The post‐arteriole transitional zone: a specialized capillary region that regulates blood flow within the CNS microvasculature

The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of physiology Ročník 601; číslo 5; s. 889 - 901
Hlavní autoři: Mughal, Amreen, Nelson, Mark T., Hill‐Eubanks, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Subscription Services, Inc 01.03.2023
Témata:
ISSN:0022-3751, 1469-7793, 1469-7793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just‐in‐time replenishment strategy, made necessary by the limited energy‐storage capacity of neurons, complicates the nutrient‐delivery task of the cerebral vasculature, layering on a temporo‐spatial requirement that invites ‐ and challenges ‐ mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte‐arteriole‐level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole‐proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post‐arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell – generally, but not universally, recognized as pericytes – to this function. figure legend Angioarchitecture of the CNS vasculature, presenting a high‐altitude view of the post‐arteriolar transition zone (grey‐shaded region) – a major regulator of blood flow in the brain and retina.
AbstractList The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just‐in‐time replenishment strategy, made necessary by the limited energy‐storage capacity of neurons, complicates the nutrient‐delivery task of the cerebral vasculature, layering on a temporo‐spatial requirement that invites ‐ and challenges ‐ mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte‐arteriole‐level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole‐proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post‐arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell – generally, but not universally, recognized as pericytes – to this function. image
The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just‐in‐time replenishment strategy, made necessary by the limited energy‐storage capacity of neurons, complicates the nutrient‐delivery task of the cerebral vasculature, layering on a temporo‐spatial requirement that invites ‐ and challenges ‐ mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte‐arteriole‐level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole‐proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post‐arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell – generally, but not universally, recognized as pericytes – to this function. figure legend Angioarchitecture of the CNS vasculature, presenting a high‐altitude view of the post‐arteriolar transition zone (grey‐shaded region) – a major regulator of blood flow in the brain and retina.
The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function.
The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function.The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function.
The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites—and challenges—mechanistic interpretation. The center of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole–level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers’ perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cells—generally, but not universally, recognized as pericytes—to this function. Angioarchitecture of the CNS vasculature, presenting a high-altitude view of the post-arteriolar transition zone (gray-shaded region)—a major regulator of blood flow in the brain and retina.
Author Nelson, Mark T.
Mughal, Amreen
Hill‐Eubanks, David
AuthorAffiliation 2 Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
1 Department of Pharmacology, University of Vermont, Burlington, VT, USA
AuthorAffiliation_xml – name: 1 Department of Pharmacology, University of Vermont, Burlington, VT, USA
– name: 2 Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
Author_xml – sequence: 1
  givenname: Amreen
  orcidid: 0000-0002-0046-2286
  surname: Mughal
  fullname: Mughal, Amreen
  email: Amreen.Mughal@uvm.edu
  organization: University of Vermont
– sequence: 2
  givenname: Mark T.
  orcidid: 0000-0002-6608-8784
  surname: Nelson
  fullname: Nelson, Mark T.
  organization: University of Manchester
– sequence: 3
  givenname: David
  surname: Hill‐Eubanks
  fullname: Hill‐Eubanks, David
  organization: University of Vermont
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36751860$$D View this record in MEDLINE/PubMed
BookMark eNp1kctuEzEYhS1URNOAxBMgS2zYTPFtLmaBhCJuVVUqEdaWx_NP48oZB9vTqF31EXhGngSPmpSCYGXL_nx8_nOO0MHgB0DoOSXHlFL--uScNYyJ6hGaUVHJoq4lP0AzQhgreF3SQ3QU4yUhlBMpn6BDXuXDpiIzdLtcAd74mH7e_tAhQbDeAU5BD9Em6wft8E3-6w3WOG7AWO3sDXTY6I11TodrHOAiYzitdJr2o9MJIm6d9x3und_irU0rOwGAF2df8dqa4K90NBM5BniKHvfaRXi2W-fo24f3y8Wn4vTLx8-Ld6eFEVySohelYLRjdV13BFphykbqpmt6WZrWtF1f15wDk6xnTdX0FZi25bStaMersjSGz9HbO93N2K6hMzDkIZ3aBLvOYyivrfrzZrArdeGvlJSS8ZzcHL3aCQT_fYSY1NpGAzmFAfwYVbYmhGxIKTL68i_00o8hZzlRDckzVIJn6sVDR_dW9uVk4PgOyInFGKBXxiY9tZINWqcoUVP7at_-b4v3D_aa_0B32lvr4Pq_nFqenNNSlIT_AgPWwBY
CitedBy_id crossref_primary_10_1371_journal_pone_0321053
crossref_primary_10_1073_pnas_2425994122
crossref_primary_10_1161_CIRCRESAHA_124_323515
crossref_primary_10_1038_s42003_024_07200_7
crossref_primary_10_3389_fnins_2023_1196606
crossref_primary_10_1093_cvr_cvaf010
crossref_primary_10_1113_JP284207
crossref_primary_10_1007_s11357_025_01720_8
crossref_primary_10_3389_fphys_2025_1631407
crossref_primary_10_3390_cells14010016
crossref_primary_10_1038_s41551_025_01465_x
crossref_primary_10_1177_0271678X241235790
crossref_primary_10_1016_j_cell_2024_07_036
crossref_primary_10_1073_pnas_2415047121
crossref_primary_10_1172_JCI172841
crossref_primary_10_1172_JCI175789
crossref_primary_10_3389_fnana_2023_1280275
Cites_doi 10.1073/pnas.1922755117
10.1038/s41593-021-00904-7
10.1038/nn1779
10.1016/j.neuroimage.2014.03.044
10.1126/science.aav9518
10.1038/s41586-020-2589-x
10.1007/BF02593544
10.1038/nn.4428
10.1016/j.devcel.2011.07.001
10.1371/journal.pone.0186676
10.1038/nature25739
10.1177/0271678X16671146
10.1016/j.celrep.2017.12.016
10.7554/eLife.34861
10.1523/JNEUROSCI.1971-14.2014
10.3389/fphys.2021.719701
10.1113/jphysiol.1919.sp001844
10.1111/j.1471-4159.2004.02204.x
10.1161/01.STR.12.5.653
10.3389/fnagi.2021.779823
10.1083/jcb.100.5.1379
10.1016/j.neuron.2015.06.001
10.1161/CIRCULATIONAHA.119.040963
10.7554/eLife.63040
10.1038/jcbfm.2012.5
10.1016/j.neuroimage.2006.03.033
10.1038/nature02827
10.1038/s41593-020-00793-2
10.1038/nmeth.1857
10.1038/nature13165
10.1083/jcb.113.1.147
10.1038/s41598-017-19086-z
10.3389/fnana.2017.00128
10.1038/nn.4201
10.1038/sj.jcbfm.9600590
10.1007/s10456-007-9085-x
10.1161/01.RES.75.1.55
10.2139/ssrn.3881359
10.1016/j.ceca.2013.06.001
10.1016/j.neuron.2021.02.006
10.1073/pnas.1011321108
10.1073/pnas.95.26.15741
10.1126/sciadv.abh0101
10.1016/j.cell.2020.01.028
10.1038/nature05193
10.1161/CIRCRESAHA.122.320827
10.1038/s41596-020-00425-w
10.1073/pnas.1707702115
10.1523/JNEUROSCI.5572-07.2008
10.1126/scisignal.abl5405
10.3389/fncel.2015.00059
10.1038/jcbfm.2011.153
10.1073/pnas.2023749118
10.1126/science.277.5323.242
10.1016/j.neuron.2007.04.032
10.1161/01.RES.0000148636.60732.2e
10.1177/0271678X17732229
10.1186/1750-1326-5-32
10.1023/A:1011965307612
10.1177/36.6.3367051
10.1038/nn980
10.1111/aos.12143
10.1523/JNEUROSCI.2591-14.2014
10.1152/ajpheart.01007.2002
10.1038/nn.4533
10.3389/fnagi.2021.695965
10.1146/annurev-physiol-061121-040127
10.1038/s41467-020-14330-z
10.1113/jphysiol.2004.073098
10.1016/S0008-6363(00)00158-9
10.1096/fj.02-0340fje
10.1073/pnas.0914722107
10.1002/(SICI)1097-4547(19991101)58:3<367::AID-JNR2>3.0.CO;2-T
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society.
2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Physiological Society.
– notice: 2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP282246
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 901
ExternalDocumentID PMC9992301
36751860
10_1113_JP282246
TJP15450
Genre article
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Heart Association Career Development
  funderid: 856791
– fundername: Totman Medical Research Trust
– fundername: EC Horizon 2020
– fundername: National Institutes of Health
  funderid: 1K99AG075175; R35HL140027; R01NS110656; RF1NS128963; P20GM135007
– fundername: American Heart Association postdoctoral
  funderid: 20POST35210155
– fundername: American Heart Association-American Stroke Association
  grantid: 856791
– fundername: NIH HHS
  grantid: P20GM135007
– fundername: NINDS NIH HHS
  grantid: R01 NS110656
– fundername: NHLBI NIH HHS
  grantid: R35 HL140027
– fundername: NINDS NIH HHS
  grantid: RF1 NS128963
– fundername: NIH HHS
  grantid: R01NS110656
– fundername: NIA NIH HHS
  grantid: K99 AG075175
– fundername: NIGMS NIH HHS
  grantid: P20 GM135007
– fundername: American Heart Association-American Stroke Association
  grantid: 20POST35210155
– fundername: NIH HHS
  grantid: 1K99AG075175
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
1OB
31~
3EH
3O-
AASGY
AAYJJ
AAYXX
ABUFD
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
EJD
FA8
H13
HF~
H~9
LW6
MVM
NEJ
O8X
OHT
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c4390-f45421d2777d0eb4c589a8d8f95cbcbdf7733e292f2868f6ecbb31b61d3655cc3
IEDL.DBID 24P
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936900400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3751
1469-7793
IngestDate Tue Nov 04 02:05:49 EST 2025
Fri Jul 11 10:35:50 EDT 2025
Fri Jul 25 12:12:20 EDT 2025
Mon Jul 21 05:40:41 EDT 2025
Sat Nov 29 06:41:53 EST 2025
Tue Nov 18 22:20:13 EST 2025
Wed Jan 22 16:15:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cerebral blood flow regulation
CNS vasculature
pre-capillary arterioles
capillaries
pericytes
transition zone
Language English
License Attribution
2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-f45421d2777d0eb4c589a8d8f95cbcbdf7733e292f2868f6ecbb31b61d3655cc3
Notes Handling Editors: Laura Bennet & Justin Dean
The peer review history is available in the Supporting information section of this article
https://doi.org/10.1113/JP282246#support‐information‐section
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Author(s) contributions
D.H.E. and A.M. wrote the manuscript; M.T.N. provided scientific and editorial input.
ORCID 0000-0002-6608-8784
0000-0002-0046-2286
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282246
PMID 36751860
PQID 2780777643
PQPubID 1086388
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9992301
proquest_miscellaneous_2774498054
proquest_journals_2780777643
pubmed_primary_36751860
crossref_citationtrail_10_1113_JP282246
crossref_primary_10_1113_JP282246
wiley_primary_10_1113_JP282246_TJP15450
PublicationCentury 2000
PublicationDate 1 March 2023
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 1 March 2023
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 24
2004; 561
2022; 130
1991; 113
2010; 107
2000; 48
2006; 32
1988; 36
1997; 277
2003; 17
1871; 1
2020; 11
1996; 148
2019; 365
2001; 42
2018; 7
2018; 8
2017; 37
2013; 54
1923; 68
2022; 84
2003; 6
1999; 58
2015; 87
2008; 28
2021; 118
2011; 21
2014; 95
1998; 95
2010; 5
2006; 443
1994; 75
2003; 284
2004; 88
2021; 109
2017; 20
2021; 7
2014; 92
2016; 19
2020; 141
1919; 52
2020; 180
2006; 9
2019; 39
1873; 5
2020; 585
2008; 11
2018; 22
2007; 54
2015; 9
2012; 32
1985; 100
2004; 431
2021; 13
2021; 16
2021; 10
2004; 95
2014; 508
2021; 12
2021
2017; 11
2018; 115
2017; 12
2018; 554
2020; 117
2022; 15
2014; 34
2001; 30
1924
1981; 12
2012; 9
e_1_2_2_4_1
Rouget C. (e_1_2_2_59_1) 1873; 5
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_62_1
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_66_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_68_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_76_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_74_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_78_1
e_1_2_2_70_1
e_1_2_2_72_1
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_42_1
e_1_2_2_65_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_67_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_69_1
Sakagami K. (e_1_2_2_60_1) 2001; 42
e_1_2_2_61_1
Zhang H. Y. (e_1_2_2_77_1) 1996; 148
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_75_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_79_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
Krogh A. (e_1_2_2_44_1) 1924
e_1_2_2_50_1
e_1_2_2_71_1
References_xml – volume: 107
  start-page: 22290
  issue: 51
  year: 2010
  end-page: 22295
  article-title: Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain
  publication-title: PNAS
– volume: 1
  year: 1871
– volume: 7
  year: 2018
  article-title: Capillary pericytes express alpha‐smooth muscle actin, which requires prevention of filamentous‐actin depolymerization for detection
  publication-title: Elife
– volume: 11
  start-page: 128
  year: 2017
  article-title: Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain
  publication-title: Frontiers in Neuroanatomy
– volume: 148
  start-page: 527
  year: 1996
  end-page: 537
  article-title: Lung fibroblast alpha‐smooth muscle actin expression and contractile phenotype in bleomycin‐induced pulmonary fibrosis
  publication-title: American Journal of Pathology
– volume: 284
  start-page: H2083
  issue: 6
  year: 2003
  end-page: H2090
  article-title: Cholinergic regulation of pericyte‐containing retinal microvessels
  publication-title: American Journal of Physiology Heart and Circulatory Physiology
– volume: 37
  start-page: 52
  issue: 1
  year: 2017
  end-page: 68
  article-title: The capillary bed offers the largest hemodynamic resistance to the cortical blood supply
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 13
  year: 2021
  article-title: Prostaglandin E2 dilates intracerebral arterioles when applied to capillaries: Implications for small vessel diseases
  publication-title: Frontiers in Aging Neuroscience
– year: 2021
– volume: 130
  start-page: 1531
  issue: 10
  year: 2022
  end-page: 1546
  article-title: Piezo1 is a mechanosensor channel in central nervous system capillaries
  publication-title: Circulation Research
– volume: 5
  start-page: 603
  year: 1873
  end-page: 663
  article-title: Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques
  publication-title: Arch Physiol Norm Path
– volume: 34
  start-page: 11504
  issue: 34
  year: 2014
  end-page: 11513
  article-title: Regulation of blood flow in the retinal trilaminar vascular network
  publication-title: Journal of Neuroscience
– volume: 554
  start-page: 475
  issue: 7693
  year: 2018
  end-page: 480
  article-title: A molecular atlas of cell types and zonation in the brain vasculature
  publication-title: Nature
– volume: 21
  start-page: 193
  issue: 2
  year: 2011
  end-page: 215
  article-title: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
  publication-title: Developmental Cell
– volume: 42
  start-page: 1939
  year: 2001
  end-page: 1944
  article-title: PDGF‐induced coupling of function with metabolism in microvascular pericytes of the retina
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 75
  start-page: 55
  issue: 1
  year: 1994
  end-page: 62
  article-title: Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study
  publication-title: Circulation Research
– volume: 48
  start-page: 89
  issue: 1
  year: 2000
  end-page: 100
  article-title: Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb)
  publication-title: Cardiovascular Research
– volume: 115
  start-page: E5796
  issue: 25
  year: 2018
  end-page: E5804
  article-title: Stimulation‐induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses
  publication-title: PNAS
– volume: 561
  start-page: 671
  issue: 3
  year: 2004
  end-page: 683
  article-title: Effects of angiotensin II on the pericyte‐containing microvasculature of the rat retina
  publication-title: The Journal of Physiology
– volume: 365
  issue: 6450
  year: 2019
  article-title: Amyloid beta oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes
  publication-title: Science
– volume: 8
  start-page: 1373
  issue: 1
  year: 2018
  article-title: Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling
  publication-title: Scientific Reports
– volume: 84
  start-page: 331
  issue: 1
  year: 2022
  end-page: 354
  article-title: Pericyte control of blood flow across microvascular zones in the central nervous system
  publication-title: Annual Review of Physiology
– volume: 17
  start-page: 1
  issue: 3
  year: 2003
  end-page: 17
  article-title: Pericyte‐specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation
  publication-title: Faseb Journal
– volume: 9
  start-page: 59
  year: 2015
  article-title: Control of the neurovascular coupling by nitric oxide‐dependent regulation of astrocytic Ca(2+) signaling
  publication-title: Frontiers in Cellular Neuroscience
– volume: 9
  start-page: 273
  issue: 3
  year: 2012
  end-page: 276
  article-title: An artery‐specific fluorescent dye for studying neurovascular coupling
  publication-title: Nature Methods
– volume: 118
  issue: 26
  year: 2021
  article-title: Precapillary sphincters and pericytes at first‐order capillaries as key regulators for brain capillary perfusion
  publication-title: PNAS
– volume: 585
  start-page: 91
  issue: 7823
  year: 2020
  end-page: 95
  article-title: Interpericyte tunnelling nanotubes regulate neurovascular coupling
  publication-title: Nature
– volume: 95
  start-page: 15741
  issue: 26
  year: 1998
  end-page: 15746
  article-title: Fluctuations and stimulus‐induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex
  publication-title: PNAS
– year: 1924
– volume: 16
  start-page: 472
  issue: 1
  year: 2021
  end-page: 496
  article-title: Imaging and optogenetic modulation of vascular mural cells in the live brain
  publication-title: Nature Protocols
– volume: 30
  start-page: 35
  issue: 1
  year: 2001
  end-page: 44
  article-title: Contractile proteins in pericytes at the blood‐brain and blood‐retinal barriers
  publication-title: Journal of Neurocytology
– volume: 15
  issue: 727
  year: 2022
  article-title: Adenosine signaling activates ATP‐sensitive K(+) channels in endothelial cells and pericytes in CNS capillaries
  publication-title: Science Signaling
– volume: 109
  start-page: 1168
  issue: 7
  year: 2021
  end-page: 1187.e13
  article-title: Brain microvasculature has a common topology with local differences in geometry that match metabolic load
  publication-title: Neuron
– volume: 28
  start-page: 4967
  issue: 19
  year: 2008
  end-page: 4973
  article-title: Loss of IP3 receptor‐dependent Ca increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity
  publication-title: Journal of Neuroscience
– volume: 58
  start-page: 367
  issue: 3
  year: 1999
  end-page: 378
  article-title: Pericytes and periendothelial cells of brain parenchyma vessels co‐express aminopeptidase N, aminopeptidase A, and nestin
  publication-title: Journal of Neuroscience Research
– volume: 68
  start-page: 29
  issue: 1
  year: 1923
  end-page: 109
  article-title: Der feinere Bau der Blutcapillaren
  publication-title: Zeitschrift Fur Anatomie Und Entwicklungsgeschichte
– volume: 32
  start-page: 264
  issue: 2
  year: 2012
  end-page: 277
  article-title: The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 24
  start-page: 1198
  issue: 9
  year: 2021
  end-page: 1209
  article-title: Revisiting the neurovascular unit
  publication-title: Nature Neuroscience
– volume: 11
  start-page: 395
  issue: 1
  year: 2020
  article-title: Precapillary sphincters maintain perfusion in the cerebral cortex
  publication-title: Nature Communications
– volume: 10
  year: 2021
  article-title: Brain endothelial cell TRPA1 channels initiate neurovascular coupling
  publication-title: Elife
– volume: 9
  start-page: 1397
  issue: 11
  year: 2006
  end-page: 1403
  article-title: Local potassium signaling couples neuronal activity to vasodilation in the brain
  publication-title: Nature Neuroscience
– volume: 12
  year: 2021
  article-title: Pericytes: Intrinsic transportation engineers of the CNS microcirculation
  publication-title: Frontiers in Physiology
– volume: 277
  start-page: 242
  issue: 5323
  year: 1997
  end-page: 245
  article-title: Pericyte loss and microaneurysm formation in PDGF‐B‐deficient mice
  publication-title: Science
– volume: 443
  start-page: 700
  issue: 7112
  year: 2006
  end-page: 704
  article-title: Bidirectional control of CNS capillary diameter by pericytes
  publication-title: Nature
– volume: 113
  start-page: 147
  issue: 1
  year: 1991
  end-page: 154
  article-title: Heterogeneity of microvascular pericytes for smooth muscle type alpha‐actin
  publication-title: Journal of Cell Biology
– volume: 141
  start-page: 2078
  issue: 25
  year: 2020
  end-page: 2094
  article-title: Reducing hypermuscularization of the transitional segment between arterioles and capillaries protects against spontaneous intracerebral hemorrhage
  publication-title: Circulation
– volume: 87
  start-page: 95
  issue: 1
  year: 2015
  end-page: 110
  article-title: Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes
  publication-title: Neuron
– volume: 39
  start-page: 411
  issue: 3
  year: 2019
  end-page: 425
  article-title: Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 6
  start-page: 43
  issue: 1
  year: 2003
  end-page: 50
  article-title: Neuron‐to‐astrocyte signaling is central to the dynamic control of brain microcirculation
  publication-title: Nature Neuroscience
– volume: 180
  start-page: 780
  issue: 4
  year: 2020
  end-page: 795.e25
  article-title: Mapping the fine‐scale organization and plasticity of the brain vasculature
  publication-title: Cell
– volume: 117
  start-page: 27022
  issue: 43
  year: 2020
  end-page: 27033
  article-title: Contractile pericytes determine the direction of blood flow at capillary junctions
  publication-title: PNAS
– volume: 20
  start-page: 717
  issue: 5
  year: 2017
  end-page: 726
  article-title: Capillary K(+)‐sensing initiates retrograde hyperpolarization to increase local cerebral blood flow
  publication-title: Nature Neuroscience
– volume: 19
  start-page: 1619
  issue: 12
  year: 2016
  end-page: 1627
  article-title: Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles
  publication-title: Nature Neuroscience
– volume: 107
  start-page: 3811
  issue: 8
  year: 2010
  end-page: 3816
  article-title: Astrocytic endfoot Ca and BK channels determine both arteriolar dilation and constriction
  publication-title: PNAS
– volume: 508
  start-page: 55
  issue: 7494
  year: 2014
  end-page: 60
  article-title: Capillary pericytes regulate cerebral blood flow in health and disease
  publication-title: Nature
– volume: 36
  start-page: 659
  issue: 6
  year: 1988
  end-page: 663
  article-title: Specific demonstration of myoepithelial cells by anti‐alpha smooth muscle actin antibody
  publication-title: Journal of Histochemistry and Cytochemistry
– volume: 19
  start-page: 182
  issue: 2
  year: 2016
  end-page: 189
  article-title: Astrocyte calcium signaling: The third wave
  publication-title: Nature Neuroscience
– volume: 54
  start-page: 163
  issue: 3
  year: 2013
  end-page: 174
  article-title: How calcium signals in myocytes and pericytes are integrated across in situ microvascular networks and control microvascular tone
  publication-title: Cell Calcium
– volume: 24
  start-page: 633
  issue: 5
  year: 2021
  end-page: 645
  article-title: Brain capillary pericytes exert a substantial but slow influence on blood flow
  publication-title: Nature Neuroscience
– volume: 5
  start-page: 32
  issue: 1
  year: 2010
  article-title: Pericyte‐specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling
  publication-title: Molecular Neurodegeneration
– volume: 13
  year: 2021
  article-title: Gradual not sudden change: Multiple sites of functional transition across the microvascular bed
  publication-title: Frontiers in Aging Neuroscience
– volume: 7
  issue: 30
  year: 2021
  article-title: Local IP3 receptor‐mediated Ca(2+) signals compound to direct blood flow in brain capillaries
  publication-title: Science Advances
– volume: 95
  start-page: e73
  issue: 10
  year: 2004
  end-page: 81
  article-title: Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling
  publication-title: Circulation Research
– volume: 100
  start-page: 1379
  issue: 5
  year: 1985
  end-page: 1386
  article-title: Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin
  publication-title: Journal of Cell Biology
– volume: 32
  start-page: 1167
  issue: 7
  year: 2012
  end-page: 1176
  article-title: Control of brain capillary blood flow
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 431
  start-page: 195
  issue: 7005
  year: 2004
  end-page: 199
  article-title: Calcium transients in astrocyte endfeet cause cerebrovascular constrictions
  publication-title: Nature
– volume: 54
  start-page: 611
  issue: 4
  year: 2007
  end-page: 626
  article-title: Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity
  publication-title: Neuron
– volume: 92
  start-page: 232
  issue: 3
  year: 2014
  end-page: 237
  article-title: Constriction of porcine retinal arterioles induced by endothelin‐1 and the thromboxane analogue U46619 in vitro decreases with increasing vascular branching level
  publication-title: Acta Ophthalmol
– volume: 12
  start-page: 653
  issue: 5
  year: 1981
  end-page: 659
  article-title: Microangioarchitecture of rat parietal cortex with special reference to vascular “sphincters”. Scanning electron microscopic and dark field microscopic study
  publication-title: Stroke; A Journal of Cerebral Circulation
– volume: 22
  start-page: 8
  issue: 1
  year: 2018
  end-page: 16
  article-title: Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain
  publication-title: Cell Reports
– volume: 52
  start-page: 457
  issue: 6
  year: 1919
  end-page: 474
  article-title: The supply of oxygen to the tissues and the regulation of the capillary circulation
  publication-title: The Journal of Physiology
– volume: 34
  start-page: 13139
  issue: 39
  year: 2014
  end-page: 13150
  article-title: Astrocytic Gq‐GPCR‐linked IP3R‐dependent Ca signaling does not mediate neurovascular coupling in mouse visual cortex in vivo
  publication-title: Journal of Neuroscience
– volume: 88
  start-page: 246
  issue: 1
  year: 2004
  end-page: 256
  article-title: ATP‐induced ATP release from astrocytes
  publication-title: Journal of Neurochemistry
– volume: 28
  start-page: 961
  issue: 5
  year: 2008
  end-page: 972
  article-title: Functional reactivity of cerebral capillaries
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 11
  start-page: 141
  issue: 2
  year: 2008
  end-page: 151
  article-title: RGS5 expression is a quantitative measure of pericyte coverage of blood vessels
  publication-title: Angiogenesis
– volume: 12
  issue: 10
  year: 2017
  article-title: 3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods
  publication-title: PLoS One
– volume: 95
  start-page: 117
  year: 2014
  end-page: 128
  article-title: Automatic anatomical labeling of the complete cerebral vasculature in mouse models
  publication-title: Neuroimage
– volume: 32
  start-page: 520
  issue: 2
  year: 2006
  end-page: 530
  article-title: Spatial flow‐volume dissociation of the cerebral microcirculatory response to mild hypercapnia
  publication-title: Neuroimage
– ident: e_1_2_2_23_1
  doi: 10.1073/pnas.1922755117
– ident: e_1_2_2_62_1
  doi: 10.1038/s41593-021-00904-7
– ident: e_1_2_2_19_1
  doi: 10.1038/nn1779
– ident: e_1_2_2_21_1
  doi: 10.1016/j.neuroimage.2014.03.044
– ident: e_1_2_2_54_1
  doi: 10.1126/science.aav9518
– ident: e_1_2_2_2_1
  doi: 10.1038/s41586-020-2589-x
– ident: e_1_2_2_78_1
  doi: 10.1007/BF02593544
– ident: e_1_2_2_48_1
  doi: 10.1038/nn.4428
– ident: e_1_2_2_6_1
  doi: 10.1016/j.devcel.2011.07.001
– ident: e_1_2_2_66_1
  doi: 10.1371/journal.pone.0186676
– ident: e_1_2_2_71_1
  doi: 10.1038/nature25739
– volume: 5
  start-page: 603
  year: 1873
  ident: e_1_2_2_59_1
  article-title: Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques
  publication-title: Arch Physiol Norm Path
– ident: e_1_2_2_24_1
  doi: 10.1177/0271678X16671146
– volume: 148
  start-page: 527
  year: 1996
  ident: e_1_2_2_77_1
  article-title: Lung fibroblast alpha‐smooth muscle actin expression and contractile phenotype in bleomycin‐induced pulmonary fibrosis
  publication-title: American Journal of Pathology
– ident: e_1_2_2_9_1
  doi: 10.1016/j.celrep.2017.12.016
– ident: e_1_2_2_3_1
  doi: 10.7554/eLife.34861
– ident: e_1_2_2_42_1
  doi: 10.1523/JNEUROSCI.1971-14.2014
– ident: e_1_2_2_15_1
  doi: 10.3389/fphys.2021.719701
– ident: e_1_2_2_43_1
  doi: 10.1113/jphysiol.1919.sp001844
– ident: e_1_2_2_5_1
  doi: 10.1111/j.1471-4159.2004.02204.x
– ident: e_1_2_2_52_1
  doi: 10.1161/01.STR.12.5.653
– ident: e_1_2_2_63_1
  doi: 10.3389/fnagi.2021.779823
– ident: e_1_2_2_14_1
– ident: e_1_2_2_38_1
  doi: 10.1083/jcb.100.5.1379
– ident: e_1_2_2_33_1
  doi: 10.1016/j.neuron.2015.06.001
– ident: e_1_2_2_57_1
  doi: 10.1161/CIRCULATIONAHA.119.040963
– ident: e_1_2_2_68_1
  doi: 10.7554/eLife.63040
– ident: e_1_2_2_35_1
  doi: 10.1038/jcbfm.2012.5
– ident: e_1_2_2_34_1
  doi: 10.1016/j.neuroimage.2006.03.033
– ident: e_1_2_2_50_1
  doi: 10.1038/nature02827
– ident: e_1_2_2_31_1
  doi: 10.1038/s41593-020-00793-2
– ident: e_1_2_2_64_1
  doi: 10.1038/nmeth.1857
– ident: e_1_2_2_29_1
  doi: 10.1038/nature13165
– ident: e_1_2_2_53_1
  doi: 10.1083/jcb.113.1.147
– ident: e_1_2_2_67_1
  doi: 10.1038/s41598-017-19086-z
– ident: e_1_2_2_75_1
  doi: 10.3389/fnana.2017.00128
– ident: e_1_2_2_8_1
  doi: 10.1038/nn.4201
– ident: e_1_2_2_65_1
  doi: 10.1038/sj.jcbfm.9600590
– ident: e_1_2_2_49_1
  doi: 10.1007/s10456-007-9085-x
– ident: e_1_2_2_72_1
  doi: 10.1161/01.RES.75.1.55
– ident: e_1_2_2_28_1
  doi: 10.2139/ssrn.3881359
– ident: e_1_2_2_11_1
  doi: 10.1016/j.ceca.2013.06.001
– ident: e_1_2_2_37_1
  doi: 10.1016/j.neuron.2021.02.006
– volume-title: The anatomy and physiology of capillaries
  year: 1924
  ident: e_1_2_2_44_1
– ident: e_1_2_2_16_1
  doi: 10.1073/pnas.1011321108
– ident: e_1_2_2_41_1
  doi: 10.1073/pnas.95.26.15741
– ident: e_1_2_2_47_1
  doi: 10.1126/sciadv.abh0101
– volume: 42
  start-page: 1939
  year: 2001
  ident: e_1_2_2_60_1
  article-title: PDGF‐induced coupling of function with metabolism in microvascular pericytes of the retina
  publication-title: Investigative Ophthalmology & Visual Science
– ident: e_1_2_2_40_1
  doi: 10.1016/j.cell.2020.01.028
– ident: e_1_2_2_55_1
  doi: 10.1038/nature05193
– ident: e_1_2_2_30_1
  doi: 10.1161/CIRCRESAHA.122.320827
– ident: e_1_2_2_69_1
  doi: 10.1038/s41596-020-00425-w
– ident: e_1_2_2_12_1
  doi: 10.1073/pnas.1707702115
– ident: e_1_2_2_56_1
  doi: 10.1523/JNEUROSCI.5572-07.2008
– ident: e_1_2_2_61_1
  doi: 10.1126/scisignal.abl5405
– ident: e_1_2_2_51_1
  doi: 10.3389/fncel.2015.00059
– ident: e_1_2_2_36_1
  doi: 10.1038/jcbfm.2011.153
– ident: e_1_2_2_76_1
  doi: 10.1073/pnas.2023749118
– ident: e_1_2_2_45_1
  doi: 10.1126/science.277.5323.242
– ident: e_1_2_2_17_1
  doi: 10.1016/j.neuron.2007.04.032
– ident: e_1_2_2_18_1
  doi: 10.1161/01.RES.0000148636.60732.2e
– ident: e_1_2_2_25_1
  doi: 10.1177/0271678X17732229
– ident: e_1_2_2_73_1
  doi: 10.1186/1750-1326-5-32
– ident: e_1_2_2_7_1
  doi: 10.1023/A:1011965307612
– ident: e_1_2_2_27_1
  doi: 10.1177/36.6.3367051
– ident: e_1_2_2_79_1
  doi: 10.1038/nn980
– ident: e_1_2_2_70_1
  doi: 10.1111/aos.12143
– ident: e_1_2_2_10_1
  doi: 10.1523/JNEUROSCI.2591-14.2014
– ident: e_1_2_2_74_1
  doi: 10.1152/ajpheart.01007.2002
– ident: e_1_2_2_46_1
  doi: 10.1038/nn.4533
– ident: e_1_2_2_58_1
  doi: 10.3389/fnagi.2021.695965
– ident: e_1_2_2_32_1
  doi: 10.1146/annurev-physiol-061121-040127
– ident: e_1_2_2_26_1
  doi: 10.1038/s41467-020-14330-z
– ident: e_1_2_2_39_1
  doi: 10.1113/jphysiol.2004.073098
– ident: e_1_2_2_20_1
  doi: 10.1016/S0008-6363(00)00158-9
– ident: e_1_2_2_13_1
  doi: 10.1096/fj.02-0340fje
– ident: e_1_2_2_22_1
  doi: 10.1073/pnas.0914722107
– ident: e_1_2_2_4_1
  doi: 10.1002/(SICI)1097-4547(19991101)58:3<367::AID-JNR2>3.0.CO;2-T
SSID ssj0013099
Score 2.5151508
SecondaryResourceType review_article
Snippet The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 889
SubjectTerms Arterioles - physiology
Blood flow
Brain - blood supply
Capillaries
Capillaries - physiology
cerebral blood flow regulation
CNS vasculature
Computational neuroscience
Contractility
Microvasculature
Microvessels
Pericytes
Pericytes - physiology
pre‐capillary arterioles
transition zone
Title The post‐arteriole transitional zone: a specialized capillary region that regulates blood flow within the CNS microvasculature
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP282246
https://www.ncbi.nlm.nih.gov/pubmed/36751860
https://www.proquest.com/docview/2780777643
https://www.proquest.com/docview/2774498054
https://pubmed.ncbi.nlm.nih.gov/PMC9992301
Volume 601
WOSCitedRecordID wos000936900400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZg44EXbuPSMSYjIXiK8C22w9s0qGCaqgo20bfIsR2t0pZUTca0Pe0n8Bv5Jfg4aaAaSEi8VG19mtr1OfFnn6_fQegV4UZSyXTCtdGJoCVJjKYyUdJxS6j23EV1_UM1mejZLJv2rEr4L0ynDzEcuEFkxPs1BLgp-iokFMQGDqaRASlvo83whgKPZmL6K4NAsmxQClcp7YVng-nb1SfXl6Ib-PImTfJ3-BrXn_H9_-n5A3SvR514r3OTh-iWrx6hrb0q7LjPLvFrHHmg8YB9C10Hz8GLuml_XH-PhE9I3eMW1rR5d3CIr-rKv8MGN13x-vmVd9iaBRQwWl5iqPVQV7g9MS08h_pgvsGRIY_L0_oCw9nvHAw83p98wWfACewZsZDPeIyOxx-O9j8mfZ2GxAY4Q5JSpIJRx5RSjvhC2FRnRjtdZqktbOFKpTj3LGMl01KX0tui4LSQ1HGZptbyJ2ijCh1_hjAxQpvM-TJss0QmvFZWpcyVjqsAjIgcoTerKcttL2IOtTRO824zw_PVjztCLwfLRSfc8QebndWs533oNjlTmoSRBKQWLjE0h6CDTIqpfH0ONkqITAe4O0JPOycZvoRLyGRJMkJqzX0GAxD0Xm-p5idR2DuA9bAjpGGQ0X3-2u_86GAK0Jds_7Plc3SXBXjWsed20Ea7PPcv0B37rZ03y90YOuFRzfQu2nz_eXx8GF59_TT5CRRyIFE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJceJXHQgEjIThFdWLHduBUFValLKsVbKXeIsd21EhtstqkoPbUn8Bv5JdgOw9YFSQkbpE8Tux4Jv48M_kG4CUmkoUsEgERUgQ0zHEgRcgCzjRROBSGaM-uP-WzmTg6SuYb8Lb_F6blhxgcbs4y_PfaGbhzSHdW7tgGDuY-BZJdg01qtSgewea7z5PD6a8gAk6SgSycx2HHPWt77_R913ejKxDzaqbk7wjWb0GT2_81-Dtwq0OeaLdVlbuwYcp7sLVb2lP36Tl6hXwuqHeyb8Gl1R60rOrmx-V3n_Tpwveocfta0ToP0UVVmjdIorotYF9cGI2UXLoiRqtz5Oo9VCVqjmXjrl2NMFMjnyWP8pPqG3L-38IJGLQ3-4JOXV5glxXrYhr34XDyfrG3H3S1GgJlIQ0OchrTKNQR51xjk1EVi0QKLfIkVpnKdM45ISZKojwSTOTMqCwjYcZCTVgcK0UewKi0A38ECEsqZKJNbo9aNKFGcMXjSOeacAuOMBvD637NUtURmbt6Gidpe6Ahaf9yx_BikFy25B1_kNnulz3tzLdOIy6wnYlFa_YWQ7M1PBdNkaWpzpwMpzQRFvKO4WGrJcNDCHPRLIbHwNf0ZxBwpN7rLWVx7Mm9LWC3p8LQTtLrz1_HnS4O5g7-4sf_LPkcbuwvPk3T6YfZxydwM7Jwrc2m24ZRszozT-G6-toU9epZZ0k_AbxDIjc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKQYgLr_JYKGAkBKcIJ3ZsB05VYQWlWkWiSL1Fjh9qpDZZbVJQe-pP4DfyS_A4D1gVJCRukTxO7Hgm_sYz-QahF4QqHvNERlQqGbHYkUjJmEeCG6pJLC01gV1_XywW8vAwyzfQ2_FfmJ4fYjpwA8sI32swcLs0brByYBvYy0MKJL-CrrLUf2KB1pnlv0IIJMsmqnCRxgPzrO_7euy5vhddApiX8yR_x69hA5rf-q-h30Y3B9yJd3pFuYM2bH0Xbe3U3uc-OcMvccgEDUfsW-jC6w5eNm334-J7SPmE4D3uYFer-qNDfN7U9g1WuO3L11fn1mCtllDCaHWGodpDU-PuSHVwDRXCbItDjjx2x803DKe_FQhYvLv4jE8gK3DIiYWIxj30Zf7-YPdDNFRqiLQHNCRyLGVJbBIhhCG2ZDqVmZJGuizVpS6NE4JSm2SJSySXjltdljQueWwoT1Ot6X20WfuBP0SYKCZVZqzzjhbLmJVCizQxzlDhoRHhM_RqXLNCDzTmUE3juOjdGVqML3eGnk-Sy5664w8y2-OyF4PxtkUiJPEz8VjN32Jq9mYHsRRV2-YUZARjmfSAd4Ye9FoyPYRyiGVxMkNiTX8mAaD0Xm-pq6NA7e3huvcJYz_JoD9_HXdxsJcD-CWP_lnyGbqev5sX-x8Xnx6jG4nHan0q3Tba7Fan9gm6pr92Vbt6GszoJ_ynICA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+post%E2%80%90arteriole+transitional+zone%3A+a+specialized+capillary+region+that+regulates+blood+flow+within+the+CNS+microvasculature&rft.jtitle=The+Journal+of+physiology&rft.au=Mughal%2C+Amreen&rft.au=Nelson%2C+Mark+T.&rft.au=Hill%E2%80%90Eubanks%2C+David&rft.date=2023-03-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=601&rft.issue=5&rft.spage=889&rft.epage=901&rft_id=info:doi/10.1113%2FJP282246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_JP282246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon