Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deep‐Tissue Molecular Imaging
In vivo second near‐infrared (NIR‐II, 1.0–1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scatt...
Saved in:
| Published in: | Advanced healthcare materials Vol. 8; no. 14; pp. e1900260 - n/a |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.07.2019
|
| Subjects: | |
| ISSN: | 2192-2640, 2192-2659, 2192-2659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In vivo second near‐infrared (NIR‐II, 1.0–1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR‐II signals are indispensable keys to open the invisible biological window. In this review, NIR‐II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide‐based nanocrystals, quantum dots like Ag2S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches.
In vivo second near‐infrared bioimaging is of great importance to provide precise information with high temporal and spatial resolution and deeper penetration depth. In this mini review, NIR‐II contrast agents including organic and inorganic materials are described with respective features and unique optical functions for animal bioimaging. Later, the challenges and potential spaces for further progress are also discussed. |
|---|---|
| AbstractList | In vivo second near‐infrared (NIR‐II, 1.0–1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR‐II signals are indispensable keys to open the invisible biological window. In this review, NIR‐II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide‐based nanocrystals, quantum dots like Ag 2 S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches. In vivo second near-infrared (NIR-II, 1.0-1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR-II signals are indispensable keys to open the invisible biological window. In this review, NIR-II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide-based nanocrystals, quantum dots like Ag S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches. In vivo second near-infrared (NIR-II, 1.0-1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR-II signals are indispensable keys to open the invisible biological window. In this review, NIR-II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide-based nanocrystals, quantum dots like Ag2 S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches.In vivo second near-infrared (NIR-II, 1.0-1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR-II signals are indispensable keys to open the invisible biological window. In this review, NIR-II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide-based nanocrystals, quantum dots like Ag2 S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches. In vivo second near‐infrared (NIR‐II, 1.0–1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR‐II signals are indispensable keys to open the invisible biological window. In this review, NIR‐II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide‐based nanocrystals, quantum dots like Ag2S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches. In vivo second near‐infrared (NIR‐II, 1.0–1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance to afford precise dynamic actions in vivo with high spatiotemporal resolution, deeper penetration, and decreasing light absorption and scattering. In the course of preclinical practices, organic and inorganic emitters with NIR‐II signals are indispensable keys to open the invisible biological window. In this review, NIR‐II emitters, including but not limited to organic emitters like organic small molecules and copolymers, and inorganic emitters such as lanthanide‐based nanocrystals, quantum dots like Ag2S dots, and carbon nanotubes, are described, especially regarding their unique optical features and noteworthy functions for animal bioimaging. Along with these existing advances, the challenges and potential spaces for further progress are discussed to offer an approximate direction for future researches. In vivo second near‐infrared bioimaging is of great importance to provide precise information with high temporal and spatial resolution and deeper penetration depth. In this mini review, NIR‐II contrast agents including organic and inorganic materials are described with respective features and unique optical functions for animal bioimaging. Later, the challenges and potential spaces for further progress are also discussed. |
| Author | Ding, Feng Sun, Yao Fan, Yong Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Feng surname: Ding fullname: Ding, Feng organization: Central China Normal University – sequence: 2 givenname: Yong surname: Fan fullname: Fan, Yong organization: Fudan University – sequence: 3 givenname: Yao orcidid: 0000-0002-6519-7436 surname: Sun fullname: Sun, Yao email: sunyaogbasp@mail.ccnu.edu.cn organization: Central China Normal University – sequence: 4 givenname: Fan surname: Zhang fullname: Zhang, Fan email: zhang_fan@fudan.edu.cn organization: Fudan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30983165$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFqGzEQhkVJadIk1xyDoJdc7I60a7HqzXXSxpAQCCk9irF21lHYlVxpN8G3PkKfsU9SGTspBEp1kDTw_T8z879nez54YuxEwFgAyI9Y33djCULnQsEbdiCFliOpJnrv5V_CPjtO6QHyUROhKvGO7Regq0KoyQFbf6Z18DXPfsB9xy86l5ILnn_HR2rJL_v7T_yWLPmeT-tH9JYSd57fxCV6Zzlm7dyHXZXVfU8x8SZEfk60-v3z1102HIhfh5bs0GLk8w6Xzi-P2NsG20THu_eQfftycTe7HF3dfJ3PplcjWxYa8k2NtYK0RdlgA0KRIlkikoRFo2pVCrnQE6oqK0pZLkAXADWSQshdN1QcsrOt7yqGHwOl3uQRLbUtegpDMlJuZgdZVBn98Ap9CEP0ubtMqUIKqbXI1OmOGhYd1WYVXYdxbZ6XmoFyC9gYUorUGOt67PNW-4iuNQLMJj6zic-8xJdl41eyZ-d_CvRW8ORaWv-HNtPzy-u_2j_Gla1F |
| CitedBy_id | crossref_primary_10_1002_ange_202201541 crossref_primary_10_1039_C9SC02466B crossref_primary_10_1016_j_scib_2024_02_008 crossref_primary_10_1039_D2RA00449F crossref_primary_10_1007_s11051_021_05368_1 crossref_primary_10_4155_fmc_2019_0330 crossref_primary_10_1002_adom_201901471 crossref_primary_10_1002_chem_202004080 crossref_primary_10_3389_fchem_2021_750404 crossref_primary_10_1039_C9SC03504D crossref_primary_10_1016_j_biomaterials_2019_119700 crossref_primary_10_1038_s41467_020_18051_1 crossref_primary_10_1016_j_addr_2022_114536 crossref_primary_10_1002_adhm_202101036 crossref_primary_10_1038_s41467_020_15095_1 crossref_primary_10_3390_molecules28072997 crossref_primary_10_1016_j_nano_2023_102677 crossref_primary_10_1016_j_bios_2021_113478 crossref_primary_10_1039_C9QI01132C crossref_primary_10_1016_j_addr_2020_06_012 crossref_primary_10_1002_anie_202007040 crossref_primary_10_1016_j_biomaterials_2021_120717 crossref_primary_10_3390_cryst11020155 crossref_primary_10_1016_j_jpha_2021_10_002 crossref_primary_10_1039_D0NR03872E crossref_primary_10_1002_adfm_202422693 crossref_primary_10_1002_advs_202206271 crossref_primary_10_1016_j_cclet_2019_05_022 crossref_primary_10_1021_acsanm_5c02607 crossref_primary_10_1002_adom_202100117 crossref_primary_10_1016_j_jlumin_2020_117338 crossref_primary_10_1002_adtp_202000278 crossref_primary_10_1016_j_bioorg_2019_103201 crossref_primary_10_1016_j_biomaterials_2020_119934 crossref_primary_10_1016_j_bioorg_2024_107462 crossref_primary_10_1002_smll_202105362 crossref_primary_10_1002_zaac_202500078 crossref_primary_10_1002_ejic_202200222 crossref_primary_10_1021_acs_inorgchem_5c03110 crossref_primary_10_1016_j_heliyon_2024_e32800 crossref_primary_10_1002_smtd_202001066 crossref_primary_10_1016_j_biomaterials_2020_120365 crossref_primary_10_3390_chemosensors12070138 crossref_primary_10_1002_adhm_201901470 crossref_primary_10_1186_s12951_024_02703_1 crossref_primary_10_1039_C9SC04044G crossref_primary_10_1002_ange_202007040 crossref_primary_10_1016_j_addr_2023_114898 crossref_primary_10_1002_lpor_202400275 crossref_primary_10_1002_adma_202106500 crossref_primary_10_1016_j_dyepig_2020_108756 crossref_primary_10_1515_revneuro_2021_0088 crossref_primary_10_1016_j_cis_2024_103245 crossref_primary_10_3390_nano11092293 crossref_primary_10_1002_adom_202102514 crossref_primary_10_1039_D2SC03271F crossref_primary_10_2116_analsci_21P283 crossref_primary_10_3389_fchem_2021_718709 crossref_primary_10_1007_s11814_024_00300_4 crossref_primary_10_1039_D2ME00034B crossref_primary_10_1002_adom_202100859 crossref_primary_10_1016_j_ccr_2020_213318 crossref_primary_10_1002_anie_202212721 crossref_primary_10_1016_j_jconrel_2024_05_044 crossref_primary_10_1016_j_biomaterials_2025_123113 crossref_primary_10_1002_viw2_19 crossref_primary_10_1016_j_bspc_2024_107359 crossref_primary_10_1016_j_dyepig_2021_109480 crossref_primary_10_1039_D0SC02911D crossref_primary_10_1007_s12274_022_4836_y crossref_primary_10_3390_molecules29153453 crossref_primary_10_1002_jbio_202400171 crossref_primary_10_1080_10584587_2021_1911223 crossref_primary_10_1016_j_jphotochem_2022_114047 crossref_primary_10_1002_adtp_202000193 crossref_primary_10_1007_s11426_020_9856_7 crossref_primary_10_1186_s12951_023_01827_0 crossref_primary_10_1080_00150193_2023_2198369 crossref_primary_10_1039_D0SC05937D crossref_primary_10_1002_adom_201900917 crossref_primary_10_1002_adom_202301739 crossref_primary_10_1016_j_biomaterials_2022_121581 crossref_primary_10_1073_pnas_2021446118 crossref_primary_10_1016_j_cclet_2020_03_038 crossref_primary_10_1016_j_ccr_2021_214279 crossref_primary_10_1002_adfm_202002173 crossref_primary_10_3389_fphar_2022_952581 crossref_primary_10_1002_adhm_202304506 crossref_primary_10_1039_C9RA04508B crossref_primary_10_1002_smll_202202201 crossref_primary_10_1021_jacs_0c07193 crossref_primary_10_1007_s10854_021_06045_8 crossref_primary_10_1002_adfm_202208082 crossref_primary_10_1002_anie_202201541 crossref_primary_10_1016_j_dyepig_2022_110306 crossref_primary_10_1016_j_dyepig_2020_108670 crossref_primary_10_1007_s12274_020_2661_8 crossref_primary_10_1039_D1NR04227K crossref_primary_10_1016_j_aca_2019_07_046 crossref_primary_10_1007_s42247_020_00078_1 crossref_primary_10_1002_adhm_202201158 crossref_primary_10_1039_D0SC03096A crossref_primary_10_1002_ange_202212721 |
| Cites_doi | 10.1002/adhm.201800497 10.1021/cm062447y 10.1021/acsnano.7b08725 10.1002/anie.201706974 10.1038/s41467-017-00917-6 10.1039/C8CC08413K 10.1002/smll.201703296 10.1002/adma.201802394 10.1002/adma.201706856 10.1016/j.cclet.2018.08.009 10.1002/adma.201802546 10.1002/adhm.201800973 10.1016/j.biomaterials.2013.10.010 10.1021/acsnano.8b07536 10.1002/anie.201206059 10.1038/nm.2995 10.1021/ja1069322 10.1038/s41551-016-0010 10.1021/acsnano.8b02452 10.1016/j.biomaterials.2018.04.037 10.1002/adhm.201800589 10.1002/anie.201801226 10.1039/C4RA06098A 10.1002/anie.201507473 10.1038/ncomms3199 10.1016/j.ccr.2018.11.003 10.1070/QE1981v011n08ABEH008063 10.1038/s41467-018-05113-8 10.1039/C7SC00251C 10.1039/C5CS00875A 10.1002/smll.201700710 10.1039/C8SC01153B 10.1002/adma.201401825 10.1038/nprot.2009.146 10.1021/cb700248m 10.1002/adfm.201803417 10.1002/adfm.201102191 10.1038/ncomms5206 10.1021/ac802072d 10.1021/ic201509v 10.1063/1.1561054 10.1038/nrclinonc.2013.123 10.1002/anie.201407420 10.1039/C8SC00206A 10.1002/asia.200900596 10.1038/nmat4476 10.1039/C7SC00154A 10.1002/adma.201802591 10.1002/adfm.201600417 10.1021/acs.nanolett.7b02106 10.1366/12-06948 10.1021/acsnano.5b05503 10.1039/C8NR02017E 10.1073/pnas.1400821111 10.1038/ncomms14702 10.1021/acsnano.8b05937 10.1021/acsami.8b01458 10.1038/nmat1390 10.1002/adfm.201806546 10.1002/adfm.201807376 10.1039/C7CS00612H 10.1039/C5SC01076D 10.1039/C8CS00494C 10.1126/science.1072631 10.1073/pnas.1718917115 10.1038/s41565-018-0221-0 10.1016/j.biomaterials.2017.04.046 10.1039/C8CS00001H 10.1007/s00214-011-0932-x 10.1002/anie.201802889 10.7150/thno.30268 10.1038/s41467-019-09043-x 10.1021/acs.accounts.8b00242 10.1039/C7SC04774F 10.1021/acsnano.8b05431 10.1002/adma.201804982 10.1021/jacs.7b10334 10.1021/jacs.5b01297 10.1021/acs.chemmater.6b00208 10.1016/j.cclet.2018.03.032 10.1016/j.dyepig.2015.05.016 10.1002/adfm.201700995 10.1016/j.biomaterials.2017.11.025 10.1016/j.bmc.2017.08.034 10.1002/anie.201408476 10.1038/nphoton.2014.166 10.1039/C6SC01561A 10.1021/jacs.6b08973 10.1364/OL.35.002663 10.1002/adfm.201303263 10.1039/C7CS00862G 10.1002/adma.201600706 10.1039/C8SC04363A 10.1038/nmat3539 10.1039/C6SC00908E 10.1021/ja2089553 10.1002/adma.201800766 10.1073/pnas.1817021116 10.1073/pnas.1806153115 10.1038/ncomms15269 10.1002/adma.201801778 10.1007/s12274-015-0808-9 10.1021/acs.chemrev.5b00008 10.1016/j.cbpa.2003.08.007 10.1038/nnano.2009.294 10.1002/smll.201301716 10.1002/adma.201605497 10.1073/pnas.1617990114 10.1002/adfm.201804492 10.1038/s41551-017-0056 10.1007/s12274-017-1917-4 10.1039/C4CS00155A 10.1039/C8CS00234G 10.1039/c4nr00282b |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
| DOI | 10.1002/adhm.201900260 |
| DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2192-2659 |
| EndPage | n/a |
| ExternalDocumentID | 30983165 10_1002_adhm_201900260 ADHM201900260 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: NSFHP funderid: 2017CFB151 – fundername: NSFC funderid: 21708012; 21725502 – fundername: 111 project funderid: B17019 – fundername: National Key R&D Program funderid: 2017YFA0505203; 2017YFA0207303 – fundername: NSFC grantid: 21708012 – fundername: NSFC grantid: 21725502 – fundername: NSFHP grantid: 2017CFB151 – fundername: National Key R&D Program grantid: 2017YFA0505203 – fundername: 111 project grantid: B17019 – fundername: National Key R&D Program grantid: 2017YFA0207303 |
| GroupedDBID | 05W 0R~ 1OC 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI C45 D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EJD EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- OVD P2W PQQKQ ROL SUPJJ SV3 TEORI WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION GODZA LH4 NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c4390-c4efcc1e9ca2faf016e6e24aae20bf6d6412b95e88c1424b09300dae6a0ecefe3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477042600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-2640 2192-2659 |
| IngestDate | Thu Oct 02 11:09:50 EDT 2025 Sat Nov 29 14:42:02 EST 2025 Thu Apr 03 06:56:28 EDT 2025 Tue Nov 18 21:07:12 EST 2025 Thu Oct 09 00:33:29 EDT 2025 Wed Jan 22 16:41:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | organic and inorganic emitters second near-infrared channel photoacoustic imaging fluorescence imaging |
| Language | English |
| License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4390-c4efcc1e9ca2faf016e6e24aae20bf6d6412b95e88c1424b09300dae6a0ecefe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6519-7436 |
| PMID | 30983165 |
| PQID | 2263212991 |
| PQPubID | 2032434 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2210000238 proquest_journals_2263212991 pubmed_primary_30983165 crossref_citationtrail_10_1002_adhm_201900260 crossref_primary_10_1002_adhm_201900260 wiley_primary_10_1002_adhm_201900260_ADHM201900260 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced healthcare materials |
| PublicationTitleAlternate | Adv Healthc Mater |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 8 2017; 1 2019 2019 2018 2018 2015 2018; 48 48 47 30 54 12 2013; 4 2009; 81 2019; 55 2019; 10 2014 1981; 10 11 2014; 26 2003 2011; 118 129 2018 2018; 115 30 2008; 3 2018; 9 2018 2017; 9 8 2014; 5 2014; 4 2014 2014 2015 2019 2018; 24 35 9 29 7 2015; 137 2011 2011 2003; 133 50 7 2015; 44 2018; 30 2018 2016 2017 2018 2018; 47 45 1 47 28 2013 2017; 10 12 2012 2019 2019; 18 116 29 2014; 8 2019 2018; 13 171 2010; 5 2018 2018; 115 9 2014; 53 2007; 19 2018; 28 2018 2018 2017; 11 30 13 2015; 6 2018 2017; 140 114 2010; 35 2016 2017; 28 29 2016 2018 2017 2018; 7 155 8 12 2002; 297 2015; 121 2014; 111 2017; 134 2015; 8 2019; 380 2005 2013 2012 2014 2012 2018 2013; 4 67 51 6 134 10 12 2015; 115 2017; 17 2016 2017 2017 2018 2018 2018; 7 27 8 9 7 7 2016; 138 2018; 51 2009; 4 2018; 12 2016; 28 2018; 10 2016; 26 2012 2015; 22 54 2018; 14 2016 2017 2017 2018 2018 2019; 15 56 25 29 29 9 2018; 57 2018; 13 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_34_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_53_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_2_3 e_1_2_8_2_6 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_6_1 e_1_2_8_6_3 e_1_2_8_40_4 e_1_2_8_21_1 e_1_2_8_40_3 e_1_2_8_67_1 e_1_2_8_40_6 e_1_2_8_40_5 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_18_4 e_1_2_8_18_5 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_43_5 e_1_2_8_47_1 e_1_2_8_43_4 e_1_2_8_43_6 e_1_2_8_47_2 Starosoiski Z. (e_1_2_8_3_2) 2017; 12 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_43_3 e_1_2_8_43_2 e_1_2_8_62_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_59_3 e_1_2_8_17_4 e_1_2_8_59_4 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_59_2 e_1_2_8_17_5 e_1_2_8_17_6 e_1_2_8_17_7 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_51_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_46_2 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_3 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_31_2 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_50_1 |
| References_xml | – volume: 8 start-page: 737 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 1006 year: 2010 publication-title: Chem. ‐ Asian J. – volume: 28 29 start-page: 6872 1605497 year: 2016 2017 publication-title: Adv. Mater. Adv. Mater. – volume: 134 start-page: 202 year: 2017 publication-title: Biomaterials – volume: 4 start-page: 773 year: 2009 publication-title: Nat. Nanotechnol. – volume: 9 8 start-page: 2898 14702 year: 2018 2017 publication-title: Nat. Commun. Nat. Commun. – volume: 10 start-page: 1219 year: 2019 publication-title: Chem. Sci. – volume: 133 50 7 start-page: 373 9184 626 year: 2011 2011 2003 publication-title: J. Am. Chem. Soc. Inorg. Chem. Curr. Opin. Chem. Biol. – volume: 57 start-page: 7483 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 4335 year: 2015 publication-title: Chem. Sci. – volume: 4 start-page: 2199 year: 2013 publication-title: Nat. Commun. – volume: 30 start-page: 1804982 year: 2018 publication-title: Adv. Mater. – volume: 11 30 13 start-page: 5657 1801778 1700710 year: 2018 2018 2017 publication-title: Nano Res. Adv. Mater. Small – volume: 19 start-page: 341 year: 2007 publication-title: Chem. Mater. – volume: 118 129 start-page: 6615 257 year: 2003 2011 publication-title: J. Chem. Phys. Theor. Chem. Acc. – volume: 138 start-page: 16192 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 142 year: 2008 publication-title: ACS Chem. Biol. – volume: 7 155 8 12 start-page: 5313 217 2503 2643 year: 2016 2018 2017 2018 publication-title: Chem. Sci. Biomaterials Chem. Sci. ACS Nano – volume: 48 48 47 30 54 12 start-page: 22 38 4258 1802394 14758 9654 year: 2019 2019 2018 2018 2015 2018 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev. Adv. Mater. Angew. Chem., Int. Ed. ACS Nano – volume: 115 30 start-page: 4465 1802546 year: 2018 2018 publication-title: Proc. Natl. Acad. Sci. USA Adv. Mater. – volume: 51 start-page: 1840 year: 2018 publication-title: Acc. Chem. Res. – volume: 30 start-page: 1802591 year: 2018 publication-title: Adv. Mater. – volume: 81 start-page: 930 year: 2009 publication-title: Anal. Chem. – volume: 55 start-page: 27 year: 2019 publication-title: Chem. Commun. – volume: 7 27 8 9 7 7 start-page: 6203 1700995 3489 2092 1800973 1800589 year: 2016 2017 2017 2018 2018 2018 publication-title: Chem. Sci. Adv. Funct. Mater. Chem. Sci. Chem. Sci. Adv. Healthcare Mater. Adv. Healthcare Mater. – volume: 47 45 1 47 28 start-page: 7140 4651 0010 2873 1804492 year: 2018 2016 2017 2018 2018 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Nat. Biomed. Eng. Chem. Soc. Rev. Adv. Funct. Mater. – volume: 28 start-page: 1803417 year: 2018 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 41164 year: 2014 publication-title: RSC Adv. – volume: 380 start-page: 550 year: 2019 publication-title: Coord. Chem. Rev. – volume: 18 116 29 start-page: 1841 1968 1807376 year: 2012 2019 2019 publication-title: Nat. Med. Proc. Natl. Acad. Sci. USA Adv. Funct. Mater. – volume: 13 start-page: 941 year: 2018 publication-title: Nat. Nanotechnol. – volume: 111 start-page: 13948 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 11 start-page: 1141 1101 year: 2014 1981 publication-title: Small Quantum Electron. – volume: 4 start-page: 1372 year: 2009 publication-title: Nat. Protoc. – volume: 115 9 start-page: 6590 4370 year: 2018 2018 publication-title: Proc. Natl. Acad. Sci. USA Chem. Sci. – volume: 5 start-page: 4206 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 3027 year: 2015 publication-title: Nano Res. – volume: 28 start-page: 3041 year: 2016 publication-title: Chem. Mater. – volume: 12 start-page: 7936 year: 2018 publication-title: ACS Nano – volume: 4 67 51 6 134 10 12 start-page: 435 215 9818 5467 79 10699 445 year: 2005 2013 2012 2014 2012 2018 2013 publication-title: Nat. Mater. Appl. Spectrosc. Angew. Chem., Int. Ed. Nanoscale J. Am. Chem. Soc. Nanoscale Nat. Mater. – volume: 26 start-page: 4192 year: 2016 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 4964 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 15269 year: 2017 publication-title: Nat. Commun. – volume: 9 start-page: 3105 year: 2018 publication-title: Chem. Sci. – volume: 35 start-page: 2663 year: 2010 publication-title: Opt. Lett. – volume: 30 start-page: 1800766 year: 2018 publication-title: Adv. Mater. – volume: 12 start-page: 11282 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 1058 year: 2019 publication-title: Nat. Commun. – volume: 1 start-page: 0056 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 297 start-page: 593 year: 2002 publication-title: Science – volume: 24 35 9 29 7 start-page: 2481 393 12255 1806546 1800497 year: 2014 2014 2015 2019 2018 publication-title: Adv. Funct. Mater. Biomaterials ACS Nano Adv. Funct. Mater. Adv. Healthcare Mater. – volume: 44 start-page: 1416 year: 2015 publication-title: Chem. Soc. Rev. – volume: 140 114 start-page: 1715 962 year: 2018 2017 publication-title: J. Am. Chem. Soc. Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 1703296 year: 2018 publication-title: Small – volume: 30 start-page: 1706856 year: 2018 publication-title: Adv. Mater. – volume: 10 12 start-page: 507 year: 2013 2017 publication-title: Nat. Rev. Clin. Oncol. PLoS One – volume: 15 56 25 29 29 9 start-page: 235 13126 5179 1093 1425 391 year: 2016 2017 2017 2018 2018 2019 publication-title: Nat. Mater. Angew. Chem., Int. Ed. Bioorg. Med. Chem. Chin. Chem. Lett. Chin. Chem. Lett. Theranostics – volume: 26 start-page: 5646 year: 2014 publication-title: Adv. Mater. – volume: 13 171 start-page: 248 153 year: 2019 2018 publication-title: ACS Nano Biomaterials – volume: 53 start-page: 12086 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 22 54 start-page: 771 1780 year: 2012 2015 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 115 start-page: 10816 year: 2015 publication-title: Chem. Rev. – volume: 57 start-page: 7518 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 723 year: 2014 publication-title: Nat. Photonics – volume: 10 start-page: 7919 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 121 start-page: 238 year: 2015 publication-title: Dyes Pigm. – volume: 137 start-page: 3783 year: 2015 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_18_5 doi: 10.1002/adhm.201800497 – ident: e_1_2_8_25_1 doi: 10.1021/cm062447y – ident: e_1_2_8_59_4 doi: 10.1021/acsnano.7b08725 – ident: e_1_2_8_40_2 doi: 10.1002/anie.201706974 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-017-00917-6 – ident: e_1_2_8_66_1 doi: 10.1039/C8CC08413K – ident: e_1_2_8_20_1 doi: 10.1002/smll.201703296 – ident: e_1_2_8_2_4 doi: 10.1002/adma.201802394 – ident: e_1_2_8_55_1 doi: 10.1002/adma.201706856 – ident: e_1_2_8_40_5 doi: 10.1016/j.cclet.2018.08.009 – ident: e_1_2_8_47_2 doi: 10.1002/adma.201802546 – ident: e_1_2_8_43_5 doi: 10.1002/adhm.201800973 – ident: e_1_2_8_18_2 doi: 10.1016/j.biomaterials.2013.10.010 – ident: e_1_2_8_2_6 doi: 10.1021/acsnano.8b07536 – ident: e_1_2_8_17_3 doi: 10.1002/anie.201206059 – ident: e_1_2_8_4_1 doi: 10.1038/nm.2995 – ident: e_1_2_8_27_1 doi: 10.1021/ja1069322 – ident: e_1_2_8_1_3 doi: 10.1038/s41551-016-0010 – ident: e_1_2_8_56_1 doi: 10.1021/acsnano.8b02452 – ident: e_1_2_8_34_2 doi: 10.1016/j.biomaterials.2018.04.037 – ident: e_1_2_8_43_6 doi: 10.1002/adhm.201800589 – ident: e_1_2_8_51_1 doi: 10.1002/anie.201801226 – ident: e_1_2_8_22_1 doi: 10.1039/C4RA06098A – ident: e_1_2_8_2_5 doi: 10.1002/anie.201507473 – ident: e_1_2_8_30_1 doi: 10.1038/ncomms3199 – ident: e_1_2_8_67_1 doi: 10.1016/j.ccr.2018.11.003 – ident: e_1_2_8_31_2 doi: 10.1070/QE1981v011n08ABEH008063 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-018-05113-8 – ident: e_1_2_8_43_3 doi: 10.1039/C7SC00251C – ident: e_1_2_8_1_2 doi: 10.1039/C5CS00875A – ident: e_1_2_8_6_3 doi: 10.1002/smll.201700710 – ident: e_1_2_8_5_2 doi: 10.1039/C8SC01153B – ident: e_1_2_8_16_1 doi: 10.1002/adma.201401825 – ident: e_1_2_8_11_1 doi: 10.1038/nprot.2009.146 – ident: e_1_2_8_49_1 doi: 10.1021/cb700248m – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201803417 – ident: e_1_2_8_53_1 doi: 10.1002/adfm.201102191 – ident: e_1_2_8_61_1 doi: 10.1038/ncomms5206 – ident: e_1_2_8_26_1 doi: 10.1021/ac802072d – ident: e_1_2_8_27_2 doi: 10.1021/ic201509v – ident: e_1_2_8_60_1 doi: 10.1063/1.1561054 – ident: e_1_2_8_3_1 doi: 10.1038/nrclinonc.2013.123 – ident: e_1_2_8_29_1 doi: 10.1002/anie.201407420 – ident: e_1_2_8_62_1 doi: 10.1039/C8SC00206A – ident: e_1_2_8_41_1 doi: 10.1002/asia.200900596 – ident: e_1_2_8_40_1 doi: 10.1038/nmat4476 – ident: e_1_2_8_59_3 doi: 10.1039/C7SC00154A – ident: e_1_2_8_65_1 doi: 10.1002/adma.201802591 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.201600417 – ident: e_1_2_8_7_1 doi: 10.1021/acs.nanolett.7b02106 – ident: e_1_2_8_17_2 doi: 10.1366/12-06948 – ident: e_1_2_8_18_3 doi: 10.1021/acsnano.5b05503 – volume: 12 start-page: e018756 year: 2017 ident: e_1_2_8_3_2 publication-title: PLoS One – ident: e_1_2_8_17_6 doi: 10.1039/C8NR02017E – ident: e_1_2_8_13_1 doi: 10.1073/pnas.1400821111 – ident: e_1_2_8_35_2 doi: 10.1038/ncomms14702 – ident: e_1_2_8_57_1 doi: 10.1021/acsnano.8b05937 – ident: e_1_2_8_64_1 doi: 10.1021/acsami.8b01458 – ident: e_1_2_8_17_1 doi: 10.1038/nmat1390 – ident: e_1_2_8_18_4 doi: 10.1002/adfm.201806546 – ident: e_1_2_8_4_3 doi: 10.1002/adfm.201807376 – ident: e_1_2_8_1_4 doi: 10.1039/C7CS00612H – ident: e_1_2_8_44_1 doi: 10.1039/C5SC01076D – ident: e_1_2_8_2_1 doi: 10.1039/C8CS00494C – ident: e_1_2_8_9_1 doi: 10.1126/science.1072631 – ident: e_1_2_8_47_1 doi: 10.1073/pnas.1718917115 – ident: e_1_2_8_39_1 doi: 10.1038/s41565-018-0221-0 – ident: e_1_2_8_33_1 doi: 10.1016/j.biomaterials.2017.04.046 – ident: e_1_2_8_2_2 doi: 10.1039/C8CS00001H – ident: e_1_2_8_60_2 doi: 10.1007/s00214-011-0932-x – ident: e_1_2_8_38_1 doi: 10.1002/anie.201802889 – ident: e_1_2_8_40_6 doi: 10.7150/thno.30268 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-019-09043-x – ident: e_1_2_8_63_1 doi: 10.1021/acs.accounts.8b00242 – ident: e_1_2_8_43_4 doi: 10.1039/C7SC04774F – ident: e_1_2_8_34_1 doi: 10.1021/acsnano.8b05431 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201804982 – ident: e_1_2_8_46_1 doi: 10.1021/jacs.7b10334 – ident: e_1_2_8_48_1 doi: 10.1021/jacs.5b01297 – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemmater.6b00208 – ident: e_1_2_8_40_4 doi: 10.1016/j.cclet.2018.03.032 – ident: e_1_2_8_50_1 doi: 10.1016/j.dyepig.2015.05.016 – ident: e_1_2_8_43_2 doi: 10.1002/adfm.201700995 – ident: e_1_2_8_59_2 doi: 10.1016/j.biomaterials.2017.11.025 – ident: e_1_2_8_40_3 doi: 10.1016/j.bmc.2017.08.034 – ident: e_1_2_8_53_2 doi: 10.1002/anie.201408476 – ident: e_1_2_8_15_1 doi: 10.1038/nphoton.2014.166 – ident: e_1_2_8_43_1 doi: 10.1039/C6SC01561A – ident: e_1_2_8_37_1 doi: 10.1021/jacs.6b08973 – ident: e_1_2_8_8_1 doi: 10.1364/OL.35.002663 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201303263 – ident: e_1_2_8_1_1 doi: 10.1039/C7CS00862G – ident: e_1_2_8_45_1 doi: 10.1002/adma.201600706 – ident: e_1_2_8_58_1 doi: 10.1039/C8SC04363A – ident: e_1_2_8_17_7 doi: 10.1038/nmat3539 – ident: e_1_2_8_59_1 doi: 10.1039/C6SC00908E – ident: e_1_2_8_17_5 doi: 10.1021/ja2089553 – ident: e_1_2_8_54_1 doi: 10.1002/adma.201800766 – ident: e_1_2_8_4_2 doi: 10.1073/pnas.1817021116 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.1806153115 – ident: e_1_2_8_42_1 doi: 10.1038/ncomms15269 – ident: e_1_2_8_6_2 doi: 10.1002/adma.201801778 – ident: e_1_2_8_14_1 doi: 10.1007/s12274-015-0808-9 – ident: e_1_2_8_10_1 doi: 10.1021/acs.chemrev.5b00008 – ident: e_1_2_8_27_3 doi: 10.1016/j.cbpa.2003.08.007 – ident: e_1_2_8_12_1 doi: 10.1038/nnano.2009.294 – ident: e_1_2_8_31_1 doi: 10.1002/smll.201301716 – ident: e_1_2_8_45_2 doi: 10.1002/adma.201605497 – ident: e_1_2_8_46_2 doi: 10.1073/pnas.1617990114 – ident: e_1_2_8_1_5 doi: 10.1002/adfm.201804492 – ident: e_1_2_8_24_1 doi: 10.1038/s41551-017-0056 – ident: e_1_2_8_6_1 doi: 10.1007/s12274-017-1917-4 – ident: e_1_2_8_28_1 doi: 10.1039/C4CS00155A – ident: e_1_2_8_2_3 doi: 10.1039/C8CS00234G – ident: e_1_2_8_17_4 doi: 10.1039/c4nr00282b |
| SSID | ssj0000651681 |
| Score | 2.5467691 |
| SecondaryResourceType | review_article |
| Snippet | In vivo second near‐infrared (NIR‐II, 1.0–1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance... In vivo second near-infrared (NIR-II, 1.0-1.7 µm) bioimaging , a rapidly expanding imaging tool for preclinical diagnosis and prognosis, is of great importance... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1900260 |
| SubjectTerms | Carbon nanotubes Electromagnetic absorption Emitters fluorescence imaging Medical imaging Nanocrystals Nanotubes organic and inorganic emitters photoacoustic imaging Quantum dots second near‐infrared channel |
| Title | Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deep‐Tissue Molecular Imaging |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201900260 https://www.ncbi.nlm.nih.gov/pubmed/30983165 https://www.proquest.com/docview/2263212991 https://www.proquest.com/docview/2210000238 |
| Volume | 8 |
| WOSCitedRecordID | wos000477042600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 2192-2659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651681 issn: 2192-2640 databaseCode: DRFUL dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB6aTQ_toel_3SZBhUJPJrKs1cq9Ld0sCSShlITuzciylAQab8huCr31EfqMfZLOSF4nSwiB5GIsrLGFNOP5GGm-AfjkirwqRK1TSrJMpcoHqVHWpH0jVZVrK3gdeGb3BgcHejIpvl3L4o_8EF3AjSwj_K_JwE0127oiDTX1CWWSo0MjWqwVWBWovLIHq6Pv46O9Ls6CLjZToVYp2qagA118wd3IxdbyS5Z90w3AuYxfgwMarz186M_hWQs-2TBqywt45JqX8PQaJeEr-B1TWhgF5FlzxrZRDyigxn4YKlHRHM9PvjDEmuir2DCeH5ix04bFnE7LDMruNtO2hdKBvpMhNGYj587__fl7GJaa7S_q8rLds1Ap6TUcjbcPv-6kbXmG1CKK4Xh13trMFdYIbzxiR6eckMY4wSuvaiUzURV9p7WldLqKFznntXHKcByld_kb6DXTxr0DVnspvRbWc5tLP5AoTlgyM8rrGjFMAuliYUrbcpdTCY2fZWRdFiVNadlNaQKfu_7nkbXj1p7ri3UuW-udlYJI7BEIFVkCH7vHON-0mWIaN72kPmFnBBFPAm-jfnSfynmh80z1ExBBDe4YQzkc7ex3rff3EfoAT-g-niNeh9784tJtwGP7a346u9iElcFEb7aW8R_gVQzJ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9Bh8R4GP82yDbASEg8RXOc1HV4q9ZVrWgrhDqxt8hxbDaJpdPaIfHGR-Az8km4s9NAhRAS4iVSEju27LvcT-e73wG8snla5qJSMSVZxplMe7GWRsddnckyVUbwyvPMTnqzmTo7y9810YSUCxP4IVqHG2mG_1-TgpND-ugna6iuzimVHC0a8WLdhi0cSXU7sDV4PzydtI4WtLGJ9MVKUTkFRXTxNXkjF0ebH9k0Tr8hzk0A6y3Q8P5_mPsD2GngJ-sHeXkIt2z9CO79Qkr4GL6EpBZGLnlWX7ITlARyqbEPmopU1B9X528Yok20VqwfIgiW7KJmIavTMI19x_WiucPensCTIThmA2uvvn_9NvebzabryrxsfOlrJe3C6fBkfjyKmwINsUEcw_FqnTGJzY0WTjtEj1ZakWltBS-drGSWiDLvWqUMJdSVPE85r7SVmuMsnU33oFMvavsUWOWyzClhHDdp5noZdic0mWjpVIUoJoJ4vTOFadjLqYjGpyLwLouClrRolzSC1237q8Db8ceWh-uNLhr9XRaCaOwRCuVJBC_b17jedJyia7u4oTb-bAQxTwRPgoC0Q6U8V2kiuxEILwd_mUPRH4ym7d3-v3R6AXdH8-mkmIxnbw9gm56HqOJD6Kyub-wzuGM-ry6W188bBfkBpnUP0Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED-2doztYf__uOs2DQZ7MpVlRbH6FpaGhqWhjJb1zciytBZWJzTpYG_7CPuM_SS9kxxvYYzB2ItBtmQL6c7343T3O4C3TueVFnWRUpJlKlXeT42yJu0Zqaq8sILXgWd20p9Oi5MTfdhGE1IuTOSH6BxupBnhf00K7ua13_nJGmrqU0olR4tGvFg3YVP2tELd3Bx-HB1POkcL2thMhWKlqJyCIrr4iryRi531l6wbp98Q5zqADRZodP8_zP0B3GvhJxtEeXkIN1zzCO7-Qkr4GL7FpBZGLnnWnLM9lARyqbFPhopUNJ-Xp7sM0SZaKzaIEQQLdtawmNVpmcGx42bWtnB0IPBkCI7Z0Ln51fcfR2Gz2cGqMi8bn4daSU_geLR39H4_bQs0pBZxDMer89ZmTlsjvPGIHp1yQhrjBK-8qpXMRKV7rigsJdRVXOec18Ypw3GW3uVPYaOZNe45sNpL6QthPbe59H2JwwlNZkb5okYUk0C62pnStuzlVETjSxl5l0VJS1p2S5rAu67_PPJ2_LHn9mqjy1Z_F6UgGnuEQjpL4E33GNebjlNM42aX1CecjSDmSeBZFJDuUznXRZ6pXgIiyMFf5lAOhvsHXWvrXwa9htuHw1E5GU8_vIA7dDsGFW_DxvLi0r2EW_br8mxx8arVj2sZKw9M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+1000+nm+Emission+Wavelength%3A+Recent+Advances+in+Organic+and+Inorganic+Emitters+for+Deep%E2%80%90Tissue+Molecular+Imaging&rft.jtitle=Advanced+healthcare+materials&rft.au=Ding%2C+Feng&rft.au=Fan%2C+Yong&rft.au=Sun%2C+Yao&rft.au=Zhang%2C+Fan&rft.date=2019-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2192-2640&rft.eissn=2192-2659&rft.volume=8&rft.issue=14&rft_id=info:doi/10.1002%2Fadhm.201900260&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |