: 10.1002/anie.202202604 – ident: e_1_2_3_28_1 doi: 10.1021/acsnano.2c00101 – ident: e_1_2_3_19_1 doi: 10.1038/s41565-022-01121-4 – ident: e_1_2_3_47_1 doi: 10.1002/aenm.201700513 – ident: e_1_2_3_31_1 doi: 10.1021/acsnano.1c08814 – ident: e_1_2_3_49_1 doi: 10.1016/j.apcatb.2022.122241 – ident: e_1_2_3_30_1 doi: 10.1002/anie.202202556 – ident: e_1_2_3_34_1 doi: 10.1021/acs.accounts.1c00543 – ident: e_1_2_3_33_1 doi: 10.1039/D2DT01431A – ident: e_1_2_3_36_1 doi: 10.1002/smtd.202100699 – ident: e_1_2_3_37_1 doi: 10.1038/s41467-021-24400-5 – ident: e_1_2_3_25_1 doi: 10.1016/j.jcis.2022.09.012 – ident: e_1_2_3_42_1 doi: 10.1021/acs.jpcc.1c02749 – ident: e_1_2_3_51_1 doi: 10.1039/D2QI02118H – volume: 134 year: 2022 ident: e_1_2_3_10_2 publication-title: Angew. Chem. doi: 10.1002/ange.202205923 – ident: e_1_2_3_17_1 doi: 10.1016/j.joule.2020.12.025 – ident: e_1_2_3_15_1 doi: 10.1039/D1CS00857A – ident: e_1_2_3_20_1 doi: 10.1038/s41467-021-23115-x – ident: e_1_2_3_22_1 doi: 10.1021/jacs.0c00418 – ident: e_1_2_3_24_1 doi: 10.1016/j.mtphys.2022.100854 – ident: e_1_2_3_48_1 doi: 10.1002/adfm.202211537 – ident: e_1_2_3_14_1 doi: 10.1002/smll.202102363 – ident: e_1_2_3_57_1 doi: 10.1002/sstr.202200358 – ident: e_1_2_3_44_1 doi: 10.1021/acscatal.9b04103 – ident: e_1_2_3_53_1 doi: 10.1007/s12274-023-5384-9 – ident: e_1_2_3_58_1 doi: 10.1039/D2TA08027C – ident: e_1_2_3_50_1 doi: 10.1039/D1TA06746J – ident: e_1_2_3_12_1 doi: 10.1002/eem2.12268 – ident: e_1_2_3_11_1 doi: 10.1002/aenm.202103022 – ident: e_1_2_3_46_1 doi: 10.1016/j.jechem.2020.05.009 – ident: e_1_2_3_18_1 doi: 10.1038/s41467-022-29926-w – ident: e_1_2_3_5_1 doi: 10.1021/acs.chemrev.9b00659 – ident: e_1_2_3_65_1 doi: 10.1021/acscatal.9b00959 – ident: e_1_2_3_7_1 doi: 10.1039/D0EE03596C – ident: e_1_2_3_32_1 doi: 10.1002/adma.202205767 – ident: e_1_2_3_39_1 doi: 10.1002/adfm.202008056 – ident: e_1_2_3_54_1 doi: 10.26599/NRE.2022.9120033 – ident: e_1_2_3_61_1 doi: 10.1021/acsnano.2c07911 – ident: e_1_2_3_1_1 doi: 10.26599/NRE.2022.9120010 – ident: e_1_2_3_2_1 doi: 10.26599/NRE.2022.9120022 – ident: e_1_2_3_4_1 doi: 10.1021/acsenergylett.2c02882 – ident: e_1_2_3_8_1 doi: 10.1002/adma.202000381 – ident: e_1_2_3_63_1 doi: 10.1038/s41467-019-11846-x – ident: e_1_2_3_27_1 doi: 10.1016/j.jcis.2022.09.049 – ident: e_1_2_3_3_1 doi: 10.1002/adma.202007650 – ident: e_1_2_3_43_1 doi: 10.1039/D0CC05853J – ident: e_1_2_3_10_1 doi: 10.1002/anie.202205923 – ident: e_1_2_3_62_1 doi: 10.1021/acs.inorgchem.2c03714 – ident: e_1_2_3_6_1 doi: 10.1016/j.chempr.2021.01.009 – ident: e_1_2_3_13_1 doi: 10.1039/D1TA03662A – ident: e_1_2_3_64_1 doi: 10.1021/acs.nanolett.2c04444 – ident: e_1_2_3_59_1 doi: 10.1039/D2TA04006A – volume: 134 year: 2022 ident: e_1_2_3_29_2 publication-title: Angew. Chem. doi: 10.1002/ange.202202604 – ident: e_1_2_3_66_1 doi: 10.1002/adfm.202209890 – ident: e_1_2_3_23_1 doi: 10.1021/acsami.2c12772 – ident: e_1_2_3_38_1 doi: 10.1002/aenm.201803369 – ident: e_1_2_3_45_1 doi: 10.1039/D0NH00242A – ident: e_1_2_3_52_1 doi: 10.1016/j.cej.2022.140333 – ident: e_1_2_3_26_1 doi: 10.1039/D2QI01798A – ident: e_1_2_3_60_1 doi: 10.1021/acsnano.2c00596 |
| SSID | ssj0028806 |
| Score | 2.7439494 |
| Snippet | We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of... We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO 3 RR). As a proof of... We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO RR). As a proof of... We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202300054 |
| SubjectTerms | Ammonia Catalysis Catalysts Electrocatalytic Nitrate Reduction to Ammonia Intermediates MBenes Nitrate reduction Operando Electrochemical Characterizations Reduction Tandem Catalysts Theoretical Computations |
| Title | Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202300054 https://www.ncbi.nlm.nih.gov/pubmed/36734975 https://www.proquest.com/docview/2786063074 https://www.proquest.com/docview/2773117500 |
| Volume | 62 |
| WOSCitedRecordID | wos000930851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_cJuiL3x_TOSoIPtVlSda0L8KcGwo6ZGywt5ImKQx0k30I_vfm2q46RAR9a8ilDXeX5Jc09zuAC20hgoqVdklDeS7n3OAlAOoaSUUc2Vk5oCpJNiG6XX84DJ6-RPGn_BD5gRuOjGS-xgEuo1ntkzQUI7CvMPl3AjsKUMLIKrv9Kt32OoOHfNNl_TONMGLMxUT0S-JGQmurb1hdmL6hzVXwmqw-ne3_93sHtjLk6TRTV9mFNTPeg43WMuHbPlz38UD5xWmnmXGSg513K-x0RwmFrdNDmlc0pDOfOE104JF0bOnxBifMAxh02v3WnZulV3AVhsO6KiaxxyLmS8VpJCm1SLAR16kWwqIAXdcc2d640p6FLJJ70uDOVQSqQaghmrFDKI4nY3MMTl0bGdtWnqcpV4pI7kseRNLn0sJPysvgLnUbqox7HFNgPIcpazINUSthrpUyXObyrynrxo-SlaWpwmz0zUIqfA-5xIStPs-rrTbxZ4gcm8kCZQRDmlJCynCUmjj_FPME44FolIEmlvylD2Gze9_OSyd_aXQKm_iMl9soqUBxPl2YM1hXb_PRbFqFghj61cyzPwDyp_Ss |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90Cvri98f8rCD4VM2SLGlfhDk3NpxFxgTfSpakMNBN3Cb435tru8oQEcTHNEkb7i7JL9fc7wDOjYMIOtHGJ1UtfM65xUsA1LeKyqTvVuWQ6jTZhIyi4OkpfMhvE2IsTMYPUTjccGak6zVOcHRIX32xhmII9iVm_05xxyIsccFkUIKl227zsVOcupyBZiFGjPmYiX7G3Ejo1fwb5nemb3BzHr2m209z_R8GvgFrOfb0apmxbMKCHW7BSn2W8m0brnvoUn7xGllunNS18-Eae9EgJbH1ukj0iqr0JiOvhiY8UJ4r3d_gkrkDj81Gr97y8wQLvsaAWF8nJBGszwKlOe0rSh0WrCYVaqR0OMBUDEe-N66NcKBFcaEsnl1lqKuEWmIY24XScDS0--BVjFWJ6yWEoVxronigeNhXAVcOgFJeBn8m3Fjn7OOYBOM5zniTaYxSiQuplOGiaP-a8W782PJopqs4n3_jmMpAIJuYdNVnRbWTJv4OUUM7mmIbyZColJAy7GU6Lj7FhGQ8lNUy0FSVv4whrkXtRlE6-EunU1hp9e47cacd3R3CKj7Hq26UHEFp8ja1x7Cs3yeD8dtJbuCf6fb3tA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90ivri90f9rCD4VJcladO-CFM3HM4iY4O9lSxJYaCb6BT87821XWWICOJjmksb7i7JL2nudwBn2kIElSrtEV8FHufc4CUA6hlJRTqws3JEVZZsQsRx2O9HD8VtQoyFyfkhygM3HBnZfI0D3DzrtPrFGooh2BeY_TvDHfOwwP3I5xVYuOk0e-1y12UdNA8xYszDTPRT5kZCq7NvmF2ZvsHNWfSaLT_NtX_o-DqsFtjTrefOsgFzZrQJy9fTlG9bcNnFI-Unt5HnxsmOdj6ssBsPMxJbt4NEr2hKdzJ26-jCQ-na0v0VTpnb0Gs2ute3XpFgwVMYEOuplKQBG7BQKk4HklKLBf20RrUQFgfomubI98aVDixokTyQBveuIlI-oYZoxnagMhqPzB64NW1kalsFgaZcKSJ5KHk0kCGXFoBS7oA3VW6iCvZxTILxmOS8yTRBrSSlVhw4L-Wfc96NHyUPp7ZKivH3mlARBsgmJmz1aVlttYm_Q-TIjN9QRjAkKiXEgd3cxuWnWCAYj4TvAM1M-UsfknrcapSl_b80OoGlh5tm0m7Fdwewgo_xphslh1CZvLyZI1hU75Ph68tx4d-ffrb3Lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tandem+Electrocatalytic+Nitrate+Reduction+to+Ammonia+on+MBenes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Guike&rft.au=Li%2C+Xiaotian&rft.au=Chen%2C+Kai&rft.au=Guo%2C+Yali&rft.date=2023-03-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202300054&rft.externalDBID=10.1002%252Fanie.202300054&rft.externalDocID=ANIE202300054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |