Monotonic convergence of fixed-point algorithms for ICA
We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for an...
Uloženo v:
| Vydáno v: | IEEE transactions on neural networks Ročník 14; číslo 4; s. 943 - 949 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.07.2003
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1045-9227 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for any initial condition. Our analysis does not assume an ideal signal model but appeals rather to properties of the contrast function itself, and so applies even with noisy data and/or more sources than sensors. The results help alleviate the guesswork that often surrounds step-size selection when the observed signal does not fit an idealized model. |
|---|---|
| AbstractList | We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for any initial condition. Our analysis does not assume an ideal signal model but appeals rather to properties of the contrast function itself, and so applies even with noisy data and/or more sources than sensors. The results help alleviate the guesswork that often surrounds step-size selection when the observed signal does not fit an idealized model We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for any initial condition. Our analysis does not assume an ideal signal model but appeals rather to properties of the contrast function itself, and so applies even with noisy data and/or more sources than sensors. The results help alleviate the guesswork that often surrounds step-size selection when the observed signal does not fit an idealized model. We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for any initial condition. Our analysis does not assume an ideal signal model but appeals rather to properties of the contrast function itself, and so applies even with noisy data and/or more sources than sensors. The results help alleviate the guesswork that often surrounds step-size selection when the observed signal does not fit an idealized model.We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for any initial condition. Our analysis does not assume an ideal signal model but appeals rather to properties of the contrast function itself, and so applies even with noisy data and/or more sources than sensors. The results help alleviate the guesswork that often surrounds step-size selection when the observed signal does not fit an idealized model. |
| Author | Regalia, P.A. Kofidis, E. |
| Author_xml | – sequence: 1 givenname: P.A. surname: Regalia fullname: Regalia, P.A. organization: Dept. of Commun., Image, & Inf. processing, Inst. Nat. des Telecommun., Evry, France – sequence: 2 givenname: E. surname: Kofidis fullname: Kofidis, E. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18238073$$D View this record in MEDLINE/PubMed https://hal.science/hal-01345079$$DView record in HAL |
| BookMark | eNqF0c1PHCEYBnAONn723INJM6eaHmYFXmaAozG2NtnqRc-EYV4UMwtbmN3of9_ZjK1JD_ZEAr-Hr-eI7MUUkZBPjC4Yo_r87uZmwSmFhWKgBOyRQ0ZFU2vO5QE5KuWJUiYa2u6TA6Y4KCrhkMifKaYxxeAql-IW8wNGh1XylQ_P2NfrFOJY2eEh5TA-rkrlU65-XF6ckA_eDgU_vo7H5P7b1d3ldb28_T4tL2snQI21B66Y6NB3qJ1jUndgpXcoLROOg9cIjRCacoEt9LJV2nvQvm-Y8qqjPRyTr_O-j3Yw6xxWNr-YZIO5vlia3RxlMD1K6i2b7Nls1zn92mAZzSoUh8NgI6ZNMZqytpXt9EX_kxIEF1rInfzyruQKJFVcTPDzK9x0K-z_3vXPV0_gfAYup1Iy-jdCza5AMxVodgWaucAp0fyTcGG0Y0hxzDYM7-RO51xAxLdTOGsEo_AbnZOmaQ |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1109_TNN_2004_824258 crossref_primary_10_1109_TNN_2009_2035920 crossref_primary_10_1002_nla_2406 crossref_primary_10_1007_s40314_020_01182_y crossref_primary_10_1109_TNN_2007_908636 crossref_primary_10_1109_TSP_2015_2468686 crossref_primary_10_1007_s10107_015_0895_0 crossref_primary_10_1016_j_laa_2011_10_033 crossref_primary_10_1007_s11063_007_9037_x crossref_primary_10_1016_j_aca_2011_08_006 crossref_primary_10_1137_11085743X crossref_primary_10_1109_TSP_2009_2015114 crossref_primary_10_1002_nla_2031 crossref_primary_10_1109_TNN_2006_880980 crossref_primary_10_1007_s40305_016_0148_9 crossref_primary_10_1137_100801482 crossref_primary_10_1137_140951758 crossref_primary_10_1016_j_future_2004_11_024 crossref_primary_10_1016_j_dsp_2014_02_005 crossref_primary_10_1137_110835335 crossref_primary_10_1016_j_cam_2025_116716 crossref_primary_10_1016_j_sigpro_2007_08_014 crossref_primary_10_1007_s00521_015_2033_6 crossref_primary_10_1186_1687_6180_2014_151 crossref_primary_10_1109_TNN_2007_915117 crossref_primary_10_1109_TNN_2006_875991 crossref_primary_10_3390_e17085549 crossref_primary_10_1109_TSP_2006_870561 |
| Cites_doi | 10.1109/18.887889 10.1109/18.887862 10.1109/78.747781 10.1016/S0165-1684(98)00192-3 10.1515/9781400873173 10.1109/72.761722 10.1109/TAC.1980.1102343 10.1109/78.969518 10.1109/5.720246 10.1109/18.681326 10.1090/conm/280/04625 10.56021/9781421407944 10.1109/18.212280 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | RIA RIE AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 1XC |
| DOI | 10.1109/TNN.2003.813843 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | PubMed Technology Research Database Computer and Information Systems Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science |
| EndPage | 949 |
| ExternalDocumentID | oai:HAL:hal-01345079v1 18238073 10_1109_TNN_2003_813843 1215410 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION NPM RIG 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 1XC |
| ID | FETCH-LOGICAL-c438t-f32814befbe9cc179b3a7fce7a14c23f9e35449024e63d7689ff39fd518f8b0d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184371900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9227 |
| IngestDate | Sun Oct 19 01:18:33 EDT 2025 Thu Sep 04 23:42:39 EDT 2025 Fri Sep 05 06:22:28 EDT 2025 Thu Sep 04 17:36:00 EDT 2025 Mon Jul 21 05:59:13 EDT 2025 Sat Nov 29 08:07:51 EST 2025 Tue Nov 18 22:13:15 EST 2025 Tue Aug 26 16:39:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Non-Gaussian signals Fixed-point algorithms Monotonic convergence Independent component analysis (ICA) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-f32814befbe9cc179b3a7fce7a14c23f9e35449024e63d7689ff39fd518f8b0d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 18238073 |
| PQID | 28370824 |
| PQPubID | 23500 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_901667600 ieee_primary_1215410 pubmed_primary_18238073 crossref_citationtrail_10_1109_TNN_2003_813843 hal_primary_oai_HAL_hal_01345079v1 proquest_miscellaneous_28370824 crossref_primary_10_1109_TNN_2003_813843 proquest_miscellaneous_734249470 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-07-01 |
| PublicationDateYYYYMMDD | 2003-07-01 |
| PublicationDate_xml | – month: 07 year: 2003 text: 2003-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 2003 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref8 ref7 Hyvärinen (ref1) 1999; 2 ref4 ref3 ref6 ref5 Delathauwer (ref9) |
| References_xml | – ident: ref11 doi: 10.1109/18.887889 – ident: ref7 doi: 10.1109/18.887862 – volume: 2 start-page: 94 year: 1999 ident: ref1 article-title: Survey on independent component analysis publication-title: Neural Comput. Surveys – ident: ref5 doi: 10.1109/78.747781 – ident: ref8 doi: 10.1016/S0165-1684(98)00192-3 – ident: ref14 doi: 10.1515/9781400873173 – volume-title: Proc. NOLTA ident: ref9 article-title: The higher order power method: Application in independent component analysis – ident: ref2 doi: 10.1109/72.761722 – ident: ref13 doi: 10.1109/TAC.1980.1102343 – ident: ref3 doi: 10.1109/78.969518 – ident: ref4 doi: 10.1109/5.720246 – ident: ref6 doi: 10.1109/18.681326 – ident: ref10 doi: 10.1090/conm/280/04625 – ident: ref15 doi: 10.56021/9781421407944 – ident: ref12 doi: 10.1109/18.212280 |
| SSID | ssj0014506 |
| Score | 1.9636862 |
| Snippet | We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 943 |
| SubjectTerms | Algorithms Appeals Background noise Convergence Engineering Sciences Fixed points (mathematics) Image restoration Independent component analysis Information processing Initial conditions Mathematical models Neural networks Probability density function Random variables Sensors Signal analysis Signal and Image processing Signal restoration Vectors |
| Title | Monotonic convergence of fixed-point algorithms for ICA |
| URI | https://ieeexplore.ieee.org/document/1215410 https://www.ncbi.nlm.nih.gov/pubmed/18238073 https://www.proquest.com/docview/28370824 https://www.proquest.com/docview/734249470 https://www.proquest.com/docview/901667600 https://hal.science/hal-01345079 |
| Volume | 14 |
| WOSCitedRecordID | wos000184371900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1045-9227 databaseCode: RIE dateStart: 19900101 customDbUrl: isFulltext: true dateEnd: 20111231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014506 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN7aNrdPtxHKkopPdQbW5It6biEhhTC0kMKezO2PGoWEjvsekPz7zOSvZsWuofejBnbwjOD5tPMfAPwydOc8ZK7uLQlj6VUeexbe2KeC1c7IxPbTy05V7OZns_Njz34uu2FQcRQfIYTfxly-XVr1_6o7NgzIUjfT7WvVN73am0zBjILczQJXWSx4VwNND5pYo4vZrNA_DnRqdBS_LUD7V_6-scwWGV3jBn2mtPD_1vlM3g6xJRs2hvBc9jDZgTjaUN4-vqOfWahyjMcn4_gcDPGgQ1ePYInf3ASjkGRl7edJ8xloSI9NGciax1zi99YxzftoulYefWrXS66y-sVo6iXfT-ZvoCfp98uTs7iYbpCbKXQXewE16ms0FVorCW_rESpnEVVptJy4QyKTEpDezjmoiZUYpwTxtVZqp2uklq8hIOmbfA1sDTDHAnnyUon0qHSjj6RyZLgZF1hwiOYbP54YQfqcT8B46oIECQxBanID8QURa-iCL5sH7jpWTd2i34kFW6lPFv22fS88PcouiWrUOY2jWDs9fTwrl5FEXzYaLwgr_KpkrLBdr0qAieQ5jICtkNCCUnIVapktwiFWr6COCGRV705PSxAc8_0L978e2Fv4XEoGgxlwe_goFuu8T08srfdYrU8IvOf66Ng_vc7AP35 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQR7YNACC79mIYR4IJ1jO7X9WE1MnSgRD0XaW5Q4Nqu0JVObTvDfc3bSDiT6wFsUXRLL55Pv4u--D-C9pzljBXNxYQoWCyHHsW_tidmYu8ppQU2nWjKTWaYuLvS3Pfi07YWx1gbwmR35y3CWXzVm7X-VnXgmBOH7qe6nQjDadWttzwxEGpQ0sb5IY82Y7Il8EqpP5lkWqD9HKuFK8L_2oHuXHgEZpFV2Z5lhtzk7_L9xPoHHfVZJJt0yeAp7th7AcFJjRX39i3wgAecZfqAP4HAj5ED6uB7AwR-shEOQGOdN6ylzScCkh_ZMSxpH3OKnreKbZlG3pLj60SwX7eX1imDeS85PJ8_g-9nn-ek07vUVYiO4amPHmUpEaV1ptTEYmSUvpDNWFokwjDttOc6zxl3cjnmFdYl2jmtXpYlyqqQVfw77dVPbIyBJascWKz1RKiqclcrhJ1JRYEFZlZayCEabGc9NTz7uNTCu8lCEUJ2ji7wkJs87F0XwcfvATce7sdv0Hbpwa-X5sqeTWe7vYX6Lq0Lq2ySCoffT3bs6F0VwvPF4jnHlD0uK2jbrVR5YgRQTEZAdFpILrF2FpLtNMNnyGGKKJi-65XQ3AMU81z9_-e-BHcPD6fzrLJ-dZ19ewaMAIQwg4dew3y7X9g08MLftYrV8G4LgN5V_AGc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monotonic+convergence+of+fixed-point+algorithms+for+ICA&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Regalia%2C+P+A&rft.au=Kofidis%2C+E&rft.date=2003-07-01&rft.issn=1045-9227&rft.volume=14&rft.issue=4&rft.spage=943&rft.epage=949&rft_id=info:doi/10.1109%2FTNN.2003.813843&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |