Designing Anticancer Peptides by Constructive Machine Learning
Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de...
Saved in:
| Published in: | ChemMedChem Vol. 13; no. 13; pp. 1300 - 1302 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
WEINHEIM
Wiley
06.07.2018
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1860-7179, 1860-7187, 1860-7187 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short‐term memory cells was trained on α‐helical cationic amphipathic peptide sequences and then fine‐tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities.
Deep learning: We report the experimental application of deep machine learning for the automated design and generation of novel membranolytic anticancer peptides. This technique, which avoids the need for explicit molecular design rules, has proven applicable to automated peptide design in a prospective setting without having to synthesize and test large sets of peptides. |
|---|---|
| AbstractList | Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities.Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short‐term memory cells was trained on α‐helical cationic amphipathic peptide sequences and then fine‐tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. Deep learning: We report the experimental application of deep machine learning for the automated design and generation of novel membranolytic anticancer peptides. This technique, which avoids the need for explicit molecular design rules, has proven applicable to automated peptide design in a prospective setting without having to synthesize and test large sets of peptides. Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on -helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. |
| Author | Schneider, Gisbert Gabernet, Gisela Hiss, Jan A. Müller, Alex T. Grisoni, Francesca Neuhaus, Claudia S. |
| Author_xml | – sequence: 1 givenname: Francesca orcidid: 0000-0001-8552-6615 surname: Grisoni fullname: Grisoni, Francesca organization: University of Milano-Bicocca – sequence: 2 givenname: Claudia S. orcidid: 0000-0002-4717-1152 surname: Neuhaus fullname: Neuhaus, Claudia S. organization: Swiss Federal Institute of Technology (ETH) – sequence: 3 givenname: Gisela surname: Gabernet fullname: Gabernet, Gisela organization: Swiss Federal Institute of Technology (ETH) – sequence: 4 givenname: Alex T. surname: Müller fullname: Müller, Alex T. organization: Swiss Federal Institute of Technology (ETH) – sequence: 5 givenname: Jan A. surname: Hiss fullname: Hiss, Jan A. organization: Swiss Federal Institute of Technology (ETH) – sequence: 6 givenname: Gisbert orcidid: 0000-0001-6706-1084 surname: Schneider fullname: Schneider, Gisbert email: gisbert.schneider@pharma.ethz.ch organization: Swiss Federal Institute of Technology (ETH) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29679519$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU2LFDEQhoOsuB969SgNXgSZsfLRneQiLL26CrPoQc9NOl1Zs_SkxyS9Mv_eDDM7woLoKRV4nqrirXNyEqaAhLyksKQA7J1dD3bJgKryAfGEnFHVwEJSJU-OtdSn5DylOwAhFFXPyCnTjdQ11Wfk_RUmfxt8uK0uQ_bWBIux-oqb7AdMVb-t2imkHGeb_T1WN8b-8AGrFZq4k56Tp86MCV8c3gvy_eOHb-2nxerL9ef2crWwgmuxsA2KfnA9Ws1qR3VTg2ko14NQIC1D1teg9EC5BDBOA2eN0A6cM0bXWBt-Qd7s-27i9HPGlLu1TxbH0QSc5tQxYErvRjUFff0IvZvmGMp2hWqEFJQDL9SrAzX3axy6TfRrE7fdQzIFUHvgF_aTS9ZjSeaIQcmSS8mFKBXw1meT_RTaaQ65qG__Xy30ck_bOKUU0R1JCt3uxt3uxt3xxkUQjwR7GJ-j8ePfNX3Yyo-4_ceQrr25av-4vwHFyrbi |
| CitedBy_id | crossref_primary_10_3389_fphar_2024_1491699 crossref_primary_10_1021_acs_jcim_5c01401 crossref_primary_10_1016_j_ailsci_2023_100064 crossref_primary_10_1038_s41598_022_13227_9 crossref_primary_10_1093_bib_bbae644 crossref_primary_10_1093_pnasnexus_pgae572 crossref_primary_10_1002_ange_201909987 crossref_primary_10_1038_s41598_024_57247_z crossref_primary_10_1038_s42256_021_00418_8 crossref_primary_10_1089_cmb_2024_0866 crossref_primary_10_1016_j_biopha_2020_110255 crossref_primary_10_1016_j_compbiomed_2022_105868 crossref_primary_10_1038_s41551_021_00689_x crossref_primary_10_1007_s00894_019_4007_6 crossref_primary_10_1186_s12859_020_03812_y crossref_primary_10_1016_j_peptides_2021_170628 crossref_primary_10_1038_s41557_024_01532_x crossref_primary_10_1109_ACCESS_2025_3569255 crossref_primary_10_1016_j_ejphar_2025_178086 crossref_primary_10_1038_s41589_024_01679_1 crossref_primary_10_3390_pharmaceutics14051089 crossref_primary_10_1016_j_cbi_2022_110194 crossref_primary_10_1039_D3BM02026F crossref_primary_10_1039_D4SC07642G crossref_primary_10_1038_s41598_024_62419_y crossref_primary_10_3390_pharmaceutics14050997 crossref_primary_10_1093_protein_gzab011 crossref_primary_10_1016_j_foodcont_2021_108439 crossref_primary_10_1080_17460441_2018_1547278 crossref_primary_10_2217_nnm_2020_0352 crossref_primary_10_1016_j_compbiomed_2022_106140 crossref_primary_10_3389_fchem_2019_00809 crossref_primary_10_3389_fphar_2020_565644 crossref_primary_10_1002_cmdc_202200291 crossref_primary_10_3389_fmolb_2022_928534 crossref_primary_10_1038_s41578_025_00782_6 crossref_primary_10_1007_s10555_023_10086_2 crossref_primary_10_1016_j_drudis_2024_104133 crossref_primary_10_4155_fmc_2019_0118 crossref_primary_10_1371_journal_pcbi_1010874 crossref_primary_10_1038_s42003_021_02586_0 crossref_primary_10_3390_antibiotics9120854 crossref_primary_10_1039_D0ME00161A crossref_primary_10_1002_anie_201814681 crossref_primary_10_1145_3714455 crossref_primary_10_1111_febs_16276 crossref_primary_10_1007_s00284_025_04346_3 crossref_primary_10_3389_fphar_2019_01303 crossref_primary_10_1002_anie_201909987 crossref_primary_10_1039_D5CC02530C crossref_primary_10_1016_j_jmb_2021_167154 crossref_primary_10_1038_s41598_019_47568_9 crossref_primary_10_1038_s41598_024_67433_8 crossref_primary_10_1002_ange_201814681 crossref_primary_10_1016_j_pestbp_2025_106652 crossref_primary_10_3390_ijms242015447 crossref_primary_10_1016_j_csbj_2025_02_032 crossref_primary_10_1016_j_omtn_2020_10_005 crossref_primary_10_3390_molecules27051544 crossref_primary_10_1016_j_biopha_2024_116709 crossref_primary_10_1126_sciadv_ads8932 crossref_primary_10_1039_C9ME00039A crossref_primary_10_1080_17460441_2022_2019704 crossref_primary_10_1093_bioadv_vbaf058 crossref_primary_10_1007_s10462_025_11148_3 crossref_primary_10_1016_j_nantod_2024_102160 |
| Cites_doi | 10.3389/fphar.2018.00074 10.1021/acscentsci.7b00512 10.1093/nar/gku892 10.1016/0196-8858(91)90017-D 10.1074/jbc.M117.805499 10.1371/journal.pone.0181748 10.1109/ICASSP.2013.6638947 10.1016/j.chemphyslip.2011.09.004 10.1021/acscentsci.7b00572 10.1039/C6MD00376A 10.1002/minf.201700111 10.1007/s004300050113 10.1002/minf.201700153 10.1021/acs.jcim.7b00414 10.1109/T-C.1969.222678 10.1109/SLT.2012.6424228 10.1021/ci9004089 10.1002/minf.201501008 10.1016/j.febslet.2005.09.084 10.1039/c6md00376a |
| ContentType | Journal Article |
| Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ HBEAY NPM 7QO 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
| DOI | 10.1002/cmdc.201800204 |
| DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2018 PubMed Biotechnology Research Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Web of Science PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Web of Science PubMed CrossRef Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1860-7187 |
| EndPage | 1302 |
| ExternalDocumentID | 29679519 000437734400003 10_1002_cmdc_201800204 CMDC201800204 |
| Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: CRSII2_160699; 200021_157190; IZSEZ0_177477 – fundername: Swiss National Science Foundation; Swiss National Science Foundation (SNSF) grantid: CRSII2_160699; 200021_157190; IZSEZ0_177477 |
| GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 53G 5GY 66C 6J9 77Q 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HBH HGLYW HHZ HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MXFUL MXSTM MY~ O9- OIG P2W P4E PQQKQ ROL RWI SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 YZZ ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7QO 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c4394-c6e4bdfbec925f19650a6139d4807c2e2b5089d13700af9032649f0ffaa95e5a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000437734400003 |
| ISSN | 1860-7179 1860-7187 |
| IngestDate | Thu Oct 02 11:09:35 EDT 2025 Sat Nov 29 14:22:31 EST 2025 Mon Jul 21 05:55:04 EDT 2025 Tue Oct 28 01:47:37 EDT 2025 Fri Dec 05 22:47:31 EST 2025 Tue Nov 18 22:12:33 EST 2025 Sat Nov 29 07:19:07 EST 2025 Wed Jan 22 17:06:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | peptide design de novo design deep learning NK-LYSIN drug discovery artificial intelligence |
| Language | English |
| License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
| MergedId | FETCHMERGED-LOGICAL-c4394-c6e4bdfbec925f19650a6139d4807c2e2b5089d13700af9032649f0ffaa95e5a3 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8552-6615 0000-0002-4717-1152 0000-0001-6706-1084 0000-0001-7049-9474 0000-0003-0559-4330 |
| PMID | 29679519 |
| PQID | 2064741303 |
| PQPubID | 986335 |
| PageCount | 3 |
| ParticipantIDs | crossref_primary_10_1002_cmdc_201800204 proquest_miscellaneous_2028943946 webofscience_primary_000437734400003CitationCount proquest_journals_2064741303 pubmed_primary_29679519 webofscience_primary_000437734400003 crossref_citationtrail_10_1002_cmdc_201800204 wiley_primary_10_1002_cmdc_201800204_CMDC201800204 |
| PublicationCentury | 2000 |
| PublicationDate | July 6, 2018 |
| PublicationDateYYYYMMDD | 2018-07-06 |
| PublicationDate_xml | – month: 07 year: 2018 text: July 6, 2018 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | WEINHEIM |
| PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
| PublicationTitle | ChemMedChem |
| PublicationTitleAbbrev | CHEMMEDCHEM |
| PublicationTitleAlternate | ChemMedChem |
| PublicationYear | 2018 |
| Publisher | Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2018; 9 2016; 7 2018; 4 2018; 293 2001 1991; 12 2015; 43 2017; 12 1999; 188 2018; 37 2016; 35 2005; 579-579 2010; 50 2018; 58 2011; 164 1969; C-18 Riedl S. (e_1_2_2_13_1) 2011; 164 e_1_2_2_14_1 Simões R. S. (e_1_2_2_19_1) 2018; 9 e_1_2_2_7_1 Huang X. (e_1_2_2_20_1) 1991; 12 Gómez-Bombarelli R. (e_1_2_2_4_1) 2018; 4 Merk D. (e_1_2_2_5_1) 2018; 37 Müller A. T. (e_1_2_2_9_1) 2018; 58 Schröder-Borm H. (e_1_2_2_17_1) 2005; 579 e_1_2_2_8_1 Gawehn E. (e_1_2_2_6_1) 2016; 35 Gabernet G. (e_1_2_2_10_1) 2016; 7 Nagarajan D. (e_1_2_2_18_1) 2018; 293 Tyagi A. (e_1_2_2_11_1) 2015; 43 Usmani S. S. (e_1_2_2_12_1) 2017; 12 Segler M. H. S. (e_1_2_2_1_1) 2018; 4 Gupta A. (e_1_2_2_3_1) 2018; 37 White D. (e_1_2_2_2_1) 2010; 50 Andrä J. (e_1_2_2_16_1) 1999; 188 Sammon J. W. (e_1_2_2_15_1) 1969; 18 Schroder-Borm, H (WOS:000233157800023) 2005; 579 Gomez-Bombarelli, R (WOS:000426613700019) 2018; 4 (000437734400003.1) 2001 White, D (WOS:000280183200007) 2010; 50 Andra, J (WOS:000085309400002) 1999; 188 Merk, D (WOS:000425106200009) 2018; 37 Graves, A (WOS:000329611506162) 2013 Muller, AT (WOS:000426613800026) 2018; 58 SAMMON, JW (WOS:A1969D511700001) 1969; C 18 Tyagi, A (WOS:000350210400122) 2015; 43 Mikolov, T (WOS:000317182800041) 2012 Simoes, RS (WOS:000424216900001) 2018; 9 Usmani, SS (WOS:000406761600026) 2017; 12 Segler, MHS (WOS:000423170700014) 2018; 4 Nagarajan, D (WOS:000427030200004) 2018; 293 Gawehn, E (WOS:000368588300002) 2016; 35 Riedl, S (WOS:000297958000008) 2011; 164 Gupta, A (WOS:000425106200002) 2018; 37 HUANG, XQ (WOS:A1991GB12200004) 1991; 12 Gabernet, G (WOS:000390552300003) 2016; 7 |
| References_xml | – volume: 37 start-page: 1700153 year: 2018 publication-title: Mol. Inf. – volume: 293 start-page: 3492 year: 2018 end-page: 3509 publication-title: J. Biol. Chem. – volume: 164 start-page: 766 year: 2011 end-page: 781 publication-title: Chem. Phys. Lipids – volume: 4 start-page: 268 year: 2018 end-page: 276 publication-title: ACS Cent. Sci. – volume: 37 start-page: 1700111 year: 2018 publication-title: Mol. Inf. – volume: 7 start-page: 2232 year: 2016 end-page: 2245 publication-title: MedChemComm – volume: C-18 start-page: 401 year: 1969 end-page: 409 publication-title: IEEE Trans. Comput. – year: 2001 – volume: 4 start-page: 120 year: 2018 end-page: 131 publication-title: ACS Cent. Sci. – volume: 188 start-page: 117 year: 1999 end-page: 124 publication-title: Med. Microbiol. Immunol. – volume: 50 start-page: 1257 year: 2010 end-page: 1274 publication-title: J. Chem. Inf. Model. – volume: 9 start-page: 74 year: 2018 publication-title: Front. Pharmacol. – volume: 12 start-page: 0181748 year: 2017 publication-title: PLoS One – volume: 58 start-page: 472 year: 2018 end-page: 479 publication-title: J. Chem. Inf. Model. – volume: 43 start-page: 837 year: 2015 end-page: 843 publication-title: Nucleic Acids Res. – volume: 12 start-page: 337 year: 1991 end-page: 357 publication-title: Adv. Appl. Math. – volume: 35 start-page: 3 year: 2016 end-page: 14 publication-title: Mol. Inf. – volume: 579-579 start-page: 6128 year: 2005 end-page: 6134 publication-title: FEBS Lett. – volume: 9 start-page: 74 year: 2018 ident: e_1_2_2_19_1 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00074 – volume: 4 start-page: 120 year: 2018 ident: e_1_2_2_1_1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00512 – volume: 43 start-page: 837 year: 2015 ident: e_1_2_2_11_1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku892 – volume: 12 start-page: 337 year: 1991 ident: e_1_2_2_20_1 publication-title: Adv. Appl. Math. doi: 10.1016/0196-8858(91)90017-D – volume: 293 start-page: 3492 year: 2018 ident: e_1_2_2_18_1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.805499 – volume: 12 start-page: 0181748 year: 2017 ident: e_1_2_2_12_1 publication-title: PLoS One doi: 10.1371/journal.pone.0181748 – ident: e_1_2_2_8_1 doi: 10.1109/ICASSP.2013.6638947 – volume: 164 start-page: 766 year: 2011 ident: e_1_2_2_13_1 publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2011.09.004 – volume: 4 start-page: 268 year: 2018 ident: e_1_2_2_4_1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00572 – volume: 7 start-page: 2232 year: 2016 ident: e_1_2_2_10_1 publication-title: MedChemComm doi: 10.1039/C6MD00376A – ident: e_1_2_2_14_1 – volume: 37 start-page: 1700111 year: 2018 ident: e_1_2_2_3_1 publication-title: Mol. Inf. doi: 10.1002/minf.201700111 – volume: 188 start-page: 117 year: 1999 ident: e_1_2_2_16_1 publication-title: Med. Microbiol. Immunol. doi: 10.1007/s004300050113 – volume: 37 start-page: 1700153 year: 2018 ident: e_1_2_2_5_1 publication-title: Mol. Inf. doi: 10.1002/minf.201700153 – volume: 58 start-page: 472 year: 2018 ident: e_1_2_2_9_1 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00414 – volume: 18 start-page: 401 year: 1969 ident: e_1_2_2_15_1 publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1969.222678 – ident: e_1_2_2_7_1 doi: 10.1109/SLT.2012.6424228 – volume: 50 start-page: 1257 year: 2010 ident: e_1_2_2_2_1 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci9004089 – volume: 35 start-page: 3 year: 2016 ident: e_1_2_2_6_1 publication-title: Mol. Inf. doi: 10.1002/minf.201501008 – volume: 579 start-page: 6128 year: 2005 ident: e_1_2_2_17_1 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.09.084 – volume: 50 start-page: 1257 year: 2010 ident: WOS:000280183200007 article-title: Generative Models for Chemical Structures publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING doi: 10.1021/ci9004089 – volume: 293 start-page: 3492 year: 2018 ident: WOS:000427030200004 article-title: Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria publication-title: JOURNAL OF BIOLOGICAL CHEMISTRY doi: 10.1074/jbc.M117.805499 – volume: 164 start-page: 766 year: 2011 ident: WOS:000297958000008 article-title: Membrane-active host defense peptides - Challenges and perspectives for the development of novel anticancer drugs publication-title: CHEMISTRY AND PHYSICS OF LIPIDS doi: 10.1016/j.chemphyslip.2011.09.004 – volume: 12 start-page: ARTN e0181748 year: 2017 ident: WOS:000406761600026 article-title: THPdb: Database of FDA-approved peptide and protein therapeutics publication-title: PLOS ONE doi: 10.1371/journal.pone.0181748 – volume: 4 start-page: 268 year: 2018 ident: WOS:000426613700019 article-title: Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.7b00572 – volume: 12 start-page: 337 year: 1991 ident: WOS:A1991GB12200004 article-title: A TIME-EFFICIENT, LINEAR-SPACE LOCAL SIMILARITY ALGORITHM publication-title: ADVANCES IN APPLIED MATHEMATICS – start-page: 234 year: 2012 ident: WOS:000317182800041 article-title: CONTEXT DEPENDENT RECURRENT NEURAL NETWORK LANGUAGE MODEL publication-title: 2012 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2012) – volume: 7 start-page: 2232 year: 2016 ident: WOS:000390552300003 article-title: Membranolytic anticancer peptides publication-title: MEDCHEMCOMM doi: 10.1039/c6md00376a – volume: 58 start-page: 472 year: 2018 ident: WOS:000426613800026 article-title: Recurrent Neural Network Model for Constructive Peptide Design publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING doi: 10.1021/acs.jcim.7b00414 – volume: 9 start-page: ARTN 74 year: 2018 ident: WOS:000424216900001 article-title: Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges publication-title: FRONTIERS IN PHARMACOLOGY doi: 10.3389/fphar.2018.00074 – volume: 35 start-page: 3 year: 2016 ident: WOS:000368588300002 article-title: 6 Deep Learning in Drug Discovery publication-title: MOLECULAR INFORMATICS doi: 10.1002/minf.201501008 – volume: 37 start-page: ARTN 1700111 year: 2018 ident: WOS:000425106200002 article-title: Generative Recurrent Networks for De Novo Drug Design publication-title: MOLECULAR INFORMATICS doi: 10.1002/minf.201700111 – volume: 188 start-page: 117 year: 1999 ident: WOS:000085309400002 article-title: Candidacidal activity of shortened synthetic analogs of amoebapores and NK-lysin publication-title: MEDICAL MICROBIOLOGY AND IMMUNOLOGY – volume: C 18 start-page: 401 year: 1969 ident: WOS:A1969D511700001 article-title: A NONLINEAR MAPPING FOR DATA STRUCTURE ANALYSIS publication-title: IEEE TRANSACTIONS ON COMPUTERS – volume: 43 start-page: D837 year: 2015 ident: WOS:000350210400122 article-title: CancerPPD: a database of anticancer peptides and proteins publication-title: NUCLEIC ACIDS RESEARCH doi: 10.1093/nar/gku892 – volume: 4 start-page: 120 year: 2018 ident: WOS:000423170700014 article-title: Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.7b00512 – start-page: 6645 year: 2013 ident: WOS:000329611506162 article-title: SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS publication-title: 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) – volume: 37 start-page: ARTN 1700153 year: 2018 ident: WOS:000425106200009 article-title: De Novo Design of Bioactive Small Molecules by Artificial Intelligence publication-title: MOLECULAR INFORMATICS doi: 10.1002/minf.201700153 – volume: 579 start-page: 6128 year: 2005 ident: WOS:000233157800023 article-title: The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine publication-title: FEBS LETTERS doi: 10.1016/j.febslet.2005.09.084 – year: 2001 ident: 000437734400003.1 publication-title: US Pat |
| SSID | ssj0044818 |
| Score | 2.4839804 |
| Snippet | Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules.... |
| Source | Web of Science |
| SourceID | proquest pubmed webofscience crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1300 |
| SubjectTerms | Adenocarcinoma Amino acids Artificial intelligence Automation Cancer Chemistry, Medicinal Computer memory de novo design deep learning Design drug discovery Erythrocytes Learning algorithms Life Sciences & Biomedicine Machine learning Memory cells Molecular chains Neural networks Organic chemistry peptide design Peptides Pharmacology & Pharmacy Recurrent neural networks Science & Technology Selectivity Transfer learning |
| Title | Designing Anticancer Peptides by Constructive Machine Learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.201800204 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000437734400003 https://www.ncbi.nlm.nih.gov/pubmed/29679519 https://www.proquest.com/docview/2064741303 https://www.proquest.com/docview/2028943946 |
| Volume | 13 |
| WOS | 000437734400003 |
| WOSCitedRecordID | wos000437734400003 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1860-7187 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044818 issn: 1860-7179 databaseCode: DRFUL dateStart: 20060101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WZA976b5Xb1nQoHQvFbVl-UMvg5Is7GEpYaSQNyNbUhlsbqnbQv773cmO02yMje3NRucPSXe6n6S7nwAOtYtVbFzCo7wquUxUxbUQmqPrLyV6ROsi7Q-byM7O8tVKLe5l8bf8EP2CG1mGH6_JwHXZnGxJQ6vvhigII4945B4MKbMKp1_D6ZfZ-efNaIyzD7_GF-VpyHHqojbEjaE42X3DrmP6BW3-5Jh2sax3RrPH_1-NJ7DfAVF22mrOU3hg62dwtGiZrNfHbLlNzGqO2RFbbDmu18_hw9RHfqDfY6c1LYfjz16zBYXIGNuwcs3oJNCWm_bOsrkP2bSsY3O9eAHns4_LySfeHcXAK0qd5VVqZWkcdrgSiSMWwlAjEFCGMtIrYUWJQE-ZKM7CUDsVIiiUyoXOaa0Sm-j4JQzqy9oeAJMm0klm0zx3WpqkVA4RJsEO66xBOBkA3_RDUXU85XRcxreiZVgWBTVZ0TdZAO97-auWoeO3kqNNtxadpTZYmsrMe_IA3vXFaGO0caJre3lLMoJo6pVMA3jVqkP_KaHSDFGqCuDwvn705X6vNctiKQka4EeivxGbdBUnYoKbAITXoD9Ur5jMp5P-7vW_PPQGHtG1D0dORzBANbFv4WF1d_O1uR7DXrbKx52B_QABsCHg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6dLC9rN1X563dNCjdS0VtWf7QS6EkDR1LQhgp9M3IljQGqzuarpD_fney4ywbpWPs0dZZsqQ73U_S6SeAfe1iFRuX8CivSi4TVXEthObo-kuJHtG6SPvLJrLJJL-4UNM2mpDOwjT8EN2CG1mGH6_JwGlB-mjFGlpdGuIgjDzkkQ9gE_PO8h5sDj4Pz0fL4RinH36RL8rTkOPcRS2ZG0NxtJ7Dumf6A27-5pnWwaz3RsOt_1CPbXjSQlF20ujOU9iw9TM4mDZc1otDNlsdzZofsgM2XbFcL57D8cDHfqDnYyc1LYjj316zKQXJGDtn5YLRXaANO-2tZWMftGlZy-f65QWcD09n_TPeXsbAKzo8y6vUytI47HIlEkc8hKFGKKAMnUmvhBUlQj1lojgLQ-1UiLBQKhc6p7VKbKLjl9Crr2r7Cpg0kU4ym-a509IkpXKIMQl4WGcNAsoA-LIjiqplKqcLM74VDceyKKjJiq7JAvjQyX9vODrulNxd9mvR2uocU1OZeV8ewPsuGa2Mtk50ba9-kIwgonol0wB2Gn3oihIqzRCnqgD2f1WQLt3vtmZZLCWBAywk-huxfltxoia4CUB4FbqnekV_POh3T6__5aN38OhsNh4Vo4-TT2_gMb33wcnpLvRQZewePKxub77Or9-2dvYTjlwk6A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7Rpap6KdBnCm1dCdELFonjPHxBQrusWhVWUQUSt8iJ7QqJBsRSpP33nXGyWZaqalVxTDyJY3sm89kefwOwrV2sYuMSHuV1xWWiaq6F0BxdfyXRI1oXaZ9sIptM8rMzVXTRhHQWpuWH6BfcyDL8_5oM3F4Zt7dgDa1_GOIgjDzkkY9gFWtK5ABWR9_Gp0fz3zFOP_wiX5SnIce5i5ozN4Zib_kNy57pN7h5zzMtg1nvjcZrD9COdXjWQVF20OrOBqzY5jnsFC2X9WyXnSyOZk132Q4rFizXsxewP_KxH-j52EFDC-L4tdesoCAZY6esmjHKBdqy095aduyDNi3r-Fy_v4TT8eHJ8DPvkjHwmg7P8jq1sjIOh1yJxBEPYagRCihDZ9JrYUWFUE-ZKM7CUDsVIiyUyoXOaa0Sm-j4FQyay8a-ASZNpJPMpnnutDRJpRxiTAIe1lmDgDIAPh-Isu6YyilhxkXZciyLkrqs7LssgE-9_FXL0fFHya35uJadrU6xNJWZ9-UBfOyL0cpo60Q39vInyQgiqlcyDeB1qw99VUKlGeJUFcD2XQXpy_1ua5bFUhI4wEqifxEbdg0naoKbAIRXob80rxwej4b91dv_eegDPClG4_Loy-TrJjyl2z42Od2CAWqMfQeP69ub8-n1-87MfgHhgSRj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Anticancer+Peptides+by+Constructive+Machine+Learning&rft.jtitle=ChemMedChem&rft.au=Grisoni%2C+Francesca&rft.au=Neuhaus%2C+Claudia+S.&rft.au=Gabernet%2C+Gisela&rft.au=Mueller%2C+Alex+T.&rft.date=2018-07-06&rft.pub=Wiley&rft.issn=1860-7179&rft.eissn=1860-7187&rft.volume=13&rft.issue=13&rft.spage=1300&rft.epage=1302&rft_id=info:doi/10.1002%2Fcmdc.201800204&rft_id=info%3Apmid%2F29679519&rft.externalDBID=n%2Fa&rft.externalDocID=000437734400003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon |