Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes

We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 62; číslo 13; s. e202300054 - n/a
Hlavní autoři: Zhang, Guike, Li, Xiaotian, Chen, Kai, Guo, Yali, Ma, Dongwei, Chu, Ke
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 20.03.2023
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3− to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3−‐to‐NH3 conversion. MBenes are demonstrated to be a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). Taking FeB2 as the proof‐of‐concept paradigm, mechanistic studies unveil that the synergistic tandem effect of Fe and B atoms promotes NO3− activation and intermediate hydrogenation to enhance the NO3RR activity and selectivity.
AbstractList We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO RR). As a proof of concept, FeB is first employed as a model MBene catalyst for the NO RR, showing a maximum NH -Faradaic efficiency of 96.8 % with a corresponding NH yield of 25.5 mg h  cm at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO RR activity of FeB arises from the tandem catalysis mechanism, that is, B sites activate NO to form intermediates, while Fe sites dissociate H O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO -to-NH conversion.
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3− to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3−‐to‐NH3 conversion.
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3‐Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3− to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3−‐to‐NH3 conversion. MBenes are demonstrated to be a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). Taking FeB2 as the proof‐of‐concept paradigm, mechanistic studies unveil that the synergistic tandem effect of Fe and B atoms promotes NO3− activation and intermediate hydrogenation to enhance the NO3RR activity and selectivity.
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3 RR, showing a maximum NH3 -Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h-1  cm-2 at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3 RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 - to form intermediates, while Fe sites dissociate H2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3 - -to-NH3 conversion.We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3 RR, showing a maximum NH3 -Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h-1  cm-2 at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3 RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 - to form intermediates, while Fe sites dissociate H2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3 - -to-NH3 conversion.
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO 3 RR). As a proof of concept, FeB 2 is first employed as a model MBene catalyst for the NO 3 RR, showing a maximum NH 3 ‐Faradaic efficiency of 96.8 % with a corresponding NH 3 yield of 25.5 mg h −1  cm −2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO 3 RR activity of FeB 2 arises from the tandem catalysis mechanism, that is, B sites activate NO 3 − to form intermediates, while Fe sites dissociate H 2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO 3 − ‐to‐NH 3 conversion.
Author Guo, Yali
Chu, Ke
Zhang, Guike
Chen, Kai
Ma, Dongwei
Li, Xiaotian
Author_xml – sequence: 1
  givenname: Guike
  surname: Zhang
  fullname: Zhang, Guike
  organization: Lanzhou Jiaotong University
– sequence: 2
  givenname: Xiaotian
  surname: Li
  fullname: Li, Xiaotian
  organization: Lanzhou Jiaotong University
– sequence: 3
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: Lanzhou Jiaotong University
– sequence: 4
  givenname: Yali
  surname: Guo
  fullname: Guo, Yali
  organization: Lanzhou Jiaotong University
– sequence: 5
  givenname: Dongwei
  surname: Ma
  fullname: Ma, Dongwei
  email: madw@henu.edu.cn
  organization: Henan University
– sequence: 6
  givenname: Ke
  orcidid: 0000-0002-0606-2689
  surname: Chu
  fullname: Chu, Ke
  email: chuk630@mail.lzjtu.cn
  organization: Lanzhou Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36734975$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LwzAYgINMdFOvHqXgxUtnvtq0F2GOqYM5Qea5ZOlbyGiT2aTI_r0ZmxMG4iUf8DxvwjNAPWMNIHRN8JBgTO-l0TCkmDKMccJPUJ8klMRMCNYLZ85YLLKEnKOBc6vAZxlOz9A5SwXjuUj66GEhTQlNNKlB-dYq6WW98VpFc-1b6SF6h7JTXlsTeRuNmsYaLaNwe30EA-4SnVaydnC13y_Qx9NkMX6JZ2_P0_FoFivOch6rClcpW7JMKk6XklIheFIRWgqRhJWUnBLGuSrTXKSSpxIIC1CuEkwBl4xdoLvd3HVrPztwvmi0U1DX0oDtXBEGMkJEgnFAb4_Qle1aE34XqCzFKcOCB-pmT3XLBspi3epGtpvip0wAhjtAtda5FqoDQnCxTV9s0xeH9EHgR4LSXm7LhZC6_lvLd9qXrmHzzyPFaD6d_LrfyGiVIQ
CitedBy_id crossref_primary_10_1002_anie_202308436
crossref_primary_10_1038_s41467_025_63013_0
crossref_primary_10_1016_j_jcis_2025_138597
crossref_primary_10_1016_j_envres_2024_120279
crossref_primary_10_1002_adfm_202403718
crossref_primary_10_1016_j_cej_2023_143889
crossref_primary_10_1021_acssuschemeng_4c10366
crossref_primary_10_1021_acssuschemeng_5c01612
crossref_primary_10_1016_j_cej_2024_155354
crossref_primary_10_1002_adma_202313844
crossref_primary_10_59717_j_xinn_mater_2024_100058
crossref_primary_10_1002_anie_202410251
crossref_primary_10_1016_j_apcatb_2024_124390
crossref_primary_10_1002_adfm_202516629
crossref_primary_10_1002_ange_202501578
crossref_primary_10_1002_smll_202401327
crossref_primary_10_1007_s12274_023_6261_2
crossref_primary_10_1002_adfm_202413070
crossref_primary_10_1016_j_chemphys_2024_112311
crossref_primary_10_1002_ange_202316910
crossref_primary_10_1039_D3QI00268C
crossref_primary_10_1039_D5RA02327K
crossref_primary_10_1039_D4SE00565A
crossref_primary_10_1007_s42114_025_01311_3
crossref_primary_10_1002_adfm_202401094
crossref_primary_10_1002_adma_202412363
crossref_primary_10_1002_advs_202303789
crossref_primary_10_1016_j_ijhydene_2024_08_146
crossref_primary_10_1039_D4NR05000B
crossref_primary_10_1016_j_ccr_2024_215723
crossref_primary_10_1007_s11426_023_1924_7
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1016_j_cej_2024_150434
crossref_primary_10_1002_aenm_202302608
crossref_primary_10_1002_idm2_12152
crossref_primary_10_1038_s41467_025_55889_9
crossref_primary_10_1016_j_compositesb_2024_112108
crossref_primary_10_1021_acscatal_5c04411
crossref_primary_10_1039_D4QI01632G
crossref_primary_10_1002_adfm_202516068
crossref_primary_10_1016_j_cej_2024_153713
crossref_primary_10_1002_ange_202505156
crossref_primary_10_1002_adfm_202410941
crossref_primary_10_1002_anie_202414392
crossref_primary_10_1016_j_cej_2024_149560
crossref_primary_10_1002_anie_202404819
crossref_primary_10_1016_j_jallcom_2024_176970
crossref_primary_10_1002_adfm_202406438
crossref_primary_10_1002_aenm_202401591
crossref_primary_10_1002_aenm_202405031
crossref_primary_10_1002_cssc_202401979
crossref_primary_10_1002_adfm_202408732
crossref_primary_10_1002_ange_202406046
crossref_primary_10_1002_cssc_202402031
crossref_primary_10_1039_D4RA00287C
crossref_primary_10_1002_anie_202505156
crossref_primary_10_1002_adfm_202506817
crossref_primary_10_1016_j_jcis_2024_07_125
crossref_primary_10_1002_adfm_202513341
crossref_primary_10_1002_celc_202300419
crossref_primary_10_1002_ange_202411068
crossref_primary_10_1002_anie_202400206
crossref_primary_10_1016_j_cej_2025_160652
crossref_primary_10_1002_adfm_202504632
crossref_primary_10_1002_ange_202414392
crossref_primary_10_1002_anie_202412740
crossref_primary_10_1002_anie_202504568
crossref_primary_10_1002_smll_202311439
crossref_primary_10_1002_ange_202318989
crossref_primary_10_1002_anie_202425262
crossref_primary_10_1016_j_jhazmat_2025_138266
crossref_primary_10_1002_adfm_202305372
crossref_primary_10_1016_j_jcis_2023_06_160
crossref_primary_10_1021_acscatal_5c02252
crossref_primary_10_26599_NR_2025_94907265
crossref_primary_10_1002_adfm_202302651
crossref_primary_10_1002_pssa_202400786
crossref_primary_10_3390_molecules30132831
crossref_primary_10_1016_j_jcis_2024_06_213
crossref_primary_10_1039_D4EE00784K
crossref_primary_10_1038_s41467_024_53833_x
crossref_primary_10_1016_j_seppur_2024_127813
crossref_primary_10_1039_D4EE04382K
crossref_primary_10_1002_anie_202307952
crossref_primary_10_1038_s44221_023_00169_3
crossref_primary_10_1002_adfm_202308072
crossref_primary_10_1021_acs_inorgchem_4c02578
crossref_primary_10_1021_jacs_4c04023
crossref_primary_10_1039_D3QI00793F
crossref_primary_10_1002_advs_202404178
crossref_primary_10_1016_j_ces_2024_120501
crossref_primary_10_1002_anie_202509213
crossref_primary_10_1002_adfm_202409696
crossref_primary_10_3390_molecules30081778
crossref_primary_10_1039_D3EE01301D
crossref_primary_10_1002_chem_202303381
crossref_primary_10_1016_j_jcis_2025_137626
crossref_primary_10_1016_j_mtchem_2024_102418
crossref_primary_10_1002_anie_202508240
crossref_primary_10_1016_j_jcis_2025_138258
crossref_primary_10_1002_anie_202408382
crossref_primary_10_1002_adfm_202509200
crossref_primary_10_1016_j_cej_2024_149768
crossref_primary_10_1016_j_jcis_2024_05_223
crossref_primary_10_1016_j_jcis_2024_10_098
crossref_primary_10_1016_j_jmst_2024_02_093
crossref_primary_10_1021_acscatal_5c00405
crossref_primary_10_1002_aesr_202300173
crossref_primary_10_1002_ange_202412740
crossref_primary_10_1002_advs_202416053
crossref_primary_10_1007_s12274_023_5556_7
crossref_primary_10_1002_cctc_202501002
crossref_primary_10_1002_adsu_202500581
crossref_primary_10_1002_adma_202304021
crossref_primary_10_1007_s42823_023_00681_2
crossref_primary_10_1021_acsnano_5c08871
crossref_primary_10_1016_j_jcis_2024_07_160
crossref_primary_10_1002_aenm_202403295
crossref_primary_10_1002_ange_202408382
crossref_primary_10_1002_anie_202318989
crossref_primary_10_1002_ange_202425262
crossref_primary_10_1002_aesr_202300284
crossref_primary_10_1002_gch2_202500245
crossref_primary_10_1016_j_jcis_2023_12_184
crossref_primary_10_1002_adfm_202506735
crossref_primary_10_1002_adfm_202401194
crossref_primary_10_1039_D3NR05254K
crossref_primary_10_1039_D5TA02418H
crossref_primary_10_1038_s41467_025_63317_1
crossref_primary_10_1002_adma_202311914
crossref_primary_10_1016_j_surfin_2024_104730
crossref_primary_10_1039_D4EE01878H
crossref_primary_10_1039_D3QM01038D
crossref_primary_10_1002_smll_202402006
crossref_primary_10_1016_j_jcis_2023_08_132
crossref_primary_10_1002_metm_12
crossref_primary_10_1007_s12274_024_6661_y
crossref_primary_10_1002_adfm_202516242
crossref_primary_10_1002_ange_202509213
crossref_primary_10_1002_ange_202508240
crossref_primary_10_26599_NR_2025_94907623
crossref_primary_10_1002_ange_202504568
crossref_primary_10_1002_anie_202411068
crossref_primary_10_1038_s41467_025_59052_2
crossref_primary_10_1002_smll_202401603
crossref_primary_10_1002_smll_202502787
crossref_primary_10_1016_j_cej_2025_164635
crossref_primary_10_1016_j_seppur_2024_129074
crossref_primary_10_1002_smll_202404792
crossref_primary_10_1002_anie_202510478
crossref_primary_10_1002_smll_202412606
crossref_primary_10_1088_2053_1583_ad7b54
crossref_primary_10_1002_ange_202408758
crossref_primary_10_1002_anie_202409515
crossref_primary_10_1016_j_jcis_2023_09_071
crossref_primary_10_1039_D3QI01425H
crossref_primary_10_1002_aenm_202402294
crossref_primary_10_1016_j_jallcom_2025_180314
crossref_primary_10_1002_ange_202400206
crossref_primary_10_1002_adma_202417623
crossref_primary_10_1002_anie_202406046
crossref_primary_10_1002_anie_202316910
crossref_primary_10_1002_aenm_202400790
crossref_primary_10_1002_aenm_202402970
crossref_primary_10_1016_j_cej_2024_152460
crossref_primary_10_1016_j_apcatb_2024_123810
crossref_primary_10_1002_adfm_202507619
crossref_primary_10_1002_cctc_202400956
crossref_primary_10_1016_j_cej_2024_155735
crossref_primary_10_1021_acs_nanolett_5c00926
crossref_primary_10_1039_D5SE00564G
crossref_primary_10_1039_D5TA04141D
crossref_primary_10_1002_adma_202409697
crossref_primary_10_1002_anie_202423706
crossref_primary_10_1002_adfm_202425459
crossref_primary_10_1016_j_jcis_2025_137534
crossref_primary_10_1002_smll_202302295
crossref_primary_10_1039_D4QI02881C
crossref_primary_10_1002_smll_202502527
crossref_primary_10_1002_adfm_202303480
crossref_primary_10_1016_j_chempr_2023_05_037
crossref_primary_10_1002_adfm_202501527
crossref_primary_10_1002_adma_202503291
crossref_primary_10_1016_j_cej_2024_148883
crossref_primary_10_1002_cctc_202300970
crossref_primary_10_1002_adfm_202500553
crossref_primary_10_1002_smll_202309007
crossref_primary_10_1002_ange_202307952
crossref_primary_10_1002_ange_202410251
crossref_primary_10_1039_D3QI01536J
crossref_primary_10_1002_ange_202404819
crossref_primary_10_1016_j_cej_2024_148857
crossref_primary_10_1002_anie_202501578
crossref_primary_10_1002_ange_202423706
crossref_primary_10_1002_advs_202507720
crossref_primary_10_1021_acsnano_5c00187
crossref_primary_10_1002_adfm_202417486
crossref_primary_10_1021_acscatal_5c00591
crossref_primary_10_1002_ange_202409515
crossref_primary_10_1039_D5NR01682G
crossref_primary_10_1016_j_cej_2024_156005
crossref_primary_10_1039_D3EY00184A
crossref_primary_10_1039_D3CY01232H
crossref_primary_10_1002_anie_202408758
crossref_primary_10_1038_s41467_025_56548_9
crossref_primary_10_1002_ange_202510478
crossref_primary_10_1016_j_watres_2024_123077
crossref_primary_10_1002_ange_202308775
crossref_primary_10_1038_s41467_024_48035_4
crossref_primary_10_1002_agt2_70016
crossref_primary_10_1016_j_jcis_2025_137355
crossref_primary_10_1039_D5TA02848E
crossref_primary_10_1016_j_jcis_2023_11_082
crossref_primary_10_1016_j_jechem_2023_07_006
crossref_primary_10_1021_jacs_5c01863
crossref_primary_10_1016_j_apsusc_2023_158664
crossref_primary_10_1016_j_fuel_2024_132746
crossref_primary_10_1016_j_nanoen_2025_110683
crossref_primary_10_1021_acscatal_5c04811
crossref_primary_10_1007_s11426_024_2552_2
crossref_primary_10_1155_2024_5685619
crossref_primary_10_1002_adfm_202415046
crossref_primary_10_1016_j_fuel_2024_133394
crossref_primary_10_1002_anie_202308775
crossref_primary_10_1002_advs_202509323
crossref_primary_10_1016_j_jcis_2024_05_189
crossref_primary_10_1002_ange_202504499
crossref_primary_10_1002_smll_202308084
crossref_primary_10_1002_aenm_202502344
crossref_primary_10_1002_aenm_202401717
crossref_primary_10_1002_adma_202418233
crossref_primary_10_1002_aenm_202402805
crossref_primary_10_1007_s10562_024_04772_1
crossref_primary_10_1002_aenm_202401834
crossref_primary_10_1039_D2QI02757G
crossref_primary_10_1039_D4SC07619B
crossref_primary_10_26599_NR_2025_94907647
crossref_primary_10_1007_s11426_024_2040_8
crossref_primary_10_1039_D5CC01394A
crossref_primary_10_1002_ange_202308436
crossref_primary_10_1007_s12274_023_6094_z
crossref_primary_10_1039_D3QI01474F
crossref_primary_10_1002_anie_202504499
crossref_primary_10_1039_D4QM00502C
crossref_primary_10_1002_aenm_202400065
crossref_primary_10_1002_advs_202308979
crossref_primary_10_1038_s41467_025_58372_7
crossref_primary_10_1021_acs_inorgchem_5c01524
crossref_primary_10_1002_advs_202417773
crossref_primary_10_1016_j_jcis_2023_09_095
Cites_doi 10.1016/j.apsusc.2019.144248
10.26599/NRE.2022.9120017
10.1021/acs.chemmater.1c00424
10.1016/j.apcatb.2022.121651
10.1039/C8NR02142B
10.26599/NRE.2022.9120028
10.1039/D1CS00116G
10.1021/jacs.9b13347
10.1002/anie.202202604
10.1021/acsnano.2c00101
10.1038/s41565-022-01121-4
10.1002/aenm.201700513
10.1021/acsnano.1c08814
10.1016/j.apcatb.2022.122241
10.1002/anie.202202556
10.1021/acs.accounts.1c00543
10.1039/D2DT01431A
10.1002/smtd.202100699
10.1038/s41467-021-24400-5
10.1016/j.jcis.2022.09.012
10.1021/acs.jpcc.1c02749
10.1039/D2QI02118H
10.1002/ange.202205923
10.1016/j.joule.2020.12.025
10.1039/D1CS00857A
10.1038/s41467-021-23115-x
10.1021/jacs.0c00418
10.1016/j.mtphys.2022.100854
10.1002/adfm.202211537
10.1002/smll.202102363
10.1002/sstr.202200358
10.1021/acscatal.9b04103
10.1007/s12274-023-5384-9
10.1039/D2TA08027C
10.1039/D1TA06746J
10.1002/eem2.12268
10.1002/aenm.202103022
10.1016/j.jechem.2020.05.009
10.1038/s41467-022-29926-w
10.1021/acs.chemrev.9b00659
10.1021/acscatal.9b00959
10.1039/D0EE03596C
10.1002/adma.202205767
10.1002/adfm.202008056
10.26599/NRE.2022.9120033
10.1021/acsnano.2c07911
10.26599/NRE.2022.9120010
10.26599/NRE.2022.9120022
10.1021/acsenergylett.2c02882
10.1002/adma.202000381
10.1038/s41467-019-11846-x
10.1016/j.jcis.2022.09.049
10.1002/adma.202007650
10.1039/D0CC05853J
10.1002/anie.202205923
10.1021/acs.inorgchem.2c03714
10.1016/j.chempr.2021.01.009
10.1039/D1TA03662A
10.1021/acs.nanolett.2c04444
10.1039/D2TA04006A
10.1002/ange.202202604
10.1002/adfm.202209890
10.1021/acsami.2c12772
10.1002/aenm.201803369
10.1039/D0NH00242A
10.1016/j.cej.2022.140333
10.1039/D2QI01798A
10.1021/acsnano.2c00596
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202300054
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36734975
10_1002_anie_202300054
ANIE202300054
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52161025
– fundername: Fundamental Researches Top Talent Program of Lanzhou Jiaotong University
  funderid: 2022JC03
– fundername: Longyuan Youth Innovative and Entrepreneurial Talents Project
  funderid: [2021]17
– fundername: National Natural Science Foundation of China
  grantid: 52161025
– fundername: Longyuan Youth Innovative and Entrepreneurial Talents Project
  grantid: [2021]17
– fundername: Fundamental Researches Top Talent Program of Lanzhou Jiaotong University
  grantid: 2022JC03
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4394-cf0f63b38ac42ba227745f12d77512d1d421344cd6976a46ae132279c502e0d33
IEDL.DBID DRFUL
ISICitedReferencesCount 452
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000930851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:24:40 EDT 2025
Tue Oct 07 07:15:37 EDT 2025
Wed Feb 19 02:24:20 EST 2025
Sat Nov 29 03:03:44 EST 2025
Tue Nov 18 21:54:51 EST 2025
Wed Jan 22 16:22:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Electrocatalytic Nitrate Reduction to Ammonia
MBenes
Tandem Catalysts
Operando Electrochemical Characterizations
Theoretical Computations
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-cf0f63b38ac42ba227745f12d77512d1d421344cd6976a46ae132279c502e0d33
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0606-2689
PMID 36734975
PQID 2786063074
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2773117500
proquest_journals_2786063074
pubmed_primary_36734975
crossref_primary_10_1002_anie_202300054
crossref_citationtrail_10_1002_anie_202300054
wiley_primary_10_1002_anie_202300054_ANIE202300054
PublicationCentury 2000
PublicationDate March 20, 2023
PublicationDateYYYYMMDD 2023-03-20
PublicationDate_xml – month: 03
  year: 2023
  text: March 20, 2023
  day: 20
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2023; 10
2021; 7
2017; 7
2019; 9
2021; 5
2023; 11
2023; 17
2020; 120
2023; 6
2020; 142
2022; 51
2021; 125
2019; 10
2023; 8
2020; 500
2023; 324
2020; 56
2020; 10
2021; 50
2023; 629
2022; 316
2022; 28
2021; 14
2023; 62
2022 2022; 61 134
2020; 5
2021; 31
2021; 53
2021; 12
2021; 33
2023
2022; 61
2023; 454
2021; 17
2022; 12
2022; 34
2022; 13
2022; 14
2022; 1
2022; 10
2022; 55
2018; 10
2022; 16
2022; 17
e_1_2_3_50_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_4_1
e_1_2_3_18_1
e_1_2_3_12_1
e_1_2_3_35_1
e_1_2_3_58_1
e_1_2_3_56_1
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_37_1
e_1_2_3_31_1
e_1_2_3_52_1
e_1_2_3_10_1
e_1_2_3_33_1
e_1_2_3_54_1
e_1_2_3_62_1
e_1_2_3_60_1
(e_1_2_3_29_2) 2022; 134
(e_1_2_3_10_2) 2022; 134
e_1_2_3_28_1
e_1_2_3_49_1
e_1_2_3_24_1
e_1_2_3_45_1
e_1_2_3_26_1
e_1_2_3_47_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_66_1
e_1_2_3_22_1
e_1_2_3_43_1
e_1_2_3_64_1
e_1_2_3_51_1
e_1_2_3_1_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_38_1
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_57_1
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_34_1
e_1_2_3_59_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_36_1
e_1_2_3_30_1
e_1_2_3_53_1
e_1_2_3_55_1
e_1_2_3_11_1
e_1_2_3_32_1
e_1_2_3_61_1
e_1_2_3_40_1
e_1_2_3_27_1
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_46_1
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_42_1
e_1_2_3_65_1
e_1_2_3_21_1
e_1_2_3_44_1
e_1_2_3_63_1
References_xml – volume: 55
  start-page: 56
  year: 2022
  publication-title: Acc. Chem. Res.
– volume: 14
  start-page: 46595
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 629
  start-page: 563
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 142
  start-page: 5702
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 82
  year: 2021
  publication-title: J. Energy Chem.
– year: 2023
  publication-title: Nano Lett.
– volume: 17
  start-page: 759
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 33
  start-page: 4023
  year: 2021
  publication-title: Chem. Mater.
– volume: 62
  start-page: 653
  year: 2023
  publication-title: Inorg. Chem.
– volume: 12
  start-page: 4080
  year: 2021
  publication-title: Nat. Commun.
– volume: 125
  start-page: 19183
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 56
  start-page: 13009
  year: 2020
  publication-title: Chem. Commun.
– volume: 11
  start-page: 1817
  year: 2023
  publication-title: J. Mater. Chem. A
– year: 2023
  publication-title: Nano Res.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3898
  year: 2019
  publication-title: Nat. Commun.
– volume: 50
  start-page: 6720
  year: 2021
  publication-title: Chem. Soc. Rev.
– year: 2023
  publication-title: Small Struct.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1072
  year: 2022
  publication-title: ACS Nano
– volume: 16
  start-page: 4795
  year: 2022
  publication-title: ACS Nano
– volume: 5
  start-page: 1106
  year: 2020
  publication-title: Nanoscale Horiz.
– volume: 500
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 15955
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 1176
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 1742
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 280
  year: 2023
  publication-title: Inorg. Chem. Front.
– year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 316
  year: 2022
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 290
  year: 2021
  publication-title: Joule
– volume: 17
  year: 2021
  publication-title: Small
– volume: 12
  start-page: 2870
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 11544
  year: 2018
  publication-title: Nanoscale
– volume: 7
  start-page: 1708
  year: 2021
  publication-title: Chem
– volume: 16
  start-page: 7915
  year: 2022
  publication-title: ACS Nano
– volume: 13
  start-page: 2338
  year: 2022
  publication-title: Nat. Commun.
– volume: 6
  year: 2023
  publication-title: Energy Environ. Mater.
– volume: 10
  start-page: 18690
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 1847
  year: 2020
  publication-title: ACS Catal.
– volume: 17
  start-page: 1081
  year: 2023
  publication-title: ACS Nano
– volume: 8
  start-page: 1281
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 120
  start-page: 5437
  year: 2020
  publication-title: Chem. Rev.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 7036
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2710
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 629
  start-page: 950
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 28
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 324
  year: 2023
  publication-title: Appl. Catal. B
– volume: 1
  year: 2022
  publication-title: Nano Res. Energy
– volume: 9
  start-page: 7311
  year: 2019
  publication-title: ACS Catal.
– volume: 51
  start-page: 9206
  year: 2022
  publication-title: Dalton Trans.
– ident: e_1_2_3_40_1
  doi: 10.1016/j.apsusc.2019.144248
– ident: e_1_2_3_56_1
  doi: 10.26599/NRE.2022.9120017
– ident: e_1_2_3_41_1
  doi: 10.1021/acs.chemmater.1c00424
– ident: e_1_2_3_9_1
  doi: 10.1016/j.apcatb.2022.121651
– ident: e_1_2_3_35_1
  doi: 10.1039/C8NR02142B
– ident: e_1_2_3_55_1
  doi: 10.26599/NRE.2022.9120028
– ident: e_1_2_3_16_1
  doi: 10.1039/D1CS00116G
– ident: e_1_2_3_21_1
  doi: 10.1021/jacs.9b13347
– ident: e_1_2_3_29_1
  doi: 10.1002/anie.202202604
– ident: e_1_2_3_28_1
  doi: 10.1021/acsnano.2c00101
– ident: e_1_2_3_19_1
  doi: 10.1038/s41565-022-01121-4
– ident: e_1_2_3_47_1
  doi: 10.1002/aenm.201700513
– ident: e_1_2_3_31_1
  doi: 10.1021/acsnano.1c08814
– ident: e_1_2_3_49_1
  doi: 10.1016/j.apcatb.2022.122241
– ident: e_1_2_3_30_1
  doi: 10.1002/anie.202202556
– ident: e_1_2_3_34_1
  doi: 10.1021/acs.accounts.1c00543
– ident: e_1_2_3_33_1
  doi: 10.1039/D2DT01431A
– ident: e_1_2_3_36_1
  doi: 10.1002/smtd.202100699
– ident: e_1_2_3_37_1
  doi: 10.1038/s41467-021-24400-5
– ident: e_1_2_3_25_1
  doi: 10.1016/j.jcis.2022.09.012
– ident: e_1_2_3_42_1
  doi: 10.1021/acs.jpcc.1c02749
– ident: e_1_2_3_51_1
  doi: 10.1039/D2QI02118H
– volume: 134
  year: 2022
  ident: e_1_2_3_10_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202205923
– ident: e_1_2_3_17_1
  doi: 10.1016/j.joule.2020.12.025
– ident: e_1_2_3_15_1
  doi: 10.1039/D1CS00857A
– ident: e_1_2_3_20_1
  doi: 10.1038/s41467-021-23115-x
– ident: e_1_2_3_22_1
  doi: 10.1021/jacs.0c00418
– ident: e_1_2_3_24_1
  doi: 10.1016/j.mtphys.2022.100854
– ident: e_1_2_3_48_1
  doi: 10.1002/adfm.202211537
– ident: e_1_2_3_14_1
  doi: 10.1002/smll.202102363
– ident: e_1_2_3_57_1
  doi: 10.1002/sstr.202200358
– ident: e_1_2_3_44_1
  doi: 10.1021/acscatal.9b04103
– ident: e_1_2_3_53_1
  doi: 10.1007/s12274-023-5384-9
– ident: e_1_2_3_58_1
  doi: 10.1039/D2TA08027C
– ident: e_1_2_3_50_1
  doi: 10.1039/D1TA06746J
– ident: e_1_2_3_12_1
  doi: 10.1002/eem2.12268
– ident: e_1_2_3_11_1
  doi: 10.1002/aenm.202103022
– ident: e_1_2_3_46_1
  doi: 10.1016/j.jechem.2020.05.009
– ident: e_1_2_3_18_1
  doi: 10.1038/s41467-022-29926-w
– ident: e_1_2_3_5_1
  doi: 10.1021/acs.chemrev.9b00659
– ident: e_1_2_3_65_1
  doi: 10.1021/acscatal.9b00959
– ident: e_1_2_3_7_1
  doi: 10.1039/D0EE03596C
– ident: e_1_2_3_32_1
  doi: 10.1002/adma.202205767
– ident: e_1_2_3_39_1
  doi: 10.1002/adfm.202008056
– ident: e_1_2_3_54_1
  doi: 10.26599/NRE.2022.9120033
– ident: e_1_2_3_61_1
  doi: 10.1021/acsnano.2c07911
– ident: e_1_2_3_1_1
  doi: 10.26599/NRE.2022.9120010
– ident: e_1_2_3_2_1
  doi: 10.26599/NRE.2022.9120022
– ident: e_1_2_3_4_1
  doi: 10.1021/acsenergylett.2c02882
– ident: e_1_2_3_8_1
  doi: 10.1002/adma.202000381
– ident: e_1_2_3_63_1
  doi: 10.1038/s41467-019-11846-x
– ident: e_1_2_3_27_1
  doi: 10.1016/j.jcis.2022.09.049
– ident: e_1_2_3_3_1
  doi: 10.1002/adma.202007650
– ident: e_1_2_3_43_1
  doi: 10.1039/D0CC05853J
– ident: e_1_2_3_10_1
  doi: 10.1002/anie.202205923
– ident: e_1_2_3_62_1
  doi: 10.1021/acs.inorgchem.2c03714
– ident: e_1_2_3_6_1
  doi: 10.1016/j.chempr.2021.01.009
– ident: e_1_2_3_13_1
  doi: 10.1039/D1TA03662A
– ident: e_1_2_3_64_1
  doi: 10.1021/acs.nanolett.2c04444
– ident: e_1_2_3_59_1
  doi: 10.1039/D2TA04006A
– volume: 134
  year: 2022
  ident: e_1_2_3_29_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202202604
– ident: e_1_2_3_66_1
  doi: 10.1002/adfm.202209890
– ident: e_1_2_3_23_1
  doi: 10.1021/acsami.2c12772
– ident: e_1_2_3_38_1
  doi: 10.1002/aenm.201803369
– ident: e_1_2_3_45_1
  doi: 10.1039/D0NH00242A
– ident: e_1_2_3_52_1
  doi: 10.1016/j.cej.2022.140333
– ident: e_1_2_3_26_1
  doi: 10.1039/D2QI01798A
– ident: e_1_2_3_60_1
  doi: 10.1021/acsnano.2c00596
SSID ssj0028806
Score 2.7439494
Snippet We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of...
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO 3 RR). As a proof of...
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO RR). As a proof of...
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300054
SubjectTerms Ammonia
Catalysis
Catalysts
Electrocatalytic Nitrate Reduction to Ammonia
Intermediates
MBenes
Nitrate reduction
Operando Electrochemical Characterizations
Reduction
Tandem Catalysts
Theoretical Computations
Title Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202300054
https://www.ncbi.nlm.nih.gov/pubmed/36734975
https://www.proquest.com/docview/2786063074
https://www.proquest.com/docview/2773117500
Volume 62
WOSCitedRecordID wos000930851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_cJuiL3x_TOSoIPtVlSda0L8KcGwo6ZGywt5ImKQx0k30I_vfm2q46RAR9a8ilDXeX5Jc09zuAC20hgoqVdklDeS7n3OAlAOoaSUUc2Vk5oCpJNiG6XX84DJ6-RPGn_BD5gRuOjGS-xgEuo1ntkzQUI7CvMPl3AjsKUMLIKrv9Kt32OoOHfNNl_TONMGLMxUT0S-JGQmurb1hdmL6hzVXwmqw-ne3_93sHtjLk6TRTV9mFNTPeg43WMuHbPlz38UD5xWmnmXGSg513K-x0RwmFrdNDmlc0pDOfOE104JF0bOnxBifMAxh02v3WnZulV3AVhsO6KiaxxyLmS8VpJCm1SLAR16kWwqIAXdcc2d640p6FLJJ70uDOVQSqQaghmrFDKI4nY3MMTl0bGdtWnqcpV4pI7kseRNLn0sJPysvgLnUbqox7HFNgPIcpazINUSthrpUyXObyrynrxo-SlaWpwmz0zUIqfA-5xIStPs-rrTbxZ4gcm8kCZQRDmlJCynCUmjj_FPME44FolIEmlvylD2Gze9_OSyd_aXQKm_iMl9soqUBxPl2YM1hXb_PRbFqFghj61cyzPwDyp_Ss
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90Cvri98f8rCD4VM2SLGlfhDk3NpxFxgTfSpakMNBN3Cb435tru8oQEcTHNEkb7i7JL9fc7wDOjYMIOtHGJ1UtfM65xUsA1LeKyqTvVuWQ6jTZhIyi4OkpfMhvE2IsTMYPUTjccGak6zVOcHRIX32xhmII9iVm_05xxyIsccFkUIKl227zsVOcupyBZiFGjPmYiX7G3Ejo1fwb5nemb3BzHr2m209z_R8GvgFrOfb0apmxbMKCHW7BSn2W8m0brnvoUn7xGllunNS18-Eae9EgJbH1ukj0iqr0JiOvhiY8UJ4r3d_gkrkDj81Gr97y8wQLvsaAWF8nJBGszwKlOe0rSh0WrCYVaqR0OMBUDEe-N66NcKBFcaEsnl1lqKuEWmIY24XScDS0--BVjFWJ6yWEoVxronigeNhXAVcOgFJeBn8m3Fjn7OOYBOM5zniTaYxSiQuplOGiaP-a8W782PJopqs4n3_jmMpAIJuYdNVnRbWTJv4OUUM7mmIbyZColJAy7GU6Lj7FhGQ8lNUy0FSVv4whrkXtRlE6-EunU1hp9e47cacd3R3CKj7Hq26UHEFp8ja1x7Cs3yeD8dtJbuCf6fb3tA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90ivri90f9rCD4VJcladO-CFM3HM4iY4O9lSxJYaCb6BT87821XWWICOJjmksb7i7JL2nudwBn2kIElSrtEV8FHufc4CUA6hlJRTqws3JEVZZsQsRx2O9HD8VtQoyFyfkhygM3HBnZfI0D3DzrtPrFGooh2BeY_TvDHfOwwP3I5xVYuOk0e-1y12UdNA8xYszDTPRT5kZCq7NvmF2ZvsHNWfSaLT_NtX_o-DqsFtjTrefOsgFzZrQJy9fTlG9bcNnFI-Unt5HnxsmOdj6ssBsPMxJbt4NEr2hKdzJ26-jCQ-na0v0VTpnb0Gs2ute3XpFgwVMYEOuplKQBG7BQKk4HklKLBf20RrUQFgfomubI98aVDixokTyQBveuIlI-oYZoxnagMhqPzB64NW1kalsFgaZcKSJ5KHk0kCGXFoBS7oA3VW6iCvZxTILxmOS8yTRBrSSlVhw4L-Wfc96NHyUPp7ZKivH3mlARBsgmJmz1aVlttYm_Q-TIjN9QRjAkKiXEgd3cxuWnWCAYj4TvAM1M-UsfknrcapSl_b80OoGlh5tm0m7Fdwewgo_xphslh1CZvLyZI1hU75Ph68tx4d-ffrb3Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tandem+Electrocatalytic+Nitrate+Reduction+to+Ammonia+on+MBenes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Guike&rft.au=Li%2C+Xiaotian&rft.au=Chen%2C+Kai&rft.au=Guo%2C+Yali&rft.date=2023-03-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202300054&rft.externalDBID=10.1002%252Fanie.202300054&rft.externalDocID=ANIE202300054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon