Revolutionary hybrid ensembled deep learning model for accurate and robust side-channel attack detection in cloud computing

Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 32949 - 29
Hauptverfasser: Reddy, C. Lakshminatha, Malathi, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 26.09.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model’s focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security.
AbstractList Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model's focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security.
Abstract Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model’s focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security.
Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model's focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security.Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model's focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security.
ArticleNumber 32949
Author Malathi, K.
Reddy, C. Lakshminatha
Author_xml – sequence: 1
  givenname: C. Lakshminatha
  surname: Reddy
  fullname: Reddy, C. Lakshminatha
  email: laxminathreddy842@gmail.com
  organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences
– sequence: 2
  givenname: K.
  surname: Malathi
  fullname: Malathi, K.
  email: malathi@saveetha.com
  organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41006528$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rFTEUhoNUbK39Ay4k4MbNaD5nMkspfhQKgug65OPkNteZ5JrMCMU_b3qnVnFhNgnhed-Tk_M-RScpJ0DoOSWvKeHqTRVUjqojTHZqHEbRiUfojBEhO8YZO_nrfIouat2TtiQbBR2foFNBCeklU2fo52f4kad1iTmZcotvbm2JHkOqMNsJPPYABzyBKSmmHZ6zhwmHXLBxbi1mAWySxyXbtS64Rg-duzEpNcgsi3Hfmn4Bd-eOY8JuyqvHLs-HVjDtnqHHwUwVLu73c_T1_bsvlx-7608fri7fXndOcLV0EPhg3SBcH5wkbGDEjL301gZnvTVyDIoo6knvqFfSUcUI4VJxGAIEEoCfo6vN12ez14cS59aqzibq40UuO23KEt0EWoyCeCsZ-MEJ0rwJM0q1j6bKe8r75vVq8zqU_H2Fuug5VgfTZBLktWrOpBiZIANv6Mt_0H1eS2qdHiklaBtOo17cU6udwT887_eIGsA2wJVca4HwgFCi76KgtyjoFgV9jIIWTcQ3UW1w2kH5U_s_ql8AULZ6
Cites_doi 10.26599/TST.2021.9010071
10.1002/dac.5663
10.23919/cje.2021.00.089
10.1109/JIOT.2021.3130156
10.1109/LES.2022.3213443
10.1109/LES.2022.3196499
10.1109/LSSC.2023.3260952
10.1109/JSYST.2022.3204902
10.1109/ACCESS.2024.3465662
10.1109/LCA.2023.3276709
10.1016/j.simpat.2023.102820
10.1109/NOMS54207.2022.9789783
10.1109/TIFS.2022.3227445
10.1109/TII.2020.3045161
10.1007/s12652-020-01770-0
10.1109/TC.2024.3349659
10.1109/TIFS.2020.3023278
10.1109/ACCESS.2024.3362670
10.1109/JBHI.2024.3352013
10.1109/TIFS.2023.3340088
10.1016/j.neucom.2015.08.104
10.1109/ACCESS.2024.3491916
10.1109/ICC51166.2024.10622721
10.1109/TDMR.2023.3346752
10.1109/JBHI.2022.3171852
10.1109/TCSI.2023.3298913
10.1016/j.matpr.2020.11.283
10.1109/TC.2024.3377891
10.1016/j.future.2021.09.010
10.3390/e24111601
10.1016/j.compbiomed.2021.104296
10.1007/s13369-024-09046-x
10.1109/JSEN.2021.3052782
10.1109/ACIT62333.2024.10712474
10.1109/TIFS.2023.3266630
10.1109/TIFS.2023.3343947
10.1109/LSENS.2023.3259301
10.1002/dac.6027
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-89794-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 29
ExternalDocumentID oai_doaj_org_article_4940db52ed7c40a5902a8859818dd136
41006528
10_1038_s41598_025_89794_4
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c438t-ef37bc74c6fc502720a965dbbfcbdba59f8081d06c1d85c182003583e7fef0fe3
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582555000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 14:32:39 EDT 2025
Sat Sep 27 17:46:12 EDT 2025
Mon Oct 06 17:13:59 EDT 2025
Tue Sep 30 01:30:59 EDT 2025
Sat Nov 29 07:26:42 EST 2025
Sat Sep 27 01:10:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Cloud computing
Attention mechanism
Hybrid ensembled deep learning model
Side-channel attacks
Cryptographic systems
Long short-term memory
Cybersecurity
Convolutional neural networks
AutoEncoder
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-ef37bc74c6fc502720a965dbbfcbdba59f8081d06c1d85c182003583e7fef0fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3254841322?pq-origsite=%requestingapplication%
PMID 41006528
PQID 3254841322
PQPubID 2041939
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_4940db52ed7c40a5902a8859818dd136
proquest_miscellaneous_3254924073
proquest_journals_3254841322
pubmed_primary_41006528
crossref_primary_10_1038_s41598_025_89794_4
springer_journals_10_1038_s41598_025_89794_4
PublicationCentury 2000
PublicationDate 2025-09-26
PublicationDateYYYYMMDD 2025-09-26
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Y Gao (89794_CR18) 2020; 16
Y-T Hsu (89794_CR13) 2023; 6
89794_CR27
89794_CR4
K Gunasekaran (89794_CR21) 2024
Y Wang (89794_CR38) 2016; 184
L Li (89794_CR20) 2024; 73
S Dhanasekaran (89794_CR22) 2022; 24
S Konno (89794_CR11) 2023; 7
W Liu (89794_CR17) 2022; 18
KE Narayana (89794_CR28) 2021; 45
H Fanliang (89794_CR9) 2024; 19
A Kar (89794_CR3) 2023; 22
J Gonzalez-Gomez (89794_CR8) 2023; 18
A Rehman (89794_CR29) 2022; 27
89794_CR35
AD Campos (89794_CR31) 2024; 12
IA Khan (89794_CR34) 2022; 127
IA Khan (89794_CR32) 2022; 9
Z Jiao (89794_CR5) 2023; 32
D Selvaraj (89794_CR23) 2024; 37
N Shrivastava (89794_CR1) 2022; 15
G Ha (89794_CR2) 2022; 28
W Song (89794_CR16) 2024; 73
H Kim (89794_CR7) 2024; 19
VP Hoang (89794_CR6) 2022; 15
S Abbas (89794_CR30) 2024; 12
89794_CR39
89794_CR37
SF Naz (89794_CR12) 2023; 24
Y Zhang (89794_CR26) 2019; 18
S Dhanasekaran (89794_CR24) 2023; 129
S Abbas (89794_CR45) 2024; 50
IA Khan (89794_CR33) 2024; 28
P Qiu (89794_CR19) 2023; 70
V Rega (89794_CR40) 2024; 12
M Wei (89794_CR36) 2020
D Chen (89794_CR14) 2020; 18
AR Javed (89794_CR44) 2023; 14
S-H Cheng (89794_CR10) 2022; 69
AG Dastider (89794_CR42) 2021; 132
Y Lu (89794_CR25) 2021; 22
89794_CR43
89794_CR41
J-Y Xie (89794_CR15) 2022; 17
References_xml – volume: 28
  start-page: 1
  issue: 1
  year: 2022
  ident: 89794_CR2
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2021.9010071
– volume: 37
  issue: 3
  year: 2024
  ident: 89794_CR23
  publication-title: Int. J. Commun Syst
  doi: 10.1002/dac.5663
– volume: 32
  start-page: 199
  issue: 2
  year: 2023
  ident: 89794_CR5
  publication-title: Chin. J. Electron.
  doi: 10.23919/cje.2021.00.089
– volume: 9
  start-page: 11604
  issue: 13
  year: 2022
  ident: 89794_CR32
  publication-title: IEEE Int. Things J.
  doi: 10.1109/JIOT.2021.3130156
– volume: 15
  start-page: 145
  issue: 3
  year: 2022
  ident: 89794_CR6
  publication-title: IEEE Embed. Syst. Lett.
  doi: 10.1109/LES.2022.3213443
– volume: 15
  start-page: 141
  issue: 3
  year: 2022
  ident: 89794_CR1
  publication-title: IEEE Embed. Syst. Lett.
  doi: 10.1109/LES.2022.3196499
– volume: 18
  start-page: 1008
  issue: 3
  year: 2019
  ident: 89794_CR26
  publication-title: IEEE Trans. Dependable Secure Comput.
– volume: 6
  start-page: 89
  year: 2023
  ident: 89794_CR13
  publication-title: IEEE Solid State Circuits Lett.
  doi: 10.1109/LSSC.2023.3260952
– volume: 17
  start-page: 2674
  issue: 2
  year: 2022
  ident: 89794_CR15
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2022.3204902
– volume: 12
  start-page: 138904
  year: 2024
  ident: 89794_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3465662
– volume: 22
  start-page: 53
  issue: 1
  year: 2023
  ident: 89794_CR3
  publication-title: IEEE Comput. Archit. Lett.
  doi: 10.1109/LCA.2023.3276709
– volume: 129
  start-page: 102820
  year: 2023
  ident: 89794_CR24
  publication-title: Simul. Modell. Pract. Theory
  doi: 10.1016/j.simpat.2023.102820
– ident: 89794_CR27
  doi: 10.1109/NOMS54207.2022.9789783
– volume: 18
  start-page: 804
  year: 2022
  ident: 89794_CR17
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2022.3227445
– volume: 18
  start-page: 467
  issue: 1
  year: 2020
  ident: 89794_CR14
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2020.3045161
– ident: 89794_CR41
– volume: 14
  start-page: 4869
  issue: 5
  year: 2023
  ident: 89794_CR44
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-01770-0
– volume: 73
  start-page: 1019
  issue: 4
  year: 2024
  ident: 89794_CR16
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2024.3349659
– volume: 16
  start-page: 770
  year: 2020
  ident: 89794_CR18
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3023278
– volume: 12
  start-page: 98450
  year: 2024
  ident: 89794_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3362670
– volume: 28
  start-page: 3228
  issue: 6
  year: 2024
  ident: 89794_CR33
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2024.3352013
– volume: 19
  start-page: 1672
  year: 2024
  ident: 89794_CR7
  publication-title: IEEE Trans. Inform’ Forensic. Secur.
  doi: 10.1109/TIFS.2023.3340088
– volume: 184
  start-page: 232
  year: 2016
  ident: 89794_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 12
  start-page: 170923
  year: 2024
  ident: 89794_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3491916
– ident: 89794_CR4
  doi: 10.1109/ICC51166.2024.10622721
– volume: 24
  start-page: 59
  year: 2023
  ident: 89794_CR12
  publication-title: IEEE Trans. Device Mater. Reliab.
  doi: 10.1109/TDMR.2023.3346752
– volume: 27
  start-page: 684
  issue: 2
  year: 2022
  ident: 89794_CR29
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3171852
– volume: 70
  start-page: 5048
  year: 2023
  ident: 89794_CR19
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2023.3298913
– start-page: 99
  volume-title: Information and communications security: 21st international conference, ICICS 2019, Beijing, China, December 15–17, 2019, Revised Selected Papers
  year: 2020
  ident: 89794_CR36
– volume: 45
  start-page: 6465
  year: 2021
  ident: 89794_CR28
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.11.283
– ident: 89794_CR37
– ident: 89794_CR35
– volume: 73
  start-page: 1457
  year: 2024
  ident: 89794_CR20
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2024.3377891
– volume: 127
  start-page: 181
  year: 2022
  ident: 89794_CR34
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.09.010
– ident: 89794_CR39
– volume: 24
  start-page: 1601
  issue: 11
  year: 2022
  ident: 89794_CR22
  publication-title: Entropy
  doi: 10.3390/e24111601
– volume: 132
  start-page: 104296
  year: 2021
  ident: 89794_CR42
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104296
– volume: 50
  start-page: 877
  issue: 2
  year: 2024
  ident: 89794_CR45
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-024-09046-x
– volume: 69
  start-page: 4008
  issue: 10
  year: 2022
  ident: 89794_CR10
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 22
  start-page: 17529
  issue: 18
  year: 2021
  ident: 89794_CR25
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3052782
– ident: 89794_CR43
  doi: 10.1109/ACIT62333.2024.10712474
– volume: 18
  start-page: 2440
  year: 2023
  ident: 89794_CR8
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2023.3266630
– volume: 19
  start-page: 2051
  year: 2024
  ident: 89794_CR9
  publication-title: IEEE Trans. Inform. Forensics Secur.
  doi: 10.1109/TIFS.2023.3343947
– volume: 7
  start-page: 1
  issue: 4
  year: 2023
  ident: 89794_CR11
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2023.3259301
– year: 2024
  ident: 89794_CR21
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.6027
SSID ssj0000529419
Score 2.459832
Snippet Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical...
Abstract Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 32949
SubjectTerms 639/166
639/705
Access to information
Cloud computing
Convolutional neural networks
Cryptographic systems
Deep learning
Humanities and Social Sciences
Long short-term memory
Machine learning
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Side-channel attacks
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SKrgR304fEsGdhmYmySRZ2mJxVUQUugvJSaLFOrfcO1O4-Oebx9xrRcWN25kzIZPzhZPDyfk-hF6lKOAYtJw40faEa0aJ0zoSxjzEBJheBihiE_LsTJ2f6w-3pL7ynbBKD1wX7ohrTr0TXfASOLWZbcQqJXQKNN63rJBtU6lvJVOV1bvTvNVzlwxl6miVIlXuJusEUTqBkPBfIlEh7P_TKfO3CmkJPKcP0P35xIjf1pk-RHfC8AjdrRqS68fox8dwPcPHLtf46zq3YOGUnIbv7jJ47EO4wrM2xBdchG9wOqhiCzBlmghsB4-XCzetRpylO0luBR6SkR1HC9_S92O5rTXgiwHD5WLyGIoSRBruCfp8-u7TyXsyKyoQ4EyNJEQmHUgOfQRBcwnW6l545yI479LixizE4WkPrVcCMrk7ZUKxIGOINAb2FO0MiyE8RxiCA-hYMgo9b6VPpqptLRfJyVJD36DXm9U1V5U4w5SCN1Om-sIkX5jiC8MbdJwdsLXMpNflQYKCmaFg_gWFBh1s3GfmnbgyLGXAiuecu0Evt6_THsqFETuExVRtdE5tWYOeVbdvZ8LbfErrVIPebHDwc_C__9De__ihfXSvy4DNRbD-AO2Myykcol24Hi9WyxcF8TfQlAKB
  priority: 102
  providerName: Directory of Open Access Journals
Title Revolutionary hybrid ensembled deep learning model for accurate and robust side-channel attack detection in cloud computing
URI https://link.springer.com/article/10.1038/s41598-025-89794-4
https://www.ncbi.nlm.nih.gov/pubmed/41006528
https://www.proquest.com/docview/3254841322
https://www.proquest.com/docview/3254924073
https://doaj.org/article/4940db52ed7c40a5902a8859818dd136
Volume 15
WOSCitedRecordID wos001582555000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3o-FsjISN7Aax05snxBFreDQ1aoCaTlF9thpK0qy7GYrrfjzeJzsVojHhYsPycRxNDPxPDzzEfIq7gJOAJfMFbxk0oiMOWNqJoSHOgpMqQIksAk1mejZzEyHgNtyOFa5-SemH7VvAWPkByJ6Mlqi7_R2_p0hahRmVwcIjR2yFy0bjke6TvLpNsaCWSzJzVArkwl9sIz7FdaU5QXTJooik7_sR6lt_59szd_ypGn7Ob77vwu_R-4Mhid910vKfXIjNA_IrR6Kcv2Q_DgNV4MU2sWanq-xkotGHzd8c5fBUx_CnA4QE2c04efQaO9SC7DCbhPUNp4uWrdadhQRQBlWFDeRyHadha_x-S4d-mroRUPhsl15CglQIk73iHw-Pvr0_gMbgBkYSKE7FmqhHCgJZQ1Fhplca8rCO1eD884WpkY8D5-VwL0uAHvEZ6LQIqg61FkdxGOy27RNeEooBAeQi0gUSsmVj6SacyuLKCvKQDkirzfsqeZ9_40q5c2FrnpmVpGZVWJmJUfkEDm4pcTe2elCuzirBlWspJGZd0UevAKZWexfY7WOM3HtPRfxlfsbRlaDQi-ray6OyMvt7aiKmF-xTWhXPY1BD1mMyJNebrYrkRyNvVyPyJuNIF1P_vcPevbvtTwnt3OUZcySlftkt1uswgtyE666i-ViTHbUTKVRj8ne4dFkejpOMYdxUhMcVRz3ph9Ppl9-AvalGHU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF92OhgJHgBFaT2EnsA0K8qlYtqwoVqTfXHjuloiTLbrZoxX_iN-Jxkq0Qj1sPXJOJYyffjD0ez3yEPAmzgOWQCmbztGBC8YRZpSrGuYMqAKYoPUSyiXI8lvv7aneF_BhyYfBY5WATo6F2DeAe-ToPnowU6Du9nHxlyBqF0dWBQqODxbZffAsu2-zF1tvwf59m2ca7vTebrGcVYCC4bJmveGmhFFBUkCcYhjSqyJ21FVhnTa4qJKNwSQGpkzlggfOE55L7svJVUnke2j1HzgusLIZHBbPd5Z4ORs1EqvrcnITL9VmYHzGHLcuZVAH6TPwy_0WagD-tbX-Ly8bpbuPq__ahrpEr_cKavuo04TpZ8fUNcrGj2lzcJN8_-JNey8x0QT8tMFONBh_ef7HH3lHn_YT2FBqHNPID0bCepwZgjtU0qKkdnTZ2PmspMpwyzJiug5BpWwOfw_NtPNRW06OawnEzdxQiYUZo7hb5eCYjv01W66b2dwkFbwEyHoR8IdLSBVGZpkbkQRdKBcWIPBvgoCddfREdzwVwqTvw6AAeHcGjxYi8RsQsJbE2eLzQTA91b2q0UCJxNs-8K0EkBuvzGClDS6l0LuXhlWsDcHRvsGb6FDUj8nh5O5gajB-Z2jfzTkbhDgAfkTsdTpc9ESkuZjM5Is8H4J42_vcB3ft3Xx6RS5t773f0ztZ4-z65nKEeYUSwWCOr7XTuH5ALcNIezaYPoyJScnDWgP4J54RwTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFhAX3o-FAkaCE1ibxE5iHxACSsWqsFohkNqTscdOqSjJspstWvHP-HV48tgK8bj1wDWZOHbyzXjs8cxHyMMwC1gOsWA2jTMmFI-YVapgnDsoAmCy3ENDNpFPJnJvT003yI8-FwaPVfY2sTHUrgLcIx_xsJKRAtdOo6I7FjHd3nk2-8qQQQojrT2dRguRXb_6FpZvi6fj7fCvHyXJzqv3L1-zjmGAgeCyZr7guYVcQFZAGmFI0qgsddYWYJ01qSqQmMJFGcROpoDFziOeSu7zwhdR4Xlo9wzZDC65SAZkczp-O91f7_BgDE3EqsvUibgcLcJsiRltScqkCorAxC-zYUMa8CdP97cobTP57Vz6nz_bZXKxc7np81ZHrpANX14l51oSztU18v2dP-70z8xX9NMKc9hoWN37L_bIO-q8n9GOXOOANsxBNHj61AAssc4GNaWj88ouFzVF7lOGudRlEDJ1beBzeL5ujruV9LCkcFQtHYWGSiM0d518OJWR3yCDsir9LULBW4CEByGfiTh3QVTGsRFp0JJcQTYkj3to6FlbeUQ3Jwa41C2QdACSboCkxZC8QPSsJbFqeHOhmh_ozghpoUTkbJp4l4OIDFbuMVKGlmLpXMzDK7d6EOnOlC30CYKG5MH6djBCGFkypa-WrYzCvQE-JDdbzK57ImJ0cxM5JE96EJ80_vcB3f53X-6T8wHH-s14snuHXEhQpTBUmG2RQT1f-rvkLBzXh4v5vU4rKfl42oj-CZELepY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionary+hybrid+ensembled+deep+learning+model+for+accurate+and+robust+side-channel+attack+detection+in+cloud+computing&rft.jtitle=Scientific+reports&rft.au=Reddy%2C+C+Lakshminatha&rft.au=Malathi%2C+K&rft.date=2025-09-26&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=32949&rft_id=info:doi/10.1038%2Fs41598-025-89794-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon