The post‐arteriole transitional zone: a specialized capillary region that regulates blood flow within the CNS microvasculature
The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activit...
Uloženo v:
| Vydáno v: | The Journal of physiology Ročník 601; číslo 5; s. 889 - 901 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
01.03.2023
|
| Témata: | |
| ISSN: | 0022-3751, 1469-7793, 1469-7793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just‐in‐time replenishment strategy, made necessary by the limited energy‐storage capacity of neurons, complicates the nutrient‐delivery task of the cerebral vasculature, layering on a temporo‐spatial requirement that invites ‐ and challenges ‐ mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte‐arteriole‐level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole‐proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post‐arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell – generally, but not universally, recognized as pericytes – to this function.
figure legend Angioarchitecture of the CNS vasculature, presenting a high‐altitude view of the post‐arteriolar transition zone (grey‐shaded region) – a major regulator of blood flow in the brain and retina. |
|---|---|
| AbstractList | The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just‐in‐time replenishment strategy, made necessary by the limited energy‐storage capacity of neurons, complicates the nutrient‐delivery task of the cerebral vasculature, layering on a temporo‐spatial requirement that invites ‐ and challenges ‐ mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte‐arteriole‐level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole‐proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post‐arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell – generally, but not universally, recognized as pericytes – to this function.
image The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just‐in‐time replenishment strategy, made necessary by the limited energy‐storage capacity of neurons, complicates the nutrient‐delivery task of the cerebral vasculature, layering on a temporo‐spatial requirement that invites ‐ and challenges ‐ mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte‐arteriole‐level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole‐proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post‐arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell – generally, but not universally, recognized as pericytes – to this function. figure legend Angioarchitecture of the CNS vasculature, presenting a high‐altitude view of the post‐arteriolar transition zone (grey‐shaded region) – a major regulator of blood flow in the brain and retina. The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function. The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function.The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function. The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites—and challenges—mechanistic interpretation. The center of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole–level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cells—generally, but not universally, recognized as pericytes—to this function. Angioarchitecture of the CNS vasculature, presenting a high-altitude view of the post-arteriolar transition zone (gray-shaded region)—a major regulator of blood flow in the brain and retina. |
| Author | Nelson, Mark T. Mughal, Amreen Hill‐Eubanks, David |
| AuthorAffiliation | 2 Division of Cardiovascular Sciences, University of Manchester, Manchester, UK 1 Department of Pharmacology, University of Vermont, Burlington, VT, USA |
| AuthorAffiliation_xml | – name: 1 Department of Pharmacology, University of Vermont, Burlington, VT, USA – name: 2 Division of Cardiovascular Sciences, University of Manchester, Manchester, UK |
| Author_xml | – sequence: 1 givenname: Amreen orcidid: 0000-0002-0046-2286 surname: Mughal fullname: Mughal, Amreen email: Amreen.Mughal@uvm.edu organization: University of Vermont – sequence: 2 givenname: Mark T. orcidid: 0000-0002-6608-8784 surname: Nelson fullname: Nelson, Mark T. organization: University of Manchester – sequence: 3 givenname: David surname: Hill‐Eubanks fullname: Hill‐Eubanks, David organization: University of Vermont |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36751860$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctuEzEYhS1URNOAxBMgS2zYTPFtLmaBhCJuVVUqEdaWx_NP48oZB9vTqF31EXhGngSPmpSCYGXL_nx8_nOO0MHgB0DoOSXHlFL--uScNYyJ6hGaUVHJoq4lP0AzQhgreF3SQ3QU4yUhlBMpn6BDXuXDpiIzdLtcAd74mH7e_tAhQbDeAU5BD9Em6wft8E3-6w3WOG7AWO3sDXTY6I11TodrHOAiYzitdJr2o9MJIm6d9x3und_irU0rOwGAF2df8dqa4K90NBM5BniKHvfaRXi2W-fo24f3y8Wn4vTLx8-Ld6eFEVySohelYLRjdV13BFphykbqpmt6WZrWtF1f15wDk6xnTdX0FZi25bStaMersjSGz9HbO93N2K6hMzDkIZ3aBLvOYyivrfrzZrArdeGvlJSS8ZzcHL3aCQT_fYSY1NpGAzmFAfwYVbYmhGxIKTL68i_00o8hZzlRDckzVIJn6sVDR_dW9uVk4PgOyInFGKBXxiY9tZINWqcoUVP7at_-b4v3D_aa_0B32lvr4Pq_nFqenNNSlIT_AgPWwBY |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0321053 crossref_primary_10_1073_pnas_2425994122 crossref_primary_10_1161_CIRCRESAHA_124_323515 crossref_primary_10_1038_s42003_024_07200_7 crossref_primary_10_3389_fnins_2023_1196606 crossref_primary_10_1093_cvr_cvaf010 crossref_primary_10_1113_JP284207 crossref_primary_10_1007_s11357_025_01720_8 crossref_primary_10_3389_fphys_2025_1631407 crossref_primary_10_3390_cells14010016 crossref_primary_10_1038_s41551_025_01465_x crossref_primary_10_1177_0271678X241235790 crossref_primary_10_1016_j_cell_2024_07_036 crossref_primary_10_1073_pnas_2415047121 crossref_primary_10_1172_JCI172841 crossref_primary_10_1172_JCI175789 crossref_primary_10_3389_fnana_2023_1280275 |
| Cites_doi | 10.1073/pnas.1922755117 10.1038/s41593-021-00904-7 10.1038/nn1779 10.1016/j.neuroimage.2014.03.044 10.1126/science.aav9518 10.1038/s41586-020-2589-x 10.1007/BF02593544 10.1038/nn.4428 10.1016/j.devcel.2011.07.001 10.1371/journal.pone.0186676 10.1038/nature25739 10.1177/0271678X16671146 10.1016/j.celrep.2017.12.016 10.7554/eLife.34861 10.1523/JNEUROSCI.1971-14.2014 10.3389/fphys.2021.719701 10.1113/jphysiol.1919.sp001844 10.1111/j.1471-4159.2004.02204.x 10.1161/01.STR.12.5.653 10.3389/fnagi.2021.779823 10.1083/jcb.100.5.1379 10.1016/j.neuron.2015.06.001 10.1161/CIRCULATIONAHA.119.040963 10.7554/eLife.63040 10.1038/jcbfm.2012.5 10.1016/j.neuroimage.2006.03.033 10.1038/nature02827 10.1038/s41593-020-00793-2 10.1038/nmeth.1857 10.1038/nature13165 10.1083/jcb.113.1.147 10.1038/s41598-017-19086-z 10.3389/fnana.2017.00128 10.1038/nn.4201 10.1038/sj.jcbfm.9600590 10.1007/s10456-007-9085-x 10.1161/01.RES.75.1.55 10.2139/ssrn.3881359 10.1016/j.ceca.2013.06.001 10.1016/j.neuron.2021.02.006 10.1073/pnas.1011321108 10.1073/pnas.95.26.15741 10.1126/sciadv.abh0101 10.1016/j.cell.2020.01.028 10.1038/nature05193 10.1161/CIRCRESAHA.122.320827 10.1038/s41596-020-00425-w 10.1073/pnas.1707702115 10.1523/JNEUROSCI.5572-07.2008 10.1126/scisignal.abl5405 10.3389/fncel.2015.00059 10.1038/jcbfm.2011.153 10.1073/pnas.2023749118 10.1126/science.277.5323.242 10.1016/j.neuron.2007.04.032 10.1161/01.RES.0000148636.60732.2e 10.1177/0271678X17732229 10.1186/1750-1326-5-32 10.1023/A:1011965307612 10.1177/36.6.3367051 10.1038/nn980 10.1111/aos.12143 10.1523/JNEUROSCI.2591-14.2014 10.1152/ajpheart.01007.2002 10.1038/nn.4533 10.3389/fnagi.2021.695965 10.1146/annurev-physiol-061121-040127 10.1038/s41467-020-14330-z 10.1113/jphysiol.2004.073098 10.1016/S0008-6363(00)00158-9 10.1096/fj.02-0340fje 10.1073/pnas.0914722107 10.1002/(SICI)1097-4547(19991101)58:3<367::AID-JNR2>3.0.CO;2-T |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society. 2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society. – notice: 2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
| DOI | 10.1113/JP282246 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1469-7793 |
| EndPage | 901 |
| ExternalDocumentID | PMC9992301 36751860 10_1113_JP282246 TJP15450 |
| Genre | article Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: American Heart Association Career Development funderid: 856791 – fundername: Totman Medical Research Trust – fundername: EC Horizon 2020 – fundername: National Institutes of Health funderid: 1K99AG075175; R35HL140027; R01NS110656; RF1NS128963; P20GM135007 – fundername: American Heart Association postdoctoral funderid: 20POST35210155 – fundername: American Heart Association-American Stroke Association grantid: 856791 – fundername: NIH HHS grantid: P20GM135007 – fundername: NINDS NIH HHS grantid: R01 NS110656 – fundername: NHLBI NIH HHS grantid: R35 HL140027 – fundername: NINDS NIH HHS grantid: RF1 NS128963 – fundername: NIH HHS grantid: R01NS110656 – fundername: NIA NIH HHS grantid: K99 AG075175 – fundername: NIGMS NIH HHS grantid: P20 GM135007 – fundername: American Heart Association-American Stroke Association grantid: 20POST35210155 – fundername: NIH HHS grantid: 1K99AG075175 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 18M 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 0YM 1OB 31~ 3EH 3O- AASGY AAYJJ AAYXX ABUFD ADXHL AEYWJ AFFNX AGHNM AGYGG C1A CAG CHEAL CITATION COF EJD FA8 H13 HF~ H~9 LW6 MVM NEJ O8X OHT UKR WHG X7M XOL YXB YYP ZGI ZXP CGR CUY CVF ECM EIF NPM RIG 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4390-f45421d2777d0eb4c589a8d8f95cbcbdf7733e292f2868f6ecbb31b61d3655cc3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936900400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3751 1469-7793 |
| IngestDate | Tue Nov 04 02:05:49 EST 2025 Fri Jul 11 10:35:50 EDT 2025 Fri Jul 25 12:12:20 EDT 2025 Mon Jul 21 05:40:41 EDT 2025 Sat Nov 29 06:41:53 EST 2025 Tue Nov 18 22:20:13 EST 2025 Wed Jan 22 16:15:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | cerebral blood flow regulation CNS vasculature pre-capillary arterioles capillaries pericytes transition zone |
| Language | English |
| License | Attribution 2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4390-f45421d2777d0eb4c589a8d8f95cbcbdf7733e292f2868f6ecbb31b61d3655cc3 |
| Notes | Handling Editors: Laura Bennet & Justin Dean The peer review history is available in the Supporting information section of this article https://doi.org/10.1113/JP282246#support‐information‐section . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Author(s) contributions D.H.E. and A.M. wrote the manuscript; M.T.N. provided scientific and editorial input. |
| ORCID | 0000-0002-6608-8784 0000-0002-0046-2286 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282246 |
| PMID | 36751860 |
| PQID | 2780777643 |
| PQPubID | 1086388 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992301 proquest_miscellaneous_2774498054 proquest_journals_2780777643 pubmed_primary_36751860 crossref_citationtrail_10_1113_JP282246 crossref_primary_10_1113_JP282246 wiley_primary_10_1113_JP282246_TJP15450 |
| PublicationCentury | 2000 |
| PublicationDate | 1 March 2023 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 1 March 2023 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | The Journal of physiology |
| PublicationTitleAlternate | J Physiol |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 24 2004; 561 2022; 130 1991; 113 2010; 107 2000; 48 2006; 32 1988; 36 1997; 277 2003; 17 1871; 1 2020; 11 1996; 148 2019; 365 2001; 42 2018; 7 2018; 8 2017; 37 2013; 54 1923; 68 2022; 84 2003; 6 1999; 58 2015; 87 2008; 28 2021; 118 2011; 21 2014; 95 1998; 95 2010; 5 2006; 443 1994; 75 2003; 284 2004; 88 2021; 109 2017; 20 2021; 7 2014; 92 2016; 19 2020; 141 1919; 52 2020; 180 2006; 9 2019; 39 1873; 5 2020; 585 2008; 11 2018; 22 2007; 54 2015; 9 2012; 32 1985; 100 2004; 431 2021; 13 2021; 16 2021; 10 2004; 95 2014; 508 2021; 12 2021 2017; 11 2018; 115 2017; 12 2018; 554 2020; 117 2022; 15 2014; 34 2001; 30 1924 1981; 12 2012; 9 e_1_2_2_4_1 Rouget C. (e_1_2_2_59_1) 1873; 5 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_62_1 e_1_2_2_43_1 e_1_2_2_64_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_66_1 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_68_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_76_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_53_1 e_1_2_2_74_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_55_1 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_57_1 e_1_2_2_78_1 e_1_2_2_70_1 e_1_2_2_72_1 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_63_1 e_1_2_2_42_1 e_1_2_2_65_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_67_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_69_1 Sakagami K. (e_1_2_2_60_1) 2001; 42 e_1_2_2_61_1 Zhang H. Y. (e_1_2_2_77_1) 1996; 148 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_52_1 e_1_2_2_75_1 e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_73_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_56_1 e_1_2_2_79_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_58_1 Krogh A. (e_1_2_2_44_1) 1924 e_1_2_2_50_1 e_1_2_2_71_1 |
| References_xml | – volume: 107 start-page: 22290 issue: 51 year: 2010 end-page: 22295 article-title: Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain publication-title: PNAS – volume: 1 year: 1871 – volume: 7 year: 2018 article-title: Capillary pericytes express alpha‐smooth muscle actin, which requires prevention of filamentous‐actin depolymerization for detection publication-title: Elife – volume: 11 start-page: 128 year: 2017 article-title: Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain publication-title: Frontiers in Neuroanatomy – volume: 148 start-page: 527 year: 1996 end-page: 537 article-title: Lung fibroblast alpha‐smooth muscle actin expression and contractile phenotype in bleomycin‐induced pulmonary fibrosis publication-title: American Journal of Pathology – volume: 284 start-page: H2083 issue: 6 year: 2003 end-page: H2090 article-title: Cholinergic regulation of pericyte‐containing retinal microvessels publication-title: American Journal of Physiology Heart and Circulatory Physiology – volume: 37 start-page: 52 issue: 1 year: 2017 end-page: 68 article-title: The capillary bed offers the largest hemodynamic resistance to the cortical blood supply publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 13 year: 2021 article-title: Prostaglandin E2 dilates intracerebral arterioles when applied to capillaries: Implications for small vessel diseases publication-title: Frontiers in Aging Neuroscience – year: 2021 – volume: 130 start-page: 1531 issue: 10 year: 2022 end-page: 1546 article-title: Piezo1 is a mechanosensor channel in central nervous system capillaries publication-title: Circulation Research – volume: 5 start-page: 603 year: 1873 end-page: 663 article-title: Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques publication-title: Arch Physiol Norm Path – volume: 34 start-page: 11504 issue: 34 year: 2014 end-page: 11513 article-title: Regulation of blood flow in the retinal trilaminar vascular network publication-title: Journal of Neuroscience – volume: 554 start-page: 475 issue: 7693 year: 2018 end-page: 480 article-title: A molecular atlas of cell types and zonation in the brain vasculature publication-title: Nature – volume: 21 start-page: 193 issue: 2 year: 2011 end-page: 215 article-title: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises publication-title: Developmental Cell – volume: 42 start-page: 1939 year: 2001 end-page: 1944 article-title: PDGF‐induced coupling of function with metabolism in microvascular pericytes of the retina publication-title: Investigative Ophthalmology & Visual Science – volume: 75 start-page: 55 issue: 1 year: 1994 end-page: 62 article-title: Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study publication-title: Circulation Research – volume: 48 start-page: 89 issue: 1 year: 2000 end-page: 100 article-title: Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb) publication-title: Cardiovascular Research – volume: 115 start-page: E5796 issue: 25 year: 2018 end-page: E5804 article-title: Stimulation‐induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses publication-title: PNAS – volume: 561 start-page: 671 issue: 3 year: 2004 end-page: 683 article-title: Effects of angiotensin II on the pericyte‐containing microvasculature of the rat retina publication-title: The Journal of Physiology – volume: 365 issue: 6450 year: 2019 article-title: Amyloid beta oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes publication-title: Science – volume: 8 start-page: 1373 issue: 1 year: 2018 article-title: Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling publication-title: Scientific Reports – volume: 84 start-page: 331 issue: 1 year: 2022 end-page: 354 article-title: Pericyte control of blood flow across microvascular zones in the central nervous system publication-title: Annual Review of Physiology – volume: 17 start-page: 1 issue: 3 year: 2003 end-page: 17 article-title: Pericyte‐specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation publication-title: Faseb Journal – volume: 9 start-page: 59 year: 2015 article-title: Control of the neurovascular coupling by nitric oxide‐dependent regulation of astrocytic Ca(2+) signaling publication-title: Frontiers in Cellular Neuroscience – volume: 9 start-page: 273 issue: 3 year: 2012 end-page: 276 article-title: An artery‐specific fluorescent dye for studying neurovascular coupling publication-title: Nature Methods – volume: 118 issue: 26 year: 2021 article-title: Precapillary sphincters and pericytes at first‐order capillaries as key regulators for brain capillary perfusion publication-title: PNAS – volume: 585 start-page: 91 issue: 7823 year: 2020 end-page: 95 article-title: Interpericyte tunnelling nanotubes regulate neurovascular coupling publication-title: Nature – volume: 95 start-page: 15741 issue: 26 year: 1998 end-page: 15746 article-title: Fluctuations and stimulus‐induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex publication-title: PNAS – year: 1924 – volume: 16 start-page: 472 issue: 1 year: 2021 end-page: 496 article-title: Imaging and optogenetic modulation of vascular mural cells in the live brain publication-title: Nature Protocols – volume: 30 start-page: 35 issue: 1 year: 2001 end-page: 44 article-title: Contractile proteins in pericytes at the blood‐brain and blood‐retinal barriers publication-title: Journal of Neurocytology – volume: 15 issue: 727 year: 2022 article-title: Adenosine signaling activates ATP‐sensitive K(+) channels in endothelial cells and pericytes in CNS capillaries publication-title: Science Signaling – volume: 109 start-page: 1168 issue: 7 year: 2021 end-page: 1187.e13 article-title: Brain microvasculature has a common topology with local differences in geometry that match metabolic load publication-title: Neuron – volume: 28 start-page: 4967 issue: 19 year: 2008 end-page: 4973 article-title: Loss of IP3 receptor‐dependent Ca increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity publication-title: Journal of Neuroscience – volume: 58 start-page: 367 issue: 3 year: 1999 end-page: 378 article-title: Pericytes and periendothelial cells of brain parenchyma vessels co‐express aminopeptidase N, aminopeptidase A, and nestin publication-title: Journal of Neuroscience Research – volume: 68 start-page: 29 issue: 1 year: 1923 end-page: 109 article-title: Der feinere Bau der Blutcapillaren publication-title: Zeitschrift Fur Anatomie Und Entwicklungsgeschichte – volume: 32 start-page: 264 issue: 2 year: 2012 end-page: 277 article-title: The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 24 start-page: 1198 issue: 9 year: 2021 end-page: 1209 article-title: Revisiting the neurovascular unit publication-title: Nature Neuroscience – volume: 11 start-page: 395 issue: 1 year: 2020 article-title: Precapillary sphincters maintain perfusion in the cerebral cortex publication-title: Nature Communications – volume: 10 year: 2021 article-title: Brain endothelial cell TRPA1 channels initiate neurovascular coupling publication-title: Elife – volume: 9 start-page: 1397 issue: 11 year: 2006 end-page: 1403 article-title: Local potassium signaling couples neuronal activity to vasodilation in the brain publication-title: Nature Neuroscience – volume: 12 year: 2021 article-title: Pericytes: Intrinsic transportation engineers of the CNS microcirculation publication-title: Frontiers in Physiology – volume: 277 start-page: 242 issue: 5323 year: 1997 end-page: 245 article-title: Pericyte loss and microaneurysm formation in PDGF‐B‐deficient mice publication-title: Science – volume: 443 start-page: 700 issue: 7112 year: 2006 end-page: 704 article-title: Bidirectional control of CNS capillary diameter by pericytes publication-title: Nature – volume: 113 start-page: 147 issue: 1 year: 1991 end-page: 154 article-title: Heterogeneity of microvascular pericytes for smooth muscle type alpha‐actin publication-title: Journal of Cell Biology – volume: 141 start-page: 2078 issue: 25 year: 2020 end-page: 2094 article-title: Reducing hypermuscularization of the transitional segment between arterioles and capillaries protects against spontaneous intracerebral hemorrhage publication-title: Circulation – volume: 87 start-page: 95 issue: 1 year: 2015 end-page: 110 article-title: Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes publication-title: Neuron – volume: 39 start-page: 411 issue: 3 year: 2019 end-page: 425 article-title: Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 6 start-page: 43 issue: 1 year: 2003 end-page: 50 article-title: Neuron‐to‐astrocyte signaling is central to the dynamic control of brain microcirculation publication-title: Nature Neuroscience – volume: 180 start-page: 780 issue: 4 year: 2020 end-page: 795.e25 article-title: Mapping the fine‐scale organization and plasticity of the brain vasculature publication-title: Cell – volume: 117 start-page: 27022 issue: 43 year: 2020 end-page: 27033 article-title: Contractile pericytes determine the direction of blood flow at capillary junctions publication-title: PNAS – volume: 20 start-page: 717 issue: 5 year: 2017 end-page: 726 article-title: Capillary K(+)‐sensing initiates retrograde hyperpolarization to increase local cerebral blood flow publication-title: Nature Neuroscience – volume: 19 start-page: 1619 issue: 12 year: 2016 end-page: 1627 article-title: Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles publication-title: Nature Neuroscience – volume: 107 start-page: 3811 issue: 8 year: 2010 end-page: 3816 article-title: Astrocytic endfoot Ca and BK channels determine both arteriolar dilation and constriction publication-title: PNAS – volume: 508 start-page: 55 issue: 7494 year: 2014 end-page: 60 article-title: Capillary pericytes regulate cerebral blood flow in health and disease publication-title: Nature – volume: 36 start-page: 659 issue: 6 year: 1988 end-page: 663 article-title: Specific demonstration of myoepithelial cells by anti‐alpha smooth muscle actin antibody publication-title: Journal of Histochemistry and Cytochemistry – volume: 19 start-page: 182 issue: 2 year: 2016 end-page: 189 article-title: Astrocyte calcium signaling: The third wave publication-title: Nature Neuroscience – volume: 54 start-page: 163 issue: 3 year: 2013 end-page: 174 article-title: How calcium signals in myocytes and pericytes are integrated across in situ microvascular networks and control microvascular tone publication-title: Cell Calcium – volume: 24 start-page: 633 issue: 5 year: 2021 end-page: 645 article-title: Brain capillary pericytes exert a substantial but slow influence on blood flow publication-title: Nature Neuroscience – volume: 5 start-page: 32 issue: 1 year: 2010 article-title: Pericyte‐specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling publication-title: Molecular Neurodegeneration – volume: 13 year: 2021 article-title: Gradual not sudden change: Multiple sites of functional transition across the microvascular bed publication-title: Frontiers in Aging Neuroscience – volume: 7 issue: 30 year: 2021 article-title: Local IP3 receptor‐mediated Ca(2+) signals compound to direct blood flow in brain capillaries publication-title: Science Advances – volume: 95 start-page: e73 issue: 10 year: 2004 end-page: 81 article-title: Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling publication-title: Circulation Research – volume: 100 start-page: 1379 issue: 5 year: 1985 end-page: 1386 article-title: Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin publication-title: Journal of Cell Biology – volume: 32 start-page: 1167 issue: 7 year: 2012 end-page: 1176 article-title: Control of brain capillary blood flow publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 431 start-page: 195 issue: 7005 year: 2004 end-page: 199 article-title: Calcium transients in astrocyte endfeet cause cerebrovascular constrictions publication-title: Nature – volume: 54 start-page: 611 issue: 4 year: 2007 end-page: 626 article-title: Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity publication-title: Neuron – volume: 92 start-page: 232 issue: 3 year: 2014 end-page: 237 article-title: Constriction of porcine retinal arterioles induced by endothelin‐1 and the thromboxane analogue U46619 in vitro decreases with increasing vascular branching level publication-title: Acta Ophthalmol – volume: 12 start-page: 653 issue: 5 year: 1981 end-page: 659 article-title: Microangioarchitecture of rat parietal cortex with special reference to vascular “sphincters”. Scanning electron microscopic and dark field microscopic study publication-title: Stroke; A Journal of Cerebral Circulation – volume: 22 start-page: 8 issue: 1 year: 2018 end-page: 16 article-title: Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain publication-title: Cell Reports – volume: 52 start-page: 457 issue: 6 year: 1919 end-page: 474 article-title: The supply of oxygen to the tissues and the regulation of the capillary circulation publication-title: The Journal of Physiology – volume: 34 start-page: 13139 issue: 39 year: 2014 end-page: 13150 article-title: Astrocytic Gq‐GPCR‐linked IP3R‐dependent Ca signaling does not mediate neurovascular coupling in mouse visual cortex in vivo publication-title: Journal of Neuroscience – volume: 88 start-page: 246 issue: 1 year: 2004 end-page: 256 article-title: ATP‐induced ATP release from astrocytes publication-title: Journal of Neurochemistry – volume: 28 start-page: 961 issue: 5 year: 2008 end-page: 972 article-title: Functional reactivity of cerebral capillaries publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 11 start-page: 141 issue: 2 year: 2008 end-page: 151 article-title: RGS5 expression is a quantitative measure of pericyte coverage of blood vessels publication-title: Angiogenesis – volume: 12 issue: 10 year: 2017 article-title: 3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods publication-title: PLoS One – volume: 95 start-page: 117 year: 2014 end-page: 128 article-title: Automatic anatomical labeling of the complete cerebral vasculature in mouse models publication-title: Neuroimage – volume: 32 start-page: 520 issue: 2 year: 2006 end-page: 530 article-title: Spatial flow‐volume dissociation of the cerebral microcirculatory response to mild hypercapnia publication-title: Neuroimage – ident: e_1_2_2_23_1 doi: 10.1073/pnas.1922755117 – ident: e_1_2_2_62_1 doi: 10.1038/s41593-021-00904-7 – ident: e_1_2_2_19_1 doi: 10.1038/nn1779 – ident: e_1_2_2_21_1 doi: 10.1016/j.neuroimage.2014.03.044 – ident: e_1_2_2_54_1 doi: 10.1126/science.aav9518 – ident: e_1_2_2_2_1 doi: 10.1038/s41586-020-2589-x – ident: e_1_2_2_78_1 doi: 10.1007/BF02593544 – ident: e_1_2_2_48_1 doi: 10.1038/nn.4428 – ident: e_1_2_2_6_1 doi: 10.1016/j.devcel.2011.07.001 – ident: e_1_2_2_66_1 doi: 10.1371/journal.pone.0186676 – ident: e_1_2_2_71_1 doi: 10.1038/nature25739 – volume: 5 start-page: 603 year: 1873 ident: e_1_2_2_59_1 article-title: Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques publication-title: Arch Physiol Norm Path – ident: e_1_2_2_24_1 doi: 10.1177/0271678X16671146 – volume: 148 start-page: 527 year: 1996 ident: e_1_2_2_77_1 article-title: Lung fibroblast alpha‐smooth muscle actin expression and contractile phenotype in bleomycin‐induced pulmonary fibrosis publication-title: American Journal of Pathology – ident: e_1_2_2_9_1 doi: 10.1016/j.celrep.2017.12.016 – ident: e_1_2_2_3_1 doi: 10.7554/eLife.34861 – ident: e_1_2_2_42_1 doi: 10.1523/JNEUROSCI.1971-14.2014 – ident: e_1_2_2_15_1 doi: 10.3389/fphys.2021.719701 – ident: e_1_2_2_43_1 doi: 10.1113/jphysiol.1919.sp001844 – ident: e_1_2_2_5_1 doi: 10.1111/j.1471-4159.2004.02204.x – ident: e_1_2_2_52_1 doi: 10.1161/01.STR.12.5.653 – ident: e_1_2_2_63_1 doi: 10.3389/fnagi.2021.779823 – ident: e_1_2_2_14_1 – ident: e_1_2_2_38_1 doi: 10.1083/jcb.100.5.1379 – ident: e_1_2_2_33_1 doi: 10.1016/j.neuron.2015.06.001 – ident: e_1_2_2_57_1 doi: 10.1161/CIRCULATIONAHA.119.040963 – ident: e_1_2_2_68_1 doi: 10.7554/eLife.63040 – ident: e_1_2_2_35_1 doi: 10.1038/jcbfm.2012.5 – ident: e_1_2_2_34_1 doi: 10.1016/j.neuroimage.2006.03.033 – ident: e_1_2_2_50_1 doi: 10.1038/nature02827 – ident: e_1_2_2_31_1 doi: 10.1038/s41593-020-00793-2 – ident: e_1_2_2_64_1 doi: 10.1038/nmeth.1857 – ident: e_1_2_2_29_1 doi: 10.1038/nature13165 – ident: e_1_2_2_53_1 doi: 10.1083/jcb.113.1.147 – ident: e_1_2_2_67_1 doi: 10.1038/s41598-017-19086-z – ident: e_1_2_2_75_1 doi: 10.3389/fnana.2017.00128 – ident: e_1_2_2_8_1 doi: 10.1038/nn.4201 – ident: e_1_2_2_65_1 doi: 10.1038/sj.jcbfm.9600590 – ident: e_1_2_2_49_1 doi: 10.1007/s10456-007-9085-x – ident: e_1_2_2_72_1 doi: 10.1161/01.RES.75.1.55 – ident: e_1_2_2_28_1 doi: 10.2139/ssrn.3881359 – ident: e_1_2_2_11_1 doi: 10.1016/j.ceca.2013.06.001 – ident: e_1_2_2_37_1 doi: 10.1016/j.neuron.2021.02.006 – volume-title: The anatomy and physiology of capillaries year: 1924 ident: e_1_2_2_44_1 – ident: e_1_2_2_16_1 doi: 10.1073/pnas.1011321108 – ident: e_1_2_2_41_1 doi: 10.1073/pnas.95.26.15741 – ident: e_1_2_2_47_1 doi: 10.1126/sciadv.abh0101 – volume: 42 start-page: 1939 year: 2001 ident: e_1_2_2_60_1 article-title: PDGF‐induced coupling of function with metabolism in microvascular pericytes of the retina publication-title: Investigative Ophthalmology & Visual Science – ident: e_1_2_2_40_1 doi: 10.1016/j.cell.2020.01.028 – ident: e_1_2_2_55_1 doi: 10.1038/nature05193 – ident: e_1_2_2_30_1 doi: 10.1161/CIRCRESAHA.122.320827 – ident: e_1_2_2_69_1 doi: 10.1038/s41596-020-00425-w – ident: e_1_2_2_12_1 doi: 10.1073/pnas.1707702115 – ident: e_1_2_2_56_1 doi: 10.1523/JNEUROSCI.5572-07.2008 – ident: e_1_2_2_61_1 doi: 10.1126/scisignal.abl5405 – ident: e_1_2_2_51_1 doi: 10.3389/fncel.2015.00059 – ident: e_1_2_2_36_1 doi: 10.1038/jcbfm.2011.153 – ident: e_1_2_2_76_1 doi: 10.1073/pnas.2023749118 – ident: e_1_2_2_45_1 doi: 10.1126/science.277.5323.242 – ident: e_1_2_2_17_1 doi: 10.1016/j.neuron.2007.04.032 – ident: e_1_2_2_18_1 doi: 10.1161/01.RES.0000148636.60732.2e – ident: e_1_2_2_25_1 doi: 10.1177/0271678X17732229 – ident: e_1_2_2_73_1 doi: 10.1186/1750-1326-5-32 – ident: e_1_2_2_7_1 doi: 10.1023/A:1011965307612 – ident: e_1_2_2_27_1 doi: 10.1177/36.6.3367051 – ident: e_1_2_2_79_1 doi: 10.1038/nn980 – ident: e_1_2_2_70_1 doi: 10.1111/aos.12143 – ident: e_1_2_2_10_1 doi: 10.1523/JNEUROSCI.2591-14.2014 – ident: e_1_2_2_74_1 doi: 10.1152/ajpheart.01007.2002 – ident: e_1_2_2_46_1 doi: 10.1038/nn.4533 – ident: e_1_2_2_58_1 doi: 10.3389/fnagi.2021.695965 – ident: e_1_2_2_32_1 doi: 10.1146/annurev-physiol-061121-040127 – ident: e_1_2_2_26_1 doi: 10.1038/s41467-020-14330-z – ident: e_1_2_2_39_1 doi: 10.1113/jphysiol.2004.073098 – ident: e_1_2_2_20_1 doi: 10.1016/S0008-6363(00)00158-9 – ident: e_1_2_2_13_1 doi: 10.1096/fj.02-0340fje – ident: e_1_2_2_22_1 doi: 10.1073/pnas.0914722107 – ident: e_1_2_2_4_1 doi: 10.1002/(SICI)1097-4547(19991101)58:3<367::AID-JNR2>3.0.CO;2-T |
| SSID | ssj0013099 |
| Score | 2.5151508 |
| SecondaryResourceType | review_article |
| Snippet | The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 889 |
| SubjectTerms | Arterioles - physiology Blood flow Brain - blood supply Capillaries Capillaries - physiology cerebral blood flow regulation CNS vasculature Computational neuroscience Contractility Microvasculature Microvessels Pericytes Pericytes - physiology pre‐capillary arterioles transition zone |
| Title | The post‐arteriole transitional zone: a specialized capillary region that regulates blood flow within the CNS microvasculature |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282246 https://www.ncbi.nlm.nih.gov/pubmed/36751860 https://www.proquest.com/docview/2780777643 https://www.proquest.com/docview/2774498054 https://pubmed.ncbi.nlm.nih.gov/PMC9992301 |
| Volume | 601 |
| WOSCitedRecordID | wos000936900400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-7793 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-7793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZg44EXbuPSMSYjIXiK8C22w9s0qGCaqgo20bfIsR2t0pZUTca0Pe0n8Bv5Jfg4aaAaSEi8VG19mtr1OfFnn6_fQegV4UZSyXTCtdGJoCVJjKYyUdJxS6j23EV1_UM1mejZLJv2rEr4L0ynDzEcuEFkxPs1BLgp-iokFMQGDqaRASlvo83whgKPZmL6K4NAsmxQClcp7YVng-nb1SfXl6Ib-PImTfJ3-BrXn_H9_-n5A3SvR514r3OTh-iWrx6hrb0q7LjPLvFrHHmg8YB9C10Hz8GLuml_XH-PhE9I3eMW1rR5d3CIr-rKv8MGN13x-vmVd9iaBRQwWl5iqPVQV7g9MS08h_pgvsGRIY_L0_oCw9nvHAw83p98wWfACewZsZDPeIyOxx-O9j8mfZ2GxAY4Q5JSpIJRx5RSjvhC2FRnRjtdZqktbOFKpTj3LGMl01KX0tui4LSQ1HGZptbyJ2ijCh1_hjAxQpvM-TJss0QmvFZWpcyVjqsAjIgcoTerKcttL2IOtTRO824zw_PVjztCLwfLRSfc8QebndWs533oNjlTmoSRBKQWLjE0h6CDTIqpfH0ONkqITAe4O0JPOycZvoRLyGRJMkJqzX0GAxD0Xm-p5idR2DuA9bAjpGGQ0X3-2u_86GAK0Jds_7Plc3SXBXjWsed20Ea7PPcv0B37rZ03y90YOuFRzfQu2nz_eXx8GF59_TT5CRRyIFE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJceJXHQgEjIThFdWLHduBUFValLKsVbKXeIsd21EhtstqkoPbUn8Bv5JdgOw9YFSQkbpE8Tux4Jv48M_kG4CUmkoUsEgERUgQ0zHEgRcgCzjRROBSGaM-uP-WzmTg6SuYb8Lb_F6blhxgcbs4y_PfaGbhzSHdW7tgGDuY-BZJdg01qtSgewea7z5PD6a8gAk6SgSycx2HHPWt77_R913ejKxDzaqbk7wjWb0GT2_81-Dtwq0OeaLdVlbuwYcp7sLVb2lP36Tl6hXwuqHeyb8Gl1R60rOrmx-V3n_Tpwveocfta0ToP0UVVmjdIorotYF9cGI2UXLoiRqtz5Oo9VCVqjmXjrl2NMFMjnyWP8pPqG3L-38IJGLQ3-4JOXV5glxXrYhr34XDyfrG3H3S1GgJlIQ0OchrTKNQR51xjk1EVi0QKLfIkVpnKdM45ISZKojwSTOTMqCwjYcZCTVgcK0UewKi0A38ECEsqZKJNbo9aNKFGcMXjSOeacAuOMBvD637NUtURmbt6Gidpe6Ahaf9yx_BikFy25B1_kNnulz3tzLdOIy6wnYlFa_YWQ7M1PBdNkaWpzpwMpzQRFvKO4WGrJcNDCHPRLIbHwNf0ZxBwpN7rLWVx7Mm9LWC3p8LQTtLrz1_HnS4O5g7-4sf_LPkcbuwvPk3T6YfZxydwM7Jwrc2m24ZRszozT-G6-toU9epZZ0k_AbxDIjc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKQYgLr_JYKGAkBKcIJ3ZsB05VYQWlWkWiSL1Fjh9qpDZZbVJQe-pP4DfyS_A4D1gVJCRukTxO7Hgm_sYz-QahF4QqHvNERlQqGbHYkUjJmEeCG6pJLC01gV1_XywW8vAwyzfQ2_FfmJ4fYjpwA8sI32swcLs0brByYBvYy0MKJL-CrrLUf2KB1pnlv0IIJMsmqnCRxgPzrO_7euy5vhddApiX8yR_x69hA5rf-q-h30Y3B9yJd3pFuYM2bH0Xbe3U3uc-OcMvccgEDUfsW-jC6w5eNm334-J7SPmE4D3uYFer-qNDfN7U9g1WuO3L11fn1mCtllDCaHWGodpDU-PuSHVwDRXCbItDjjx2x803DKe_FQhYvLv4jE8gK3DIiYWIxj30Zf7-YPdDNFRqiLQHNCRyLGVJbBIhhCG2ZDqVmZJGuizVpS6NE4JSm2SJSySXjltdljQueWwoT1Ot6X20WfuBP0SYKCZVZqzzjhbLmJVCizQxzlDhoRHhM_RqXLNCDzTmUE3juOjdGVqML3eGnk-Sy5664w8y2-OyF4PxtkUiJPEz8VjN32Jq9mYHsRRV2-YUZARjmfSAd4Ye9FoyPYRyiGVxMkNiTX8mAaD0Xm-pq6NA7e3huvcJYz_JoD9_HXdxsJcD-CWP_lnyGbqev5sX-x8Xnx6jG4nHan0q3Tba7Fan9gm6pr92Vbt6GszoJ_ynICA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+post%E2%80%90arteriole+transitional+zone%3A+a+specialized+capillary+region+that+regulates+blood+flow+within+the+CNS+microvasculature&rft.jtitle=The+Journal+of+physiology&rft.au=Mughal%2C+Amreen&rft.au=Nelson%2C+Mark+T.&rft.au=Hill%E2%80%90Eubanks%2C+David&rft.date=2023-03-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=601&rft.issue=5&rft.spage=889&rft.epage=901&rft_id=info:doi/10.1113%2FJP282246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_JP282246 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |