Designing Anticancer Peptides by Constructive Machine Learning

Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de...

Full description

Saved in:
Bibliographic Details
Published in:ChemMedChem Vol. 13; no. 13; pp. 1300 - 1302
Main Authors: Grisoni, Francesca, Neuhaus, Claudia S., Gabernet, Gisela, Müller, Alex T., Hiss, Jan A., Schneider, Gisbert
Format: Journal Article
Language:English
Published: WEINHEIM Wiley 06.07.2018
Wiley Subscription Services, Inc
Subjects:
ISSN:1860-7179, 1860-7187, 1860-7187
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short‐term memory cells was trained on α‐helical cationic amphipathic peptide sequences and then fine‐tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. Deep learning: We report the experimental application of deep machine learning for the automated design and generation of novel membranolytic anticancer peptides. This technique, which avoids the need for explicit molecular design rules, has proven applicable to automated peptide design in a prospective setting without having to synthesize and test large sets of peptides.
AbstractList Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities.Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities.
Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short‐term memory cells was trained on α‐helical cationic amphipathic peptide sequences and then fine‐tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. Deep learning: We report the experimental application of deep machine learning for the automated design and generation of novel membranolytic anticancer peptides. This technique, which avoids the need for explicit molecular design rules, has proven applicable to automated peptide design in a prospective setting without having to synthesize and test large sets of peptides.
Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on -helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities.
Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities.
Author Schneider, Gisbert
Gabernet, Gisela
Hiss, Jan A.
Müller, Alex T.
Grisoni, Francesca
Neuhaus, Claudia S.
Author_xml – sequence: 1
  givenname: Francesca
  orcidid: 0000-0001-8552-6615
  surname: Grisoni
  fullname: Grisoni, Francesca
  organization: University of Milano-Bicocca
– sequence: 2
  givenname: Claudia S.
  orcidid: 0000-0002-4717-1152
  surname: Neuhaus
  fullname: Neuhaus, Claudia S.
  organization: Swiss Federal Institute of Technology (ETH)
– sequence: 3
  givenname: Gisela
  surname: Gabernet
  fullname: Gabernet, Gisela
  organization: Swiss Federal Institute of Technology (ETH)
– sequence: 4
  givenname: Alex T.
  surname: Müller
  fullname: Müller, Alex T.
  organization: Swiss Federal Institute of Technology (ETH)
– sequence: 5
  givenname: Jan A.
  surname: Hiss
  fullname: Hiss, Jan A.
  organization: Swiss Federal Institute of Technology (ETH)
– sequence: 6
  givenname: Gisbert
  orcidid: 0000-0001-6706-1084
  surname: Schneider
  fullname: Schneider, Gisbert
  email: gisbert.schneider@pharma.ethz.ch
  organization: Swiss Federal Institute of Technology (ETH)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29679519$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LFDEQhoOsuB969SgNXgSZsfLRneQiLL26CrPoQc9NOl1Zs_SkxyS9Mv_eDDM7woLoKRV4nqrirXNyEqaAhLyksKQA7J1dD3bJgKryAfGEnFHVwEJSJU-OtdSn5DylOwAhFFXPyCnTjdQ11Wfk_RUmfxt8uK0uQ_bWBIux-oqb7AdMVb-t2imkHGeb_T1WN8b-8AGrFZq4k56Tp86MCV8c3gvy_eOHb-2nxerL9ef2crWwgmuxsA2KfnA9Ws1qR3VTg2ko14NQIC1D1teg9EC5BDBOA2eN0A6cM0bXWBt-Qd7s-27i9HPGlLu1TxbH0QSc5tQxYErvRjUFff0IvZvmGMp2hWqEFJQDL9SrAzX3axy6TfRrE7fdQzIFUHvgF_aTS9ZjSeaIQcmSS8mFKBXw1meT_RTaaQ65qG__Xy30ck_bOKUU0R1JCt3uxt3uxt3xxkUQjwR7GJ-j8ePfNX3Yyo-4_ceQrr25av-4vwHFyrbi
CitedBy_id crossref_primary_10_3389_fphar_2024_1491699
crossref_primary_10_1021_acs_jcim_5c01401
crossref_primary_10_1016_j_ailsci_2023_100064
crossref_primary_10_1038_s41598_022_13227_9
crossref_primary_10_1093_bib_bbae644
crossref_primary_10_1093_pnasnexus_pgae572
crossref_primary_10_1002_ange_201909987
crossref_primary_10_1038_s41598_024_57247_z
crossref_primary_10_1038_s42256_021_00418_8
crossref_primary_10_1089_cmb_2024_0866
crossref_primary_10_1016_j_biopha_2020_110255
crossref_primary_10_1016_j_compbiomed_2022_105868
crossref_primary_10_1038_s41551_021_00689_x
crossref_primary_10_1007_s00894_019_4007_6
crossref_primary_10_1186_s12859_020_03812_y
crossref_primary_10_1016_j_peptides_2021_170628
crossref_primary_10_1038_s41557_024_01532_x
crossref_primary_10_1109_ACCESS_2025_3569255
crossref_primary_10_1016_j_ejphar_2025_178086
crossref_primary_10_1038_s41589_024_01679_1
crossref_primary_10_3390_pharmaceutics14051089
crossref_primary_10_1016_j_cbi_2022_110194
crossref_primary_10_1039_D3BM02026F
crossref_primary_10_1039_D4SC07642G
crossref_primary_10_1038_s41598_024_62419_y
crossref_primary_10_3390_pharmaceutics14050997
crossref_primary_10_1093_protein_gzab011
crossref_primary_10_1016_j_foodcont_2021_108439
crossref_primary_10_1080_17460441_2018_1547278
crossref_primary_10_2217_nnm_2020_0352
crossref_primary_10_1016_j_compbiomed_2022_106140
crossref_primary_10_3389_fchem_2019_00809
crossref_primary_10_3389_fphar_2020_565644
crossref_primary_10_1002_cmdc_202200291
crossref_primary_10_3389_fmolb_2022_928534
crossref_primary_10_1038_s41578_025_00782_6
crossref_primary_10_1007_s10555_023_10086_2
crossref_primary_10_1016_j_drudis_2024_104133
crossref_primary_10_4155_fmc_2019_0118
crossref_primary_10_1371_journal_pcbi_1010874
crossref_primary_10_1038_s42003_021_02586_0
crossref_primary_10_3390_antibiotics9120854
crossref_primary_10_1039_D0ME00161A
crossref_primary_10_1002_anie_201814681
crossref_primary_10_1145_3714455
crossref_primary_10_1111_febs_16276
crossref_primary_10_1007_s00284_025_04346_3
crossref_primary_10_3389_fphar_2019_01303
crossref_primary_10_1002_anie_201909987
crossref_primary_10_1039_D5CC02530C
crossref_primary_10_1016_j_jmb_2021_167154
crossref_primary_10_1038_s41598_019_47568_9
crossref_primary_10_1038_s41598_024_67433_8
crossref_primary_10_1002_ange_201814681
crossref_primary_10_1016_j_pestbp_2025_106652
crossref_primary_10_3390_ijms242015447
crossref_primary_10_1016_j_csbj_2025_02_032
crossref_primary_10_1016_j_omtn_2020_10_005
crossref_primary_10_3390_molecules27051544
crossref_primary_10_1016_j_biopha_2024_116709
crossref_primary_10_1126_sciadv_ads8932
crossref_primary_10_1039_C9ME00039A
crossref_primary_10_1080_17460441_2022_2019704
crossref_primary_10_1093_bioadv_vbaf058
crossref_primary_10_1007_s10462_025_11148_3
crossref_primary_10_1016_j_nantod_2024_102160
Cites_doi 10.3389/fphar.2018.00074
10.1021/acscentsci.7b00512
10.1093/nar/gku892
10.1016/0196-8858(91)90017-D
10.1074/jbc.M117.805499
10.1371/journal.pone.0181748
10.1109/ICASSP.2013.6638947
10.1016/j.chemphyslip.2011.09.004
10.1021/acscentsci.7b00572
10.1039/C6MD00376A
10.1002/minf.201700111
10.1007/s004300050113
10.1002/minf.201700153
10.1021/acs.jcim.7b00414
10.1109/T-C.1969.222678
10.1109/SLT.2012.6424228
10.1021/ci9004089
10.1002/minf.201501008
10.1016/j.febslet.2005.09.084
10.1039/c6md00376a
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
HBEAY
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/cmdc.201800204
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2018
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Web of Science
PubMed
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1860-7187
EndPage 1302
ExternalDocumentID 29679519
000437734400003
10_1002_cmdc_201800204
CMDC201800204
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: CRSII2_160699; 200021_157190; IZSEZ0_177477
– fundername: Swiss National Science Foundation; Swiss National Science Foundation (SNSF)
  grantid: CRSII2_160699; 200021_157190; IZSEZ0_177477
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
53G
5GY
66C
6J9
77Q
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HBH
HGLYW
HHZ
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MXFUL
MXSTM
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
RWI
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
YZZ
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4394-c6e4bdfbec925f19650a6139d4807c2e2b5089d13700af9032649f0ffaa95e5a3
IEDL.DBID DRFUL
ISICitedReferencesCount 86
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000437734400003
ISSN 1860-7179
1860-7187
IngestDate Thu Oct 02 11:09:35 EDT 2025
Sat Nov 29 14:22:31 EST 2025
Mon Jul 21 05:55:04 EDT 2025
Tue Oct 28 01:47:37 EDT 2025
Fri Dec 05 22:47:31 EST 2025
Tue Nov 18 22:12:33 EST 2025
Sat Nov 29 07:19:07 EST 2025
Wed Jan 22 17:06:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords peptide design
de novo design
deep learning
NK-LYSIN
drug discovery
artificial intelligence
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4394-c6e4bdfbec925f19650a6139d4807c2e2b5089d13700af9032649f0ffaa95e5a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8552-6615
0000-0002-4717-1152
0000-0001-6706-1084
0000-0001-7049-9474
0000-0003-0559-4330
PMID 29679519
PQID 2064741303
PQPubID 986335
PageCount 3
ParticipantIDs crossref_primary_10_1002_cmdc_201800204
proquest_miscellaneous_2028943946
webofscience_primary_000437734400003CitationCount
proquest_journals_2064741303
pubmed_primary_29679519
webofscience_primary_000437734400003
crossref_citationtrail_10_1002_cmdc_201800204
wiley_primary_10_1002_cmdc_201800204_CMDC201800204
PublicationCentury 2000
PublicationDate July 6, 2018
PublicationDateYYYYMMDD 2018-07-06
PublicationDate_xml – month: 07
  year: 2018
  text: July 6, 2018
  day: 06
PublicationDecade 2010
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle ChemMedChem
PublicationTitleAbbrev CHEMMEDCHEM
PublicationTitleAlternate ChemMedChem
PublicationYear 2018
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2018; 9
2016; 7
2018; 4
2018; 293
2001
1991; 12
2015; 43
2017; 12
1999; 188
2018; 37
2016; 35
2005; 579-579
2010; 50
2018; 58
2011; 164
1969; C-18
Riedl S. (e_1_2_2_13_1) 2011; 164
e_1_2_2_14_1
Simões R. S. (e_1_2_2_19_1) 2018; 9
e_1_2_2_7_1
Huang X. (e_1_2_2_20_1) 1991; 12
Gómez-Bombarelli R. (e_1_2_2_4_1) 2018; 4
Merk D. (e_1_2_2_5_1) 2018; 37
Müller A. T. (e_1_2_2_9_1) 2018; 58
Schröder-Borm H. (e_1_2_2_17_1) 2005; 579
e_1_2_2_8_1
Gawehn E. (e_1_2_2_6_1) 2016; 35
Gabernet G. (e_1_2_2_10_1) 2016; 7
Nagarajan D. (e_1_2_2_18_1) 2018; 293
Tyagi A. (e_1_2_2_11_1) 2015; 43
Usmani S. S. (e_1_2_2_12_1) 2017; 12
Segler M. H. S. (e_1_2_2_1_1) 2018; 4
Gupta A. (e_1_2_2_3_1) 2018; 37
White D. (e_1_2_2_2_1) 2010; 50
Andrä J. (e_1_2_2_16_1) 1999; 188
Sammon J. W. (e_1_2_2_15_1) 1969; 18
Schroder-Borm, H (WOS:000233157800023) 2005; 579
Gomez-Bombarelli, R (WOS:000426613700019) 2018; 4
(000437734400003.1) 2001
White, D (WOS:000280183200007) 2010; 50
Andra, J (WOS:000085309400002) 1999; 188
Merk, D (WOS:000425106200009) 2018; 37
Graves, A (WOS:000329611506162) 2013
Muller, AT (WOS:000426613800026) 2018; 58
SAMMON, JW (WOS:A1969D511700001) 1969; C 18
Tyagi, A (WOS:000350210400122) 2015; 43
Mikolov, T (WOS:000317182800041) 2012
Simoes, RS (WOS:000424216900001) 2018; 9
Usmani, SS (WOS:000406761600026) 2017; 12
Segler, MHS (WOS:000423170700014) 2018; 4
Nagarajan, D (WOS:000427030200004) 2018; 293
Gawehn, E (WOS:000368588300002) 2016; 35
Riedl, S (WOS:000297958000008) 2011; 164
Gupta, A (WOS:000425106200002) 2018; 37
HUANG, XQ (WOS:A1991GB12200004) 1991; 12
Gabernet, G (WOS:000390552300003) 2016; 7
References_xml – volume: 37
  start-page: 1700153
  year: 2018
  publication-title: Mol. Inf.
– volume: 293
  start-page: 3492
  year: 2018
  end-page: 3509
  publication-title: J. Biol. Chem.
– volume: 164
  start-page: 766
  year: 2011
  end-page: 781
  publication-title: Chem. Phys. Lipids
– volume: 4
  start-page: 268
  year: 2018
  end-page: 276
  publication-title: ACS Cent. Sci.
– volume: 37
  start-page: 1700111
  year: 2018
  publication-title: Mol. Inf.
– volume: 7
  start-page: 2232
  year: 2016
  end-page: 2245
  publication-title: MedChemComm
– volume: C-18
  start-page: 401
  year: 1969
  end-page: 409
  publication-title: IEEE Trans. Comput.
– year: 2001
– volume: 4
  start-page: 120
  year: 2018
  end-page: 131
  publication-title: ACS Cent. Sci.
– volume: 188
  start-page: 117
  year: 1999
  end-page: 124
  publication-title: Med. Microbiol. Immunol.
– volume: 50
  start-page: 1257
  year: 2010
  end-page: 1274
  publication-title: J. Chem. Inf. Model.
– volume: 9
  start-page: 74
  year: 2018
  publication-title: Front. Pharmacol.
– volume: 12
  start-page: 0181748
  year: 2017
  publication-title: PLoS One
– volume: 58
  start-page: 472
  year: 2018
  end-page: 479
  publication-title: J. Chem. Inf. Model.
– volume: 43
  start-page: 837
  year: 2015
  end-page: 843
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 337
  year: 1991
  end-page: 357
  publication-title: Adv. Appl. Math.
– volume: 35
  start-page: 3
  year: 2016
  end-page: 14
  publication-title: Mol. Inf.
– volume: 579-579
  start-page: 6128
  year: 2005
  end-page: 6134
  publication-title: FEBS Lett.
– volume: 9
  start-page: 74
  year: 2018
  ident: e_1_2_2_19_1
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00074
– volume: 4
  start-page: 120
  year: 2018
  ident: e_1_2_2_1_1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00512
– volume: 43
  start-page: 837
  year: 2015
  ident: e_1_2_2_11_1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku892
– volume: 12
  start-page: 337
  year: 1991
  ident: e_1_2_2_20_1
  publication-title: Adv. Appl. Math.
  doi: 10.1016/0196-8858(91)90017-D
– volume: 293
  start-page: 3492
  year: 2018
  ident: e_1_2_2_18_1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.805499
– volume: 12
  start-page: 0181748
  year: 2017
  ident: e_1_2_2_12_1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181748
– ident: e_1_2_2_8_1
  doi: 10.1109/ICASSP.2013.6638947
– volume: 164
  start-page: 766
  year: 2011
  ident: e_1_2_2_13_1
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2011.09.004
– volume: 4
  start-page: 268
  year: 2018
  ident: e_1_2_2_4_1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00572
– volume: 7
  start-page: 2232
  year: 2016
  ident: e_1_2_2_10_1
  publication-title: MedChemComm
  doi: 10.1039/C6MD00376A
– ident: e_1_2_2_14_1
– volume: 37
  start-page: 1700111
  year: 2018
  ident: e_1_2_2_3_1
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201700111
– volume: 188
  start-page: 117
  year: 1999
  ident: e_1_2_2_16_1
  publication-title: Med. Microbiol. Immunol.
  doi: 10.1007/s004300050113
– volume: 37
  start-page: 1700153
  year: 2018
  ident: e_1_2_2_5_1
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201700153
– volume: 58
  start-page: 472
  year: 2018
  ident: e_1_2_2_9_1
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00414
– volume: 18
  start-page: 401
  year: 1969
  ident: e_1_2_2_15_1
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1969.222678
– ident: e_1_2_2_7_1
  doi: 10.1109/SLT.2012.6424228
– volume: 50
  start-page: 1257
  year: 2010
  ident: e_1_2_2_2_1
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci9004089
– volume: 35
  start-page: 3
  year: 2016
  ident: e_1_2_2_6_1
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201501008
– volume: 579
  start-page: 6128
  year: 2005
  ident: e_1_2_2_17_1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.09.084
– volume: 50
  start-page: 1257
  year: 2010
  ident: WOS:000280183200007
  article-title: Generative Models for Chemical Structures
  publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING
  doi: 10.1021/ci9004089
– volume: 293
  start-page: 3492
  year: 2018
  ident: WOS:000427030200004
  article-title: Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria
  publication-title: JOURNAL OF BIOLOGICAL CHEMISTRY
  doi: 10.1074/jbc.M117.805499
– volume: 164
  start-page: 766
  year: 2011
  ident: WOS:000297958000008
  article-title: Membrane-active host defense peptides - Challenges and perspectives for the development of novel anticancer drugs
  publication-title: CHEMISTRY AND PHYSICS OF LIPIDS
  doi: 10.1016/j.chemphyslip.2011.09.004
– volume: 12
  start-page: ARTN e0181748
  year: 2017
  ident: WOS:000406761600026
  article-title: THPdb: Database of FDA-approved peptide and protein therapeutics
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0181748
– volume: 4
  start-page: 268
  year: 2018
  ident: WOS:000426613700019
  article-title: Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.7b00572
– volume: 12
  start-page: 337
  year: 1991
  ident: WOS:A1991GB12200004
  article-title: A TIME-EFFICIENT, LINEAR-SPACE LOCAL SIMILARITY ALGORITHM
  publication-title: ADVANCES IN APPLIED MATHEMATICS
– start-page: 234
  year: 2012
  ident: WOS:000317182800041
  article-title: CONTEXT DEPENDENT RECURRENT NEURAL NETWORK LANGUAGE MODEL
  publication-title: 2012 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2012)
– volume: 7
  start-page: 2232
  year: 2016
  ident: WOS:000390552300003
  article-title: Membranolytic anticancer peptides
  publication-title: MEDCHEMCOMM
  doi: 10.1039/c6md00376a
– volume: 58
  start-page: 472
  year: 2018
  ident: WOS:000426613800026
  article-title: Recurrent Neural Network Model for Constructive Peptide Design
  publication-title: JOURNAL OF CHEMICAL INFORMATION AND MODELING
  doi: 10.1021/acs.jcim.7b00414
– volume: 9
  start-page: ARTN 74
  year: 2018
  ident: WOS:000424216900001
  article-title: Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges
  publication-title: FRONTIERS IN PHARMACOLOGY
  doi: 10.3389/fphar.2018.00074
– volume: 35
  start-page: 3
  year: 2016
  ident: WOS:000368588300002
  article-title: 6 Deep Learning in Drug Discovery
  publication-title: MOLECULAR INFORMATICS
  doi: 10.1002/minf.201501008
– volume: 37
  start-page: ARTN 1700111
  year: 2018
  ident: WOS:000425106200002
  article-title: Generative Recurrent Networks for De Novo Drug Design
  publication-title: MOLECULAR INFORMATICS
  doi: 10.1002/minf.201700111
– volume: 188
  start-page: 117
  year: 1999
  ident: WOS:000085309400002
  article-title: Candidacidal activity of shortened synthetic analogs of amoebapores and NK-lysin
  publication-title: MEDICAL MICROBIOLOGY AND IMMUNOLOGY
– volume: C 18
  start-page: 401
  year: 1969
  ident: WOS:A1969D511700001
  article-title: A NONLINEAR MAPPING FOR DATA STRUCTURE ANALYSIS
  publication-title: IEEE TRANSACTIONS ON COMPUTERS
– volume: 43
  start-page: D837
  year: 2015
  ident: WOS:000350210400122
  article-title: CancerPPD: a database of anticancer peptides and proteins
  publication-title: NUCLEIC ACIDS RESEARCH
  doi: 10.1093/nar/gku892
– volume: 4
  start-page: 120
  year: 2018
  ident: WOS:000423170700014
  article-title: Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.7b00512
– start-page: 6645
  year: 2013
  ident: WOS:000329611506162
  article-title: SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS
  publication-title: 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
– volume: 37
  start-page: ARTN 1700153
  year: 2018
  ident: WOS:000425106200009
  article-title: De Novo Design of Bioactive Small Molecules by Artificial Intelligence
  publication-title: MOLECULAR INFORMATICS
  doi: 10.1002/minf.201700153
– volume: 579
  start-page: 6128
  year: 2005
  ident: WOS:000233157800023
  article-title: The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine
  publication-title: FEBS LETTERS
  doi: 10.1016/j.febslet.2005.09.084
– year: 2001
  ident: 000437734400003.1
  publication-title: US Pat
SSID ssj0044818
Score 2.4839804
Snippet Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules....
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1300
SubjectTerms Adenocarcinoma
Amino acids
Artificial intelligence
Automation
Cancer
Chemistry, Medicinal
Computer memory
de novo design
deep learning
Design
drug discovery
Erythrocytes
Learning algorithms
Life Sciences & Biomedicine
Machine learning
Memory cells
Molecular chains
Neural networks
Organic chemistry
peptide design
Peptides
Pharmacology & Pharmacy
Recurrent neural networks
Science & Technology
Selectivity
Transfer learning
Title Designing Anticancer Peptides by Constructive Machine Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.201800204
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000437734400003
https://www.ncbi.nlm.nih.gov/pubmed/29679519
https://www.proquest.com/docview/2064741303
https://www.proquest.com/docview/2028943946
Volume 13
WOS 000437734400003
WOSCitedRecordID wos000437734400003
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1860-7187
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044818
  issn: 1860-7179
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WZA976b5Xb1nQoHQvFbVl-UMvg5Is7GEpYaSQNyNbUhlsbqnbQv773cmO02yMje3NRucPSXe6n6S7nwAOtYtVbFzCo7wquUxUxbUQmqPrLyV6ROsi7Q-byM7O8tVKLe5l8bf8EP2CG1mGH6_JwHXZnGxJQ6vvhigII4945B4MKbMKp1_D6ZfZ-efNaIyzD7_GF-VpyHHqojbEjaE42X3DrmP6BW3-5Jh2sax3RrPH_1-NJ7DfAVF22mrOU3hg62dwtGiZrNfHbLlNzGqO2RFbbDmu18_hw9RHfqDfY6c1LYfjz16zBYXIGNuwcs3oJNCWm_bOsrkP2bSsY3O9eAHns4_LySfeHcXAK0qd5VVqZWkcdrgSiSMWwlAjEFCGMtIrYUWJQE-ZKM7CUDsVIiiUyoXOaa0Sm-j4JQzqy9oeAJMm0klm0zx3WpqkVA4RJsEO66xBOBkA3_RDUXU85XRcxreiZVgWBTVZ0TdZAO97-auWoeO3kqNNtxadpTZYmsrMe_IA3vXFaGO0caJre3lLMoJo6pVMA3jVqkP_KaHSDFGqCuDwvn705X6vNctiKQka4EeivxGbdBUnYoKbAITXoD9Ur5jMp5P-7vW_PPQGHtG1D0dORzBANbFv4WF1d_O1uR7DXrbKx52B_QABsCHg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6dLC9rN1X563dNCjdS0VtWf7QS6EkDR1LQhgp9M3IljQGqzuarpD_fney4ywbpWPs0dZZsqQ73U_S6SeAfe1iFRuX8CivSi4TVXEthObo-kuJHtG6SPvLJrLJJL-4UNM2mpDOwjT8EN2CG1mGH6_JwGlB-mjFGlpdGuIgjDzkkQ9gE_PO8h5sDj4Pz0fL4RinH36RL8rTkOPcRS2ZG0NxtJ7Dumf6A27-5pnWwaz3RsOt_1CPbXjSQlF20ujOU9iw9TM4mDZc1otDNlsdzZofsgM2XbFcL57D8cDHfqDnYyc1LYjj316zKQXJGDtn5YLRXaANO-2tZWMftGlZy-f65QWcD09n_TPeXsbAKzo8y6vUytI47HIlEkc8hKFGKKAMnUmvhBUlQj1lojgLQ-1UiLBQKhc6p7VKbKLjl9Crr2r7Cpg0kU4ym-a509IkpXKIMQl4WGcNAsoA-LIjiqplKqcLM74VDceyKKjJiq7JAvjQyX9vODrulNxd9mvR2uocU1OZeV8ewPsuGa2Mtk50ba9-kIwgonol0wB2Gn3oihIqzRCnqgD2f1WQLt3vtmZZLCWBAywk-huxfltxoia4CUB4FbqnekV_POh3T6__5aN38OhsNh4Vo4-TT2_gMb33wcnpLvRQZewePKxub77Or9-2dvYTjlwk6A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7Rpap6KdBnCm1dCdELFonjPHxBQrusWhVWUQUSt8iJ7QqJBsRSpP33nXGyWZaqalVxTDyJY3sm89kefwOwrV2sYuMSHuV1xWWiaq6F0BxdfyXRI1oXaZ9sIptM8rMzVXTRhHQWpuWH6BfcyDL8_5oM3F4Zt7dgDa1_GOIgjDzkkY9gFWtK5ABWR9_Gp0fz3zFOP_wiX5SnIce5i5ozN4Zib_kNy57pN7h5zzMtg1nvjcZrD9COdXjWQVF20OrOBqzY5jnsFC2X9WyXnSyOZk132Q4rFizXsxewP_KxH-j52EFDC-L4tdesoCAZY6esmjHKBdqy095aduyDNi3r-Fy_v4TT8eHJ8DPvkjHwmg7P8jq1sjIOh1yJxBEPYagRCihDZ9JrYUWFUE-ZKM7CUDsVIiyUyoXOaa0Sm-j4FQyay8a-ASZNpJPMpnnutDRJpRxiTAIe1lmDgDIAPh-Isu6YyilhxkXZciyLkrqs7LssgE-9_FXL0fFHya35uJadrU6xNJWZ9-UBfOyL0cpo60Q39vInyQgiqlcyDeB1qw99VUKlGeJUFcD2XQXpy_1ua5bFUhI4wEqifxEbdg0naoKbAIRXob80rxwej4b91dv_eegDPClG4_Loy-TrJjyl2z42Od2CAWqMfQeP69ub8-n1-87MfgHhgSRj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Anticancer+Peptides+by+Constructive+Machine+Learning&rft.jtitle=ChemMedChem&rft.au=Grisoni%2C+Francesca&rft.au=Neuhaus%2C+Claudia+S.&rft.au=Gabernet%2C+Gisela&rft.au=Mueller%2C+Alex+T.&rft.date=2018-07-06&rft.pub=Wiley&rft.issn=1860-7179&rft.eissn=1860-7187&rft.volume=13&rft.issue=13&rft.spage=1300&rft.epage=1302&rft_id=info:doi/10.1002%2Fcmdc.201800204&rft_id=info%3Apmid%2F29679519&rft.externalDBID=n%2Fa&rft.externalDocID=000437734400003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon