Sono‐Controllable and ROS‐Sensitive CRISPR‐Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive o...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 33; číslo 45; s. e2104641 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.11.2021
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1O2)‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1O2‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology.
A novel avenue to circumvent the resistance of tumor cells in conventional sonodynamic therapy is pioneered in this work, where targeted delivery and controllable release of the cluster regularly interspaced short palindromic repeat‐associated protein system is also achieved. |
|---|---|
| AbstractList | The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1O2)‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1O2‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology.
A novel avenue to circumvent the resistance of tumor cells in conventional sonodynamic therapy is pioneered in this work, where targeted delivery and controllable release of the cluster regularly interspaced short palindromic repeat‐associated protein system is also achieved. The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen ( 1 O 2 )‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1 O 2 ‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1 O 2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1 O 2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology. The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1 O2 )-generating MOF structures anchored with CRISPR-Cas9 systems via 1 O2 -cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1 O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1 O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1 O2 )-generating MOF structures anchored with CRISPR-Cas9 systems via 1 O2 -cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1 O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1 O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology. The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1O2)‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1O2‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology. The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen ( O )-generating MOF structures anchored with CRISPR-Cas9 systems via O -cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant O to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant O generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology. |
| Author | Pu, Yinying Xiang, Huijing Xu, Huixiong Chen, Yu Dong, Caihong Wu, Wencheng Yin, Haohao Zhou, Bangguo Du, Dou |
| Author_xml | – sequence: 1 givenname: Yinying surname: Pu fullname: Pu, Yinying organization: National Clinical Research Center for Interventional Medicine – sequence: 2 givenname: Haohao surname: Yin fullname: Yin, Haohao organization: National Clinical Research Center for Interventional Medicine – sequence: 3 givenname: Caihong surname: Dong fullname: Dong, Caihong organization: Fudan University, and Shanghai Institute of Medical Imaging – sequence: 4 givenname: Huijing surname: Xiang fullname: Xiang, Huijing email: xianghuijing@shu.edu.cn organization: Shanghai University – sequence: 5 givenname: Wencheng surname: Wu fullname: Wu, Wencheng organization: Chinese Academy of Sciences – sequence: 6 givenname: Bangguo surname: Zhou fullname: Zhou, Bangguo organization: National Clinical Research Center for Interventional Medicine – sequence: 7 givenname: Dou surname: Du fullname: Du, Dou organization: National Clinical Research Center for Interventional Medicine – sequence: 8 givenname: Yu orcidid: 0000-0002-8206-3325 surname: Chen fullname: Chen, Yu email: chenyuedu@shu.edu.cn organization: Shanghai University – sequence: 9 givenname: Huixiong surname: Xu fullname: Xu, Huixiong email: xuhuixiong@126.com organization: National Clinical Research Center for Interventional Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34536041$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAURS1URKeFLUsUiQ2bTF8cO4mXo6EtlQpFk3ZtufabwVViD3YCGnXDJ_CNfAmOpgWpEmJl6fmcK_vdI3LgvENCXhcwLwDoiTK9mlOgBbCKFc_IrOC0yBkIfkBmIEqei4o1h-QoxjsAEBVUL8hhyXhZAStm5L71zv_68XPp3RB816nbDjPlTLa6atO4RRftYL9htlxdtJ9XE6miyM7R-R6zU5Mu3SZb-5Atxk2PbkBz0u4cho2Ng9XZTTcEFf2YEq_HPmGflPPDFwxqu3tJnq9VF_HVw3lMbs5Or5cf8sur84vl4jLXrBRFXjS14WAAGqGpqg02fM1qTY1oNCIVla6ZEayEhoIxnE4zAGyY5g3XYl0ek3f73G3wX0eMg-xt1Jg-69CPUVJeMwZV3YiEvn2C3vkxuPS6RAkOVVPDRL15oMbbHo3cBtursJOPa00A2wM6-BgDrqW2gxrstGRlO1mAnNqTU3vyT3tJmz_RHpP_KYi98N12uPsPLRfvPy7-ur8BGZeu-Q |
| CitedBy_id | crossref_primary_10_1002_adfm_202422357 crossref_primary_10_1021_acsnano_5c05276 crossref_primary_10_1002_advs_202500967 crossref_primary_10_1002_adhm_202201607 crossref_primary_10_1016_j_nantod_2023_101944 crossref_primary_10_1002_wnan_1938 crossref_primary_10_1016_j_biomaterials_2022_121876 crossref_primary_10_1002_bmm2_12025 crossref_primary_10_1016_j_cej_2022_137889 crossref_primary_10_1016_j_ultsonch_2023_106330 crossref_primary_10_1002_ange_202405639 crossref_primary_10_1002_bmm2_70032 crossref_primary_10_1039_D3BM00529A crossref_primary_10_1002_advs_202506841 crossref_primary_10_1002_smll_202312153 crossref_primary_10_1002_smll_202204244 crossref_primary_10_1186_s12951_025_03625_2 crossref_primary_10_1002_smo_20240035 crossref_primary_10_1016_j_ijpharm_2024_124757 crossref_primary_10_1002_smll_202201933 crossref_primary_10_1016_j_addr_2022_114495 crossref_primary_10_1016_j_cej_2025_163429 crossref_primary_10_1039_D3BM00556A crossref_primary_10_1038_s41467_023_40345_3 crossref_primary_10_1002_smll_202304818 crossref_primary_10_1002_adfm_202401370 crossref_primary_10_1016_j_mtbio_2025_101922 crossref_primary_10_1016_j_carbpol_2022_119432 crossref_primary_10_3390_nano15070540 crossref_primary_10_1039_D2SC03329A crossref_primary_10_1016_j_ejmech_2022_114801 crossref_primary_10_1016_j_ijbiomac_2023_125692 crossref_primary_10_1038_s41392_024_01745_z crossref_primary_10_1002_adfm_202407535 crossref_primary_10_1002_adma_202300665 crossref_primary_10_1039_D2QM01333A crossref_primary_10_1186_s12951_023_02139_z crossref_primary_10_3390_nano13111779 crossref_primary_10_1039_D4BM00316K crossref_primary_10_1002_EXP_20230025 crossref_primary_10_1007_s40820_023_01018_4 crossref_primary_10_1002_advs_202105806 crossref_primary_10_1002_adma_202210262 crossref_primary_10_1016_j_nantod_2022_101482 crossref_primary_10_1039_D3BM01394D crossref_primary_10_1186_s12951_024_02427_2 crossref_primary_10_3390_pharmaceutics17081053 crossref_primary_10_3390_cells14151136 crossref_primary_10_1002_smll_202405549 crossref_primary_10_1002_adma_202208059 crossref_primary_10_1002_advs_202204801 crossref_primary_10_1007_s13233_025_00376_9 crossref_primary_10_1007_s11426_022_1376_1 crossref_primary_10_1039_D5BM00711A crossref_primary_10_1039_D5BM00791G crossref_primary_10_1002_anie_202210174 crossref_primary_10_1016_j_ultsonch_2022_106262 crossref_primary_10_1016_j_jhazmat_2023_130851 crossref_primary_10_1021_acs_molpharmaceut_5c00251 crossref_primary_10_1002_advs_202417571 crossref_primary_10_1002_mba2_70 crossref_primary_10_1016_j_jconrel_2023_03_042 crossref_primary_10_3390_molecules28114397 crossref_primary_10_1039_D3BM01994B crossref_primary_10_1021_acsnano_5c10301 crossref_primary_10_1002_adma_202409663 crossref_primary_10_1002_adma_202303158 crossref_primary_10_1002_smll_202202558 crossref_primary_10_1002_adhm_202302195 crossref_primary_10_1016_j_cej_2024_152163 crossref_primary_10_1016_j_apsb_2023_09_016 crossref_primary_10_1039_D5BM00194C crossref_primary_10_3390_nano14090797 crossref_primary_10_1002_ange_202210174 crossref_primary_10_1016_j_actbio_2024_04_037 crossref_primary_10_1016_j_jddst_2024_105604 crossref_primary_10_1002_adfm_202303869 crossref_primary_10_1002_advs_202308763 crossref_primary_10_1002_smll_202206981 crossref_primary_10_1007_s00216_022_04365_0 crossref_primary_10_1039_D2BM00643J crossref_primary_10_1002_adma_202201651 crossref_primary_10_1007_s12274_022_4474_4 crossref_primary_10_1016_j_ijbiomac_2024_135793 crossref_primary_10_1016_j_nantod_2022_101734 crossref_primary_10_1038_s41467_024_53392_1 crossref_primary_10_1002_adhm_202300699 crossref_primary_10_1016_j_apsb_2022_12_013 crossref_primary_10_1002_adfm_202307816 crossref_primary_10_1002_anie_202405639 crossref_primary_10_1016_j_addr_2023_115160 crossref_primary_10_1016_j_actbio_2023_01_004 crossref_primary_10_1039_D2BM01825J crossref_primary_10_1002_advs_202203921 crossref_primary_10_1016_j_ultsonch_2025_107524 crossref_primary_10_1021_acs_nanolett_5c00285 crossref_primary_10_1002_smll_202407885 crossref_primary_10_1016_j_mattod_2022_12_004 crossref_primary_10_2174_0929867329666221006112615 crossref_primary_10_1016_j_colsurfb_2021_112257 crossref_primary_10_1007_s40843_023_2583_5 crossref_primary_10_1002_advs_202309314 crossref_primary_10_1007_s40820_025_01666_8 crossref_primary_10_1016_j_cej_2023_145796 crossref_primary_10_1039_D2BM01636B crossref_primary_10_1002_smll_202502323 crossref_primary_10_1016_j_nantod_2024_102398 crossref_primary_10_1002_adfm_202301256 crossref_primary_10_1039_D3BM00788J crossref_primary_10_1007_s11426_024_2033_1 crossref_primary_10_1016_j_cej_2025_168175 crossref_primary_10_1002_advs_202309542 crossref_primary_10_1186_s12951_022_01570_y |
| Cites_doi | 10.1146/annurev.genet.36.042602.094806 10.1038/nbt.2842 10.1126/sciadv.abc4493 10.1021/acs.chemrev.5b00125 10.1002/adma.202006003 10.1002/anie.201903618 10.1002/anie.201909264 10.1002/adma.202003214 10.1021/acs.chemrev.9b00223 10.1021/jacs.9b09043 10.1126/sciadv.abc9450 10.1016/j.biomaterials.2019.119736 10.1002/anie.201601984 10.1126/science.1246981 10.1038/s41565-019-0539-2 10.1021/jacs.7b11754 10.1002/anie.202005644 10.1038/s41573-019-0012-9 10.3390/ijms150712543 10.1021/acs.nanolett.9b02112 10.1021/acsnano.7b07746 10.1021/jacs.9b07591 10.1021/acscatal.7b01671 10.1038/nature13181 10.1002/anie.201713082 10.1002/anie.201708689 10.1021/acsnano.0c03781 10.1002/adma.201602012 10.1021/acs.jmedchem.0c01704 10.1038/nature13194 10.1002/adma.201800180 10.1038/nrd1662 10.1002/smll.201805339 10.1038/s41551-018-0318-7 10.1016/j.addr.2018.07.007 10.1126/sciadv.aav7199 10.1021/jacs.6b11846 10.1073/pnas.1912220117 10.1126/sciadv.abb4005 10.4161/sgtp.19556 10.1021/acs.bioconjchem.0c00029 10.1038/sj.emboj.7601975 10.1016/j.dnarep.2007.11.007 10.1021/acsnano.9b06467 10.1002/anie.201506030 10.1126/science.1231143 10.1126/sciadv.1500454 10.1021/acs.chemmater.9b00439 10.1021/jacs.8b11996 10.1002/anie.201806941 10.1021/jacs.9b10228 10.1021/acs.chemrev.6b00799 10.1161/CIRCRESAHA.115.304351 10.1002/advs.201901378 10.1002/advs.201801423 10.1021/acsabm.0c00156 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202104641 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 34536041 10_1002_adma_202104641 ADMA202104641 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2016YFA0203700 – fundername: Program of Shanghai Subject Chief Scientist funderid: 18XD1404300 – fundername: Development Fund for Shanghai Talents funderid: 2018114 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 19DZ2251100 – fundername: National Natural Science Foundation of China funderid: 81725008; 51672303; 51902336; 81927801; 82001820; 32171391 – fundername: Shanghai Municipal Health Commission funderid: 2019LJ21; SHSLCZDZK03502 – fundername: Shanghai Municipal Health Commission grantid: SHSLCZDZK03502 – fundername: National Natural Science Foundation of China grantid: 32171391 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 19DZ2251100 – fundername: Development Fund for Shanghai Talents grantid: 2018114 – fundername: National Natural Science Foundation of China grantid: 81927801 – fundername: Shanghai Municipal Health Commission grantid: 2019LJ21 – fundername: National Natural Science Foundation of China grantid: 51672303 – fundername: Program of Shanghai Subject Chief Scientist grantid: 18XD1404300 – fundername: National Natural Science Foundation of China grantid: 51902336 – fundername: National Natural Science Foundation of China grantid: 81725008 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4391-187d50d0089c2a7de85f47c2d98cee296c74d9430820dd52ee2900e84c585c9f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 135 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 19:27:05 EDT 2025 Mon Jul 14 08:23:03 EDT 2025 Mon Jul 21 05:34:07 EDT 2025 Tue Nov 18 21:06:19 EST 2025 Sat Nov 29 07:24:19 EST 2025 Wed Jan 22 16:26:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Keywords | sonodynamic therapy ROS responsive tumor therapy genomic editing metal-organic frameworks |
| Language | English |
| License | 2021 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4391-187d50d0089c2a7de85f47c2d98cee296c74d9430820dd52ee2900e84c585c9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8206-3325 |
| PMID | 34536041 |
| PQID | 2595068709 |
| PQPubID | 2045203 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2574406789 proquest_journals_2595068709 pubmed_primary_34536041 crossref_citationtrail_10_1002_adma_202104641 crossref_primary_10_1002_adma_202104641 wiley_primary_10_1002_adma_202104641_ADMA202104641 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 7 2021; 64 2019; 5 2019 2019; 14 141 2014 2012; 15 3 2019; 13 2019; 58 2015; 54 2020 2018; 117 57 2015 2016 2017; 1 55 117 2019 2019; 31 15 2020; 14 2020 2020 2021; 6 6 33 2019; 141 2002 2019; 36 19 2014 2013; 32 339 2018; 130 2020; 6 2019 2014 2014; 18 115 343 2020 2019 2015; 120 6 115 2018 2020 2020; 30 3 31 2019 2018 2019 2019; 6 140 58 3 2018; 12 2021; 60 2005 2019 2016 2020; 4 141 28 232 2017 2020 2020; 139 142 32 2014 2014; 508 508 2018; 57 2008 2008; 27 7 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_23_3 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 Xiang H. (e_1_2_7_28_1) 2019; 13 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
| References_xml | – volume: 6 start-page: 0575 year: 2020 publication-title: Sci. Adv. – volume: 141 start-page: 3782 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 1 55 117 start-page: 8561 9874 year: 2015 2016 2017 publication-title: Sci. Adv. Angew. Chem., Int. Ed. Chem. Rev. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 140 58 3 start-page: 143 126 year: 2019 2018 2019 2019 publication-title: Adv. Sci. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Nat. Biomed. Eng. – volume: 139 142 32 start-page: 1275 6527 year: 2017 2020 2020 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Mater. – volume: 117 57 start-page: 2395 1491 year: 2020 2018 publication-title: Proc. Natl. Acad. Sci. USA Angew. Chem., Int. Ed. – volume: 13 start-page: 2223 year: 2019 publication-title: ACS Nano – volume: 36 19 start-page: 279 5568 year: 2002 2019 publication-title: Annu. Rev. Genet. Nano Lett. – volume: 30 3 31 start-page: 3456 967 year: 2018 2020 2020 publication-title: Adv. Mater. ACS Appl. Bio Mater. Bioconjugate Chem. – volume: 18 115 343 start-page: 358 488 80 year: 2019 2014 2014 publication-title: Nat. Rev. Drug Discovery Circ. Res. Science – volume: 6 6 33 start-page: 4005 9450 year: 2020 2020 2021 publication-title: Sci. Adv. Sci. Adv. Adv. Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 15 3 start-page: 120 year: 2014 2012 publication-title: Int. J. Mol. Sci. Small GTPases – volume: 31 15 start-page: 3349 year: 2019 2019 publication-title: Chem. Mater. Small – volume: 4 141 28 232 start-page: 255 8097 year: 2005 2019 2016 2020 publication-title: Nat. Rev. Drug Discovery J. Am. Chem. Soc. Adv. Mater. Biomaterials – volume: 64 start-page: 298 year: 2021 publication-title: J. Med. Chem. – volume: 57 start-page: 2657 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 32 339 start-page: 347 819 year: 2014 2013 publication-title: Nat. Biotechnol. Science – volume: 14 year: 2020 publication-title: ACS Nano – volume: 60 start-page: 8596 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 130 start-page: 17 year: 2018 publication-title: Adv. Drug Delivery Rev. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 14 141 start-page: 974 year: 2019 2019 publication-title: Nat. Nanotechnol. J. Am. Chem. Soc. – volume: 508 508 start-page: 222 215 year: 2014 2014 publication-title: Nature Nature – volume: 27 7 start-page: 421 418 year: 2008 2008 publication-title: EMBO J. DNA Repair – volume: 12 start-page: 651 year: 2018 publication-title: ACS Nano – volume: 5 start-page: 7199 year: 2019 publication-title: Sci. Adv. – volume: 120 6 115 start-page: 1438 year: 2020 2019 2015 publication-title: Chem. Rev. Adv. Sci. Chem. Rev. – volume: 7 start-page: 7267 year: 2017 publication-title: ACS Catal. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_18_1 doi: 10.1146/annurev.genet.36.042602.094806 – ident: e_1_2_7_1_1 doi: 10.1038/nbt.2842 – ident: e_1_2_7_22_1 doi: 10.1126/sciadv.abc4493 – ident: e_1_2_7_23_3 doi: 10.1021/acs.chemrev.5b00125 – ident: e_1_2_7_10_3 doi: 10.1002/adma.202006003 – ident: e_1_2_7_9_3 doi: 10.1002/anie.201903618 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201909264 – ident: e_1_2_7_16_3 doi: 10.1002/adma.202003214 – ident: e_1_2_7_23_1 doi: 10.1021/acs.chemrev.9b00223 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.9b09043 – ident: e_1_2_7_10_2 doi: 10.1126/sciadv.abc9450 – ident: e_1_2_7_15_4 doi: 10.1016/j.biomaterials.2019.119736 – ident: e_1_2_7_2_2 doi: 10.1002/anie.201601984 – ident: e_1_2_7_3_3 doi: 10.1126/science.1246981 – ident: e_1_2_7_12_1 doi: 10.1038/s41565-019-0539-2 – ident: e_1_2_7_9_2 doi: 10.1021/jacs.7b11754 – ident: e_1_2_7_4_1 doi: 10.1002/anie.202005644 – ident: e_1_2_7_3_1 doi: 10.1038/s41573-019-0012-9 – ident: e_1_2_7_20_1 doi: 10.3390/ijms150712543 – ident: e_1_2_7_18_2 doi: 10.1021/acs.nanolett.9b02112 – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.7b07746 – ident: e_1_2_7_15_2 doi: 10.1021/jacs.9b07591 – ident: e_1_2_7_27_1 doi: 10.1021/acscatal.7b01671 – ident: e_1_2_7_21_2 doi: 10.1038/nature13181 – volume: 13 start-page: 2223 year: 2019 ident: e_1_2_7_28_1 publication-title: ACS Nano – ident: e_1_2_7_24_1 doi: 10.1002/anie.201713082 – ident: e_1_2_7_6_2 doi: 10.1002/anie.201708689 – ident: e_1_2_7_30_1 doi: 10.1021/acsnano.0c03781 – ident: e_1_2_7_15_3 doi: 10.1002/adma.201602012 – ident: e_1_2_7_29_1 doi: 10.1021/acs.jmedchem.0c01704 – ident: e_1_2_7_21_1 doi: 10.1038/nature13194 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201800180 – ident: e_1_2_7_15_1 doi: 10.1038/nrd1662 – ident: e_1_2_7_14_2 doi: 10.1002/smll.201805339 – ident: e_1_2_7_9_4 doi: 10.1038/s41551-018-0318-7 – ident: e_1_2_7_31_1 doi: 10.1016/j.addr.2018.07.007 – ident: e_1_2_7_8_1 doi: 10.1126/sciadv.aav7199 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.6b11846 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.1912220117 – ident: e_1_2_7_10_1 doi: 10.1126/sciadv.abb4005 – ident: e_1_2_7_20_2 doi: 10.4161/sgtp.19556 – ident: e_1_2_7_17_3 doi: 10.1021/acs.bioconjchem.0c00029 – ident: e_1_2_7_19_1 doi: 10.1038/sj.emboj.7601975 – ident: e_1_2_7_19_2 doi: 10.1016/j.dnarep.2007.11.007 – ident: e_1_2_7_26_1 doi: 10.1021/acsnano.9b06467 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201506030 – ident: e_1_2_7_1_2 doi: 10.1126/science.1231143 – ident: e_1_2_7_2_1 doi: 10.1126/sciadv.1500454 – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemmater.9b00439 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.8b11996 – ident: e_1_2_7_5_1 doi: 10.1002/anie.201806941 – ident: e_1_2_7_16_2 doi: 10.1021/jacs.9b10228 – ident: e_1_2_7_2_3 doi: 10.1021/acs.chemrev.6b00799 – ident: e_1_2_7_3_2 doi: 10.1161/CIRCRESAHA.115.304351 – ident: e_1_2_7_23_2 doi: 10.1002/advs.201901378 – ident: e_1_2_7_9_1 doi: 10.1002/advs.201801423 – ident: e_1_2_7_17_2 doi: 10.1021/acsabm.0c00156 |
| SSID | ssj0009606 |
| Score | 2.6576297 |
| Snippet | The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely... The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2104641 |
| SubjectTerms | Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis Cell Line, Tumor Cell Survival - drug effects CRISPR CRISPR-Cas Systems - genetics Disruption DNA Repair Enzymes - genetics DNA Repair Enzymes - metabolism Editing Gene Editing - methods Genomes genomic editing Humans Lysosomes Materials science Metal-organic frameworks Metal-Organic Frameworks - chemistry Mice Mice, Nude Nanoparticles Nanoparticles - chemistry Neoplasms - pathology Neoplasms - therapy Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Polymers - chemistry Porphyrins - chemistry Reactive Oxygen Species - metabolism RNA, Guide, CRISPR-Cas Systems - chemistry RNA, Guide, CRISPR-Cas Systems - metabolism ROS responsive Singlet oxygen sonodynamic therapy Transplantation, Heterologous tumor therapy Tumors Ultrasonic imaging Ultrasonic Therapy - methods |
| Title | Sono‐Controllable and ROS‐Sensitive CRISPR‐Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104641 https://www.ncbi.nlm.nih.gov/pubmed/34536041 https://www.proquest.com/docview/2595068709 https://www.proquest.com/docview/2574406789 |
| Volume | 33 |
| WOSCitedRecordID | wos000696904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BlwMceD8Ky8pISJyiOk7ixMequwWkZVk1W9Rb5NgOWqmboKZFWnHhJ_Ab-SXMJGl2K4SQ4JbHxLHsedqebwBeR1pYLh330BRwL5QY7uSBLz2TJ4Vy1qmgWbr4dByfnCSLhTq9lsXf4kP0C24kGY2-JgHXeT26Ag3VtsENErRJSZnrewKZNxrA3uFsOj--At6VTX1N2u_zlAyTLXAjF6PdFnYN02_e5q7z2lif6b3_7_d9uNt5nmzcssoDuOHKh3DnGh7hI_iWVmX18_uPSXt-fUlpVUyXls0-pvg4pcPupB7ZZPY-PZ0Rpa4Ve-vK6sKxI3tOZ6gZusFsvPncoH3aUXpJ2YUNHDSbL9crXVMhJ3a2uUAy1O1dBtjlY5hPj84m77yuOoNnKFvX85PYRtyiD6GM0LF1SVSEsRFWJWh4hZImDi2Bu6OPYW0k6BnnLgkNRihGFcETGJRV6Z4By31fc-Saws91iLF6XoQCm8udLCLN83gI3nZqMtNBl1MFjWXWgi6LjAY16wd1CG96-i8taMcfKfe3M511wltnGBFGXKIiU0N41b9GsaO9FF26akM0hKyIlh5pnrYc0v8qCKNAcmpcNIzwlz5k48MP4_7u-b989AJu03WbI7kPg_Vq417CLfN1fV6vDuBmvEgOOsH4BaJODqI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQhgQ8jL9jZQOMhMRTVMdxnPix6lY20ZWpadHeIsd20KQuQf2DNPHCR9hn3CfZXZJmVAghIR7jXBzLvvPd2Xe_I-R9qLll0jEPVAHzhAR3Jwt86ZkszpWzTgXV0cWXYTQaxefn6qyJJsRcmBofoj1wQ8mo9msUcDyQ7t6hhmpbAQdxvKXE1PVtAbwETL59OB5Mh3fIu7IqsIkXfp6SIl4jNzLe3exhUzP9Zm5uWq-V-hk8_g8Df0J2GtuT9mpmeUruueIZefQLIuFz8iMpi_Lm53W_jmCfYWIV1YWl488JNCcY7o4bJO2PT5KzMVLqhaIfXVFeOnpkLzCKmoIhTHurrxXep-0mV5hfWAFC0-lsOdcLLOVEJ6tLIIPdvckBu3pBpoOjSf_Ya-ozeAbzdT0_jmzILFgRynAdWReHuYgMtyoG1cuVNJGwCO8OVoa1Icc2xlwsDPgoRuXBLtkqysLtEZr5vmbAN7mfaQHeepYLDt1lTuahZlnUId56bVLTgJdjDY1ZWsMu8xQnNW0ntUM-tPTfatiOP1IerJc6bcR3kYJPGDIJW5nqkHftaxA8vE3RhStXSIPYiqDrgeZlzSLtrwIRBpJh57zihL-MIe0dnvbap1f_8tFb8uB4cjpMhyejT_vkIbbXGZMHZGs5X7nX5L75vrxYzN808nELc-QRqg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdQhxA8wPhftoGRkHiK6jiOEz9W7QoTpVTNivYWObaDJnXJ1D9IEy98BD4jn2R3SZpRIYSEeIxzcSz7zndn3_2OkDeh5pZJxzxQBcwTEtydLPClZ7I4V846FVRHF5_H0WQSn52paRNNiLkwNT5Ee-CGklHt1yjg7tLmvRvUUG0r4CCOt5SYur4nsJJMh-wNZ6P5-AZ5V1YFNvHCz1NSxFvkRsZ7uz3saqbfzM1d67VSP6MH_2Hg--R-Y3vSfs0sD8ktVzwi935BJHxMviVlUf78_mNQR7AvMLGK6sLS2acEmhMMd8cNkg5mJ8l0hpR6peg7V5QXjh7bc4yipmAI0_7mS4X3aXvJFeYXVoDQdL5YL_UKSznR080FkMHu3uSAXT0h89Hx6eC919Rn8Azm63p-HNmQWbAilOE6si4OcxEZblUMqpcraSJhEd4drAxrQ45tjLlYGPBRjMqDp6RTlIV7Tmjm-5oB3-R-pgV461kuOHSXOZmHmmVRl3jbtUlNA16ONTQWaQ27zFOc1LSd1C5529Jf1rAdf6Q83C512ojvKgWfMGQStjLVJa_b1yB4eJuiC1dukAaxFUHXA82zmkXaXwUiDCTDznnFCX8ZQ9offuy3Ty_-5aNX5M50OErHJ5MPB-QuNtcJk4eks15u3BG5bb6uz1fLl414XAPkkxEl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sono-Controllable+and+ROS-Sensitive+CRISPR-Cas9+Genome+Editing+for+Augmented%2FSynergistic+Ultrasound+Tumor+Nanotherapy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Pu%2C+Yinying&rft.au=Yin%2C+Haohao&rft.au=Dong%2C+Caihong&rft.au=Xiang%2C+Huijing&rft.date=2021-11-01&rft.eissn=1521-4095&rft.volume=33&rft.issue=45&rft.spage=e2104641&rft_id=info:doi/10.1002%2Fadma.202104641&rft_id=info%3Apmid%2F34536041&rft.externalDocID=34536041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |