Monotonic convergence of fixed-point algorithms for ICA

We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 14; číslo 4; s. 943 - 949
Hlavní autoři: Regalia, P.A., Kofidis, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2003
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for any initial condition. Our analysis does not assume an ideal signal model but appeals rather to properties of the contrast function itself, and so applies even with noisy data and/or more sources than sensors. The results help alleviate the guesswork that often surrounds step-size selection when the observed signal does not fit an idealized model.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1045-9227
DOI:10.1109/TNN.2003.813843