Sono‐Controllable and ROS‐Sensitive CRISPR‐Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy

The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 33; H. 45; S. e2104641 - n/a
Hauptverfasser: Pu, Yinying, Yin, Haohao, Dong, Caihong, Xiang, Huijing, Wu, Wencheng, Zhou, Bangguo, Du, Dou, Chen, Yu, Xu, Huixiong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.11.2021
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1O2)‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1O2‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology. A novel avenue to circumvent the resistance of tumor cells in conventional sonodynamic therapy is pioneered in this work, where targeted delivery and controllable release of the cluster regularly interspaced short palindromic repeat‐associated protein system is also achieved.
AbstractList The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1O2)‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1O2‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology. A novel avenue to circumvent the resistance of tumor cells in conventional sonodynamic therapy is pioneered in this work, where targeted delivery and controllable release of the cluster regularly interspaced short palindromic repeat‐associated protein system is also achieved.
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen ( 1 O 2 )‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1 O 2 ‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1 O 2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1 O 2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology.
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR‐Cas9 system. Herein, sono‐controllable and reactive oxygen species (ROS)‐sensitive sonosensitizer‐integrated metal–organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome‐editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1O2)‐generating MOF structures anchored with CRISPR‐Cas9 systems via 1O2‐cleavable linkers, which serve not only as a delivery vector of CRISPR‐Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS‐responsive thioether bonds, thus inducing controllable release of the CRISPR‐Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self‐defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine‐enabled genome‐editing technology.
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen ( O )-generating MOF structures anchored with CRISPR-Cas9 systems via O -cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant O to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant O generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1 O2 )-generating MOF structures anchored with CRISPR-Cas9 systems via 1 O2 -cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1 O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1 O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1 O2 )-generating MOF structures anchored with CRISPR-Cas9 systems via 1 O2 -cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1 O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1 O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.
Author Pu, Yinying
Xiang, Huijing
Xu, Huixiong
Chen, Yu
Dong, Caihong
Wu, Wencheng
Yin, Haohao
Zhou, Bangguo
Du, Dou
Author_xml – sequence: 1
  givenname: Yinying
  surname: Pu
  fullname: Pu, Yinying
  organization: National Clinical Research Center for Interventional Medicine
– sequence: 2
  givenname: Haohao
  surname: Yin
  fullname: Yin, Haohao
  organization: National Clinical Research Center for Interventional Medicine
– sequence: 3
  givenname: Caihong
  surname: Dong
  fullname: Dong, Caihong
  organization: Fudan University, and Shanghai Institute of Medical Imaging
– sequence: 4
  givenname: Huijing
  surname: Xiang
  fullname: Xiang, Huijing
  email: xianghuijing@shu.edu.cn
  organization: Shanghai University
– sequence: 5
  givenname: Wencheng
  surname: Wu
  fullname: Wu, Wencheng
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Bangguo
  surname: Zhou
  fullname: Zhou, Bangguo
  organization: National Clinical Research Center for Interventional Medicine
– sequence: 7
  givenname: Dou
  surname: Du
  fullname: Du, Dou
  organization: National Clinical Research Center for Interventional Medicine
– sequence: 8
  givenname: Yu
  orcidid: 0000-0002-8206-3325
  surname: Chen
  fullname: Chen, Yu
  email: chenyuedu@shu.edu.cn
  organization: Shanghai University
– sequence: 9
  givenname: Huixiong
  surname: Xu
  fullname: Xu, Huixiong
  email: xuhuixiong@126.com
  organization: National Clinical Research Center for Interventional Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34536041$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFLUsUiQ2bTF8cO4mXo6EtlQpFk3ZtufabwVViD3YCGnXDJ_CNfAmOpgWpEmJl6fmcK_vdI3LgvENCXhcwLwDoiTK9mlOgBbCKFc_IrOC0yBkIfkBmIEqei4o1h-QoxjsAEBVUL8hhyXhZAStm5L71zv_68XPp3RB816nbDjPlTLa6atO4RRftYL9htlxdtJ9XE6miyM7R-R6zU5Mu3SZb-5Atxk2PbkBz0u4cho2Ng9XZTTcEFf2YEq_HPmGflPPDFwxqu3tJnq9VF_HVw3lMbs5Or5cf8sur84vl4jLXrBRFXjS14WAAGqGpqg02fM1qTY1oNCIVla6ZEayEhoIxnE4zAGyY5g3XYl0ek3f73G3wX0eMg-xt1Jg-69CPUVJeMwZV3YiEvn2C3vkxuPS6RAkOVVPDRL15oMbbHo3cBtursJOPa00A2wM6-BgDrqW2gxrstGRlO1mAnNqTU3vyT3tJmz_RHpP_KYi98N12uPsPLRfvPy7-ur8BGZeu-Q
CitedBy_id crossref_primary_10_1002_adfm_202422357
crossref_primary_10_1021_acsnano_5c05276
crossref_primary_10_1002_advs_202500967
crossref_primary_10_1002_adhm_202201607
crossref_primary_10_1016_j_nantod_2023_101944
crossref_primary_10_1002_wnan_1938
crossref_primary_10_1016_j_biomaterials_2022_121876
crossref_primary_10_1002_bmm2_12025
crossref_primary_10_1016_j_cej_2022_137889
crossref_primary_10_1016_j_ultsonch_2023_106330
crossref_primary_10_1002_ange_202405639
crossref_primary_10_1002_bmm2_70032
crossref_primary_10_1039_D3BM00529A
crossref_primary_10_1002_advs_202506841
crossref_primary_10_1002_smll_202312153
crossref_primary_10_1002_smll_202204244
crossref_primary_10_1186_s12951_025_03625_2
crossref_primary_10_1002_smo_20240035
crossref_primary_10_1016_j_ijpharm_2024_124757
crossref_primary_10_1002_smll_202201933
crossref_primary_10_1016_j_addr_2022_114495
crossref_primary_10_1016_j_cej_2025_163429
crossref_primary_10_1039_D3BM00556A
crossref_primary_10_1038_s41467_023_40345_3
crossref_primary_10_1002_smll_202304818
crossref_primary_10_1002_adfm_202401370
crossref_primary_10_1016_j_mtbio_2025_101922
crossref_primary_10_1016_j_carbpol_2022_119432
crossref_primary_10_3390_nano15070540
crossref_primary_10_1039_D2SC03329A
crossref_primary_10_1016_j_ejmech_2022_114801
crossref_primary_10_1016_j_ijbiomac_2023_125692
crossref_primary_10_1038_s41392_024_01745_z
crossref_primary_10_1002_adfm_202407535
crossref_primary_10_1002_adma_202300665
crossref_primary_10_1039_D2QM01333A
crossref_primary_10_1186_s12951_023_02139_z
crossref_primary_10_3390_nano13111779
crossref_primary_10_1039_D4BM00316K
crossref_primary_10_1002_EXP_20230025
crossref_primary_10_1007_s40820_023_01018_4
crossref_primary_10_1002_advs_202105806
crossref_primary_10_1002_adma_202210262
crossref_primary_10_1016_j_nantod_2022_101482
crossref_primary_10_1039_D3BM01394D
crossref_primary_10_1186_s12951_024_02427_2
crossref_primary_10_3390_pharmaceutics17081053
crossref_primary_10_3390_cells14151136
crossref_primary_10_1002_smll_202405549
crossref_primary_10_1002_adma_202208059
crossref_primary_10_1002_advs_202204801
crossref_primary_10_1007_s13233_025_00376_9
crossref_primary_10_1007_s11426_022_1376_1
crossref_primary_10_1039_D5BM00711A
crossref_primary_10_1039_D5BM00791G
crossref_primary_10_1002_anie_202210174
crossref_primary_10_1016_j_ultsonch_2022_106262
crossref_primary_10_1016_j_jhazmat_2023_130851
crossref_primary_10_1021_acs_molpharmaceut_5c00251
crossref_primary_10_1002_advs_202417571
crossref_primary_10_1002_mba2_70
crossref_primary_10_1016_j_jconrel_2023_03_042
crossref_primary_10_3390_molecules28114397
crossref_primary_10_1039_D3BM01994B
crossref_primary_10_1021_acsnano_5c10301
crossref_primary_10_1002_adma_202409663
crossref_primary_10_1002_adma_202303158
crossref_primary_10_1002_smll_202202558
crossref_primary_10_1002_adhm_202302195
crossref_primary_10_1016_j_cej_2024_152163
crossref_primary_10_1016_j_apsb_2023_09_016
crossref_primary_10_1039_D5BM00194C
crossref_primary_10_3390_nano14090797
crossref_primary_10_1002_ange_202210174
crossref_primary_10_1016_j_actbio_2024_04_037
crossref_primary_10_1016_j_jddst_2024_105604
crossref_primary_10_1002_adfm_202303869
crossref_primary_10_1002_advs_202308763
crossref_primary_10_1002_smll_202206981
crossref_primary_10_1007_s00216_022_04365_0
crossref_primary_10_1039_D2BM00643J
crossref_primary_10_1002_adma_202201651
crossref_primary_10_1007_s12274_022_4474_4
crossref_primary_10_1016_j_ijbiomac_2024_135793
crossref_primary_10_1016_j_nantod_2022_101734
crossref_primary_10_1038_s41467_024_53392_1
crossref_primary_10_1002_adhm_202300699
crossref_primary_10_1016_j_apsb_2022_12_013
crossref_primary_10_1002_adfm_202307816
crossref_primary_10_1002_anie_202405639
crossref_primary_10_1016_j_addr_2023_115160
crossref_primary_10_1016_j_actbio_2023_01_004
crossref_primary_10_1039_D2BM01825J
crossref_primary_10_1002_advs_202203921
crossref_primary_10_1016_j_ultsonch_2025_107524
crossref_primary_10_1021_acs_nanolett_5c00285
crossref_primary_10_1002_smll_202407885
crossref_primary_10_1016_j_mattod_2022_12_004
crossref_primary_10_2174_0929867329666221006112615
crossref_primary_10_1016_j_colsurfb_2021_112257
crossref_primary_10_1007_s40843_023_2583_5
crossref_primary_10_1002_advs_202309314
crossref_primary_10_1007_s40820_025_01666_8
crossref_primary_10_1016_j_cej_2023_145796
crossref_primary_10_1039_D2BM01636B
crossref_primary_10_1002_smll_202502323
crossref_primary_10_1016_j_nantod_2024_102398
crossref_primary_10_1002_adfm_202301256
crossref_primary_10_1039_D3BM00788J
crossref_primary_10_1007_s11426_024_2033_1
crossref_primary_10_1016_j_cej_2025_168175
crossref_primary_10_1002_advs_202309542
crossref_primary_10_1186_s12951_022_01570_y
Cites_doi 10.1146/annurev.genet.36.042602.094806
10.1038/nbt.2842
10.1126/sciadv.abc4493
10.1021/acs.chemrev.5b00125
10.1002/adma.202006003
10.1002/anie.201903618
10.1002/anie.201909264
10.1002/adma.202003214
10.1021/acs.chemrev.9b00223
10.1021/jacs.9b09043
10.1126/sciadv.abc9450
10.1016/j.biomaterials.2019.119736
10.1002/anie.201601984
10.1126/science.1246981
10.1038/s41565-019-0539-2
10.1021/jacs.7b11754
10.1002/anie.202005644
10.1038/s41573-019-0012-9
10.3390/ijms150712543
10.1021/acs.nanolett.9b02112
10.1021/acsnano.7b07746
10.1021/jacs.9b07591
10.1021/acscatal.7b01671
10.1038/nature13181
10.1002/anie.201713082
10.1002/anie.201708689
10.1021/acsnano.0c03781
10.1002/adma.201602012
10.1021/acs.jmedchem.0c01704
10.1038/nature13194
10.1002/adma.201800180
10.1038/nrd1662
10.1002/smll.201805339
10.1038/s41551-018-0318-7
10.1016/j.addr.2018.07.007
10.1126/sciadv.aav7199
10.1021/jacs.6b11846
10.1073/pnas.1912220117
10.1126/sciadv.abb4005
10.4161/sgtp.19556
10.1021/acs.bioconjchem.0c00029
10.1038/sj.emboj.7601975
10.1016/j.dnarep.2007.11.007
10.1021/acsnano.9b06467
10.1002/anie.201506030
10.1126/science.1231143
10.1126/sciadv.1500454
10.1021/acs.chemmater.9b00439
10.1021/jacs.8b11996
10.1002/anie.201806941
10.1021/jacs.9b10228
10.1021/acs.chemrev.6b00799
10.1161/CIRCRESAHA.115.304351
10.1002/advs.201901378
10.1002/advs.201801423
10.1021/acsabm.0c00156
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104641
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34536041
10_1002_adma_202104641
ADMA202104641
Genre article
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2016YFA0203700
– fundername: Program of Shanghai Subject Chief Scientist
  funderid: 18XD1404300
– fundername: Development Fund for Shanghai Talents
  funderid: 2018114
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 19DZ2251100
– fundername: National Natural Science Foundation of China
  funderid: 81725008; 51672303; 51902336; 81927801; 82001820; 32171391
– fundername: Shanghai Municipal Health Commission
  funderid: 2019LJ21; SHSLCZDZK03502
– fundername: Shanghai Municipal Health Commission
  grantid: SHSLCZDZK03502
– fundername: National Natural Science Foundation of China
  grantid: 32171391
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 19DZ2251100
– fundername: Development Fund for Shanghai Talents
  grantid: 2018114
– fundername: National Natural Science Foundation of China
  grantid: 81927801
– fundername: Shanghai Municipal Health Commission
  grantid: 2019LJ21
– fundername: National Natural Science Foundation of China
  grantid: 51672303
– fundername: Program of Shanghai Subject Chief Scientist
  grantid: 18XD1404300
– fundername: National Natural Science Foundation of China
  grantid: 51902336
– fundername: National Natural Science Foundation of China
  grantid: 81725008
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4391-187d50d0089c2a7de85f47c2d98cee296c74d9430820dd52ee2900e84c585c9f3
IEDL.DBID DRFUL
ISICitedReferencesCount 135
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:27:05 EDT 2025
Mon Jul 14 08:23:03 EDT 2025
Mon Jul 21 05:34:07 EDT 2025
Tue Nov 18 21:06:19 EST 2025
Sat Nov 29 07:24:19 EST 2025
Wed Jan 22 16:26:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords sonodynamic therapy
ROS responsive
tumor therapy
genomic editing
metal-organic frameworks
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-187d50d0089c2a7de85f47c2d98cee296c74d9430820dd52ee2900e84c585c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8206-3325
PMID 34536041
PQID 2595068709
PQPubID 2045203
PageCount 15
ParticipantIDs proquest_miscellaneous_2574406789
proquest_journals_2595068709
pubmed_primary_34536041
crossref_citationtrail_10_1002_adma_202104641
crossref_primary_10_1002_adma_202104641
wiley_primary_10_1002_adma_202104641_ADMA202104641
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2021; 64
2019; 5
2019 2019; 14 141
2014 2012; 15 3
2019; 13
2019; 58
2015; 54
2020 2018; 117 57
2015 2016 2017; 1 55 117
2019 2019; 31 15
2020; 14
2020 2020 2021; 6 6 33
2019; 141
2002 2019; 36 19
2014 2013; 32 339
2018; 130
2020; 6
2019 2014 2014; 18 115 343
2020 2019 2015; 120 6 115
2018 2020 2020; 30 3 31
2019 2018 2019 2019; 6 140 58 3
2018; 12
2021; 60
2005 2019 2016 2020; 4 141 28 232
2017 2020 2020; 139 142 32
2014 2014; 508 508
2018; 57
2008 2008; 27 7
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_23_3
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
Xiang H. (e_1_2_7_28_1) 2019; 13
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 6
  start-page: 0575
  year: 2020
  publication-title: Sci. Adv.
– volume: 141
  start-page: 3782
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 1 55 117
  start-page: 8561 9874
  year: 2015 2016 2017
  publication-title: Sci. Adv. Angew. Chem., Int. Ed. Chem. Rev.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6 140 58 3
  start-page: 143 126
  year: 2019 2018 2019 2019
  publication-title: Adv. Sci. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Nat. Biomed. Eng.
– volume: 139 142 32
  start-page: 1275 6527
  year: 2017 2020 2020
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Mater.
– volume: 117 57
  start-page: 2395 1491
  year: 2020 2018
  publication-title: Proc. Natl. Acad. Sci. USA Angew. Chem., Int. Ed.
– volume: 13
  start-page: 2223
  year: 2019
  publication-title: ACS Nano
– volume: 36 19
  start-page: 279 5568
  year: 2002 2019
  publication-title: Annu. Rev. Genet. Nano Lett.
– volume: 30 3 31
  start-page: 3456 967
  year: 2018 2020 2020
  publication-title: Adv. Mater. ACS Appl. Bio Mater. Bioconjugate Chem.
– volume: 18 115 343
  start-page: 358 488 80
  year: 2019 2014 2014
  publication-title: Nat. Rev. Drug Discovery Circ. Res. Science
– volume: 6 6 33
  start-page: 4005 9450
  year: 2020 2020 2021
  publication-title: Sci. Adv. Sci. Adv. Adv. Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 15 3
  start-page: 120
  year: 2014 2012
  publication-title: Int. J. Mol. Sci. Small GTPases
– volume: 31 15
  start-page: 3349
  year: 2019 2019
  publication-title: Chem. Mater. Small
– volume: 4 141 28 232
  start-page: 255 8097
  year: 2005 2019 2016 2020
  publication-title: Nat. Rev. Drug Discovery J. Am. Chem. Soc. Adv. Mater. Biomaterials
– volume: 64
  start-page: 298
  year: 2021
  publication-title: J. Med. Chem.
– volume: 57
  start-page: 2657
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 32 339
  start-page: 347 819
  year: 2014 2013
  publication-title: Nat. Biotechnol. Science
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 60
  start-page: 8596
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 130
  start-page: 17
  year: 2018
  publication-title: Adv. Drug Delivery Rev.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 14 141
  start-page: 974
  year: 2019 2019
  publication-title: Nat. Nanotechnol. J. Am. Chem. Soc.
– volume: 508 508
  start-page: 222 215
  year: 2014 2014
  publication-title: Nature Nature
– volume: 27 7
  start-page: 421 418
  year: 2008 2008
  publication-title: EMBO J. DNA Repair
– volume: 12
  start-page: 651
  year: 2018
  publication-title: ACS Nano
– volume: 5
  start-page: 7199
  year: 2019
  publication-title: Sci. Adv.
– volume: 120 6 115
  start-page: 1438
  year: 2020 2019 2015
  publication-title: Chem. Rev. Adv. Sci. Chem. Rev.
– volume: 7
  start-page: 7267
  year: 2017
  publication-title: ACS Catal.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_18_1
  doi: 10.1146/annurev.genet.36.042602.094806
– ident: e_1_2_7_1_1
  doi: 10.1038/nbt.2842
– ident: e_1_2_7_22_1
  doi: 10.1126/sciadv.abc4493
– ident: e_1_2_7_23_3
  doi: 10.1021/acs.chemrev.5b00125
– ident: e_1_2_7_10_3
  doi: 10.1002/adma.202006003
– ident: e_1_2_7_9_3
  doi: 10.1002/anie.201903618
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201909264
– ident: e_1_2_7_16_3
  doi: 10.1002/adma.202003214
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.chemrev.9b00223
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.9b09043
– ident: e_1_2_7_10_2
  doi: 10.1126/sciadv.abc9450
– ident: e_1_2_7_15_4
  doi: 10.1016/j.biomaterials.2019.119736
– ident: e_1_2_7_2_2
  doi: 10.1002/anie.201601984
– ident: e_1_2_7_3_3
  doi: 10.1126/science.1246981
– ident: e_1_2_7_12_1
  doi: 10.1038/s41565-019-0539-2
– ident: e_1_2_7_9_2
  doi: 10.1021/jacs.7b11754
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.202005644
– ident: e_1_2_7_3_1
  doi: 10.1038/s41573-019-0012-9
– ident: e_1_2_7_20_1
  doi: 10.3390/ijms150712543
– ident: e_1_2_7_18_2
  doi: 10.1021/acs.nanolett.9b02112
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.7b07746
– ident: e_1_2_7_15_2
  doi: 10.1021/jacs.9b07591
– ident: e_1_2_7_27_1
  doi: 10.1021/acscatal.7b01671
– ident: e_1_2_7_21_2
  doi: 10.1038/nature13181
– volume: 13
  start-page: 2223
  year: 2019
  ident: e_1_2_7_28_1
  publication-title: ACS Nano
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201713082
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.201708689
– ident: e_1_2_7_30_1
  doi: 10.1021/acsnano.0c03781
– ident: e_1_2_7_15_3
  doi: 10.1002/adma.201602012
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.jmedchem.0c01704
– ident: e_1_2_7_21_1
  doi: 10.1038/nature13194
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201800180
– ident: e_1_2_7_15_1
  doi: 10.1038/nrd1662
– ident: e_1_2_7_14_2
  doi: 10.1002/smll.201805339
– ident: e_1_2_7_9_4
  doi: 10.1038/s41551-018-0318-7
– ident: e_1_2_7_31_1
  doi: 10.1016/j.addr.2018.07.007
– ident: e_1_2_7_8_1
  doi: 10.1126/sciadv.aav7199
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.6b11846
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.1912220117
– ident: e_1_2_7_10_1
  doi: 10.1126/sciadv.abb4005
– ident: e_1_2_7_20_2
  doi: 10.4161/sgtp.19556
– ident: e_1_2_7_17_3
  doi: 10.1021/acs.bioconjchem.0c00029
– ident: e_1_2_7_19_1
  doi: 10.1038/sj.emboj.7601975
– ident: e_1_2_7_19_2
  doi: 10.1016/j.dnarep.2007.11.007
– ident: e_1_2_7_26_1
  doi: 10.1021/acsnano.9b06467
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.201506030
– ident: e_1_2_7_1_2
  doi: 10.1126/science.1231143
– ident: e_1_2_7_2_1
  doi: 10.1126/sciadv.1500454
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.chemmater.9b00439
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.8b11996
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.201806941
– ident: e_1_2_7_16_2
  doi: 10.1021/jacs.9b10228
– ident: e_1_2_7_2_3
  doi: 10.1021/acs.chemrev.6b00799
– ident: e_1_2_7_3_2
  doi: 10.1161/CIRCRESAHA.115.304351
– ident: e_1_2_7_23_2
  doi: 10.1002/advs.201901378
– ident: e_1_2_7_9_1
  doi: 10.1002/advs.201801423
– ident: e_1_2_7_17_2
  doi: 10.1021/acsabm.0c00156
SSID ssj0009606
Score 2.6576297
Snippet The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)‐associated protein 9 (Cas9)‐based therapeutic genome editing is severely...
The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2104641
SubjectTerms Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis
Cell Line, Tumor
Cell Survival - drug effects
CRISPR
CRISPR-Cas Systems - genetics
Disruption
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
Editing
Gene Editing - methods
Genomes
genomic editing
Humans
Lysosomes
Materials science
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
Mice
Mice, Nude
Nanoparticles
Nanoparticles - chemistry
Neoplasms - pathology
Neoplasms - therapy
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Polymers - chemistry
Porphyrins - chemistry
Reactive Oxygen Species - metabolism
RNA, Guide, CRISPR-Cas Systems - chemistry
RNA, Guide, CRISPR-Cas Systems - metabolism
ROS responsive
Singlet oxygen
sonodynamic therapy
Transplantation, Heterologous
tumor therapy
Tumors
Ultrasonic imaging
Ultrasonic Therapy - methods
Title Sono‐Controllable and ROS‐Sensitive CRISPR‐Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104641
https://www.ncbi.nlm.nih.gov/pubmed/34536041
https://www.proquest.com/docview/2595068709
https://www.proquest.com/docview/2574406789
Volume 33
WOSCitedRecordID wos000696904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BlwMceD8Ky8pISJyium6c2MequwWkZVk1W9Rb5NgOWqmboKZFWnHhJ_Ab-SXMJGl2K4SQ4JY4E8ey5-V45huA13nm0UmgyFYn4yD0PgsM11mQ51QoyfFI1OXePh3HJydqsdCn17L4G3yI7ocbSUatr0nATVYNrkBDjatxgwQdUlLm-p5A5pU92DucTefHV8C7UV1fk877Ah2FagvcyMVgt4ddw_Sbt7nrvNbWZ3rv_8d9H-62nicbN6zyAG744iHcuYZH-Ai-JWVR_vz-Y9LEry8prYqZwrHZxwSbEwp2J_XIJrP3yemMKE2l2VtflBeeHblziqFm6Aaz8eZzjfbpBsklZRfWcNBsvlyvTEWFnNjZ5gLJULe3GWCXj2E-PTqbvAva6gyBpWzdYKhiJ7lDH0JbYWLnlczD2AqnFRpeoSMbh47A3dHHcE4KauPcq9DiDsXqfPQEekVZ-GfAFBdaSsVtNjToMWAPHrdxUms3tENuVB-C7dKktoUupwoay7QBXRYpTWraTWof3nT0XxrQjj9S7m9XOm2Ft0pxRyh5hIpM9-FV9xjFjs5STOHLDdEQsiJaeqR52nBI96lRKEcRp85FzQh_GUM6Pvww7u6e_8tLL-A2XTc5kvvQW682_iXcsl_X59XqAG7GC3XQCsYvhbgN-Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swELcQIG17YBuMUWCbkSbxFNV148R-rAodaKVDTYt4i1zbmSqVZOqfSWgvfAQ-I5-EuyQNqyY0adpjnItj2ffP9t3vCPmcjBw4CRjZakXo-c6NPM3UyEsSLJRkWcDzcm9X3bDXk9fX6rKMJsRcmAIfojpwQ8nI9TUKOB5I159QQ7XNgYM43lJi6vqGD7wETL5x0u8Mu0_Iu0FeYBMv_DwV-HKJ3Mh4fbWHVcv0h7u56r3m5qfz-j8M_A3ZKn1P2iqY5S1Zc-k2efUbIuEO-RVlafZwd98uItgnmFhFdWpp_1sEzRGGu6OCpO3-eXTZR0o9U_SLS7MbR0_tGKOoKTjCtLX4nuN92np0i_mFOSA0HU7mUz3DUk50sLgBMtDuZQ7Y7Tsy7JwO2mdeWZ_BM5iv6zVkaAWz4EUow3VonRSJHxpulQTTy1VgQt8ivDt4GdYKjm2MOekb2KMYlTR3yXqapW6PUMm4EkIyM2po8BmgBwcbOaGUbZgG07JGvOXaxKYEL8caGpO4gF3mMU5qXE1qjRxX9D8K2I5nKQ-XSx2X4juLYU8oWACqTNXIUfUaBA9vU3TqsgXSILYi2HqgeV-wSPWrpi-aAcPOec4JfxlD3Dq5aFVP-__y0Sfy4mxw0Y27572vB-QlthcZk4dkfT5duA9k0_ycj2fTj6V8PAJUCBEB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hLkJw4P0oLGAkJE5RXTdO7GPVbmFFKVWzRXuLXNtBK3WTVR9IKy78BH4jv4SZJM1SIYSEOMaZOJbjmfkcz3wD8DpbeAQJFNnqZByE3i8Cw_UiyDIqlOR4JMpyb5_G8WSiTk_1tI4mpFyYih-i-eFGmlHaa1Jwf-GyzhVrqHElcZCgU0pKXT8IqZJMCw6Gs9F8fMW8G5UFNunAL9BRqHbMjVx09nvY90y_wc199Fq6n9Gd_zDwu3C7xp6sXy2We3DN5_fh1i-MhA_ga1LkxY9v3wdVBPuSEquYyR2bfUywOaFwdzKQbDA7TqYzkjRrzd76vDj37MidURQ1QyDM-tvPJd-n6ySXlF9YEkKz-XKzMmsq5cROtucohta9zgG7fAjz0dHJ4F1Q12cILOXrBl0VO8kdoghthYmdVzILYyucVuh6hY5sHDqid0eU4ZwU1Ma5V6HFPYrVWe8RtPIi90-AKS60lIrbRdcgZsAePG7kpNaua7vcqDYEu2-T2pq8nGpoLNOKdlmkNKlpM6lteNPIX1S0HX-UPNx96rRW33WKe0LJIzRlug2vmtuoeHSaYnJfbEmGuBXR16PM42qJNK_qhbIXcepclCvhL2NI-8MP_ebq6b889BJuTIejdHw8ef8MblJzlTB5CK3Nauufw3X7ZXO2Xr2o1eMnxWAQfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sono%E2%80%90Controllable+and+ROS%E2%80%90Sensitive+CRISPR%E2%80%90Cas9+Genome+Editing+for+Augmented%2FSynergistic+Ultrasound+Tumor+Nanotherapy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Pu%2C+Yinying&rft.au=Yin%2C+Haohao&rft.au=Dong%2C+Caihong&rft.au=Xiang%2C+Huijing&rft.date=2021-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=45&rft_id=info:doi/10.1002%2Fadma.202104641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202104641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon