Revolutionary hybrid ensembled deep learning model for accurate and robust side-channel attack detection in cloud computing
Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 32949 - 29 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
26.09.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model’s focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security. |
|---|---|
| AbstractList | Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model's focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security. Abstract Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model’s focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security. Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model's focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security.Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical data leakages. In cloud computing environments, where resources shared across multiple tenants, detecting SCAs becomes particularly challenging due to increased noise and complex data patterns. This study aims to develop a robust detection model for SCAs in cloud environments, leveraging deep learning techniques to capture the multi-dimensional characteristics of power traces while ensuring scalability and accuracy. We propose a hybrid ensembled deep learning (HEDL) model that integrates convolutional neural networks (CNN), long short-term memory (LSTM) networks, and AutoEncoders, enhanced by an attention mechanism to focus on the most critical data segments. The model trained and evaluated on the ASCAD dataset, a benchmark dataset for SCA research, and implemented in a cloud environment to assess real-time detection capabilities. The HEDL model achieved a detection accuracy of 98.65%, significantly outperforming traditional machine learning and standalone deep learning models in both clean and noisy data conditions. The attention mechanism improved the model's focus on key data segments, reducing computational demands and enhancing detection precision. The proposed HEDL model demonstrates superior robustness and accuracy in SCA detection within noisy cloud environments, marking a significant advancement in cloud-based cryptographic security. |
| ArticleNumber | 32949 |
| Author | Malathi, K. Reddy, C. Lakshminatha |
| Author_xml | – sequence: 1 givenname: C. Lakshminatha surname: Reddy fullname: Reddy, C. Lakshminatha email: laxminathreddy842@gmail.com organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences – sequence: 2 givenname: K. surname: Malathi fullname: Malathi, K. email: malathi@saveetha.com organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41006528$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1rFTEUhoNUbK39Ay4k4MbNaD5nMkspfhQKgug65OPkNteZ5JrMCMU_b3qnVnFhNgnhed-Tk_M-RScpJ0DoOSWvKeHqTRVUjqojTHZqHEbRiUfojBEhO8YZO_nrfIouat2TtiQbBR2foFNBCeklU2fo52f4kad1iTmZcotvbm2JHkOqMNsJPPYABzyBKSmmHZ6zhwmHXLBxbi1mAWySxyXbtS64Rg-duzEpNcgsi3Hfmn4Bd-eOY8JuyqvHLs-HVjDtnqHHwUwVLu73c_T1_bsvlx-7608fri7fXndOcLV0EPhg3SBcH5wkbGDEjL301gZnvTVyDIoo6knvqFfSUcUI4VJxGAIEEoCfo6vN12ez14cS59aqzibq40UuO23KEt0EWoyCeCsZ-MEJ0rwJM0q1j6bKe8r75vVq8zqU_H2Fuug5VgfTZBLktWrOpBiZIANv6Mt_0H1eS2qdHiklaBtOo17cU6udwT887_eIGsA2wJVca4HwgFCi76KgtyjoFgV9jIIWTcQ3UW1w2kH5U_s_ql8AULZ6 |
| Cites_doi | 10.26599/TST.2021.9010071 10.1002/dac.5663 10.23919/cje.2021.00.089 10.1109/JIOT.2021.3130156 10.1109/LES.2022.3213443 10.1109/LES.2022.3196499 10.1109/LSSC.2023.3260952 10.1109/JSYST.2022.3204902 10.1109/ACCESS.2024.3465662 10.1109/LCA.2023.3276709 10.1016/j.simpat.2023.102820 10.1109/NOMS54207.2022.9789783 10.1109/TIFS.2022.3227445 10.1109/TII.2020.3045161 10.1007/s12652-020-01770-0 10.1109/TC.2024.3349659 10.1109/TIFS.2020.3023278 10.1109/ACCESS.2024.3362670 10.1109/JBHI.2024.3352013 10.1109/TIFS.2023.3340088 10.1016/j.neucom.2015.08.104 10.1109/ACCESS.2024.3491916 10.1109/ICC51166.2024.10622721 10.1109/TDMR.2023.3346752 10.1109/JBHI.2022.3171852 10.1109/TCSI.2023.3298913 10.1016/j.matpr.2020.11.283 10.1109/TC.2024.3377891 10.1016/j.future.2021.09.010 10.3390/e24111601 10.1016/j.compbiomed.2021.104296 10.1007/s13369-024-09046-x 10.1109/JSEN.2021.3052782 10.1109/ACIT62333.2024.10712474 10.1109/TIFS.2023.3266630 10.1109/TIFS.2023.3343947 10.1109/LSENS.2023.3259301 10.1002/dac.6027 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-89794-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 29 |
| ExternalDocumentID | oai_doaj_org_article_4940db52ed7c40a5902a8859818dd136 41006528 10_1038_s41598_025_89794_4 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK COVID K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-ef37bc74c6fc502720a965dbbfcbdba59f8081d06c1d85c182003583e7fef0fe3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001582555000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 14:32:39 EDT 2025 Sat Sep 27 17:46:12 EDT 2025 Mon Oct 06 17:13:59 EDT 2025 Tue Sep 30 01:30:59 EDT 2025 Sat Nov 29 07:26:42 EST 2025 Sat Sep 27 01:10:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Cloud computing Attention mechanism Hybrid ensembled deep learning model Side-channel attacks Cryptographic systems Long short-term memory Cybersecurity Convolutional neural networks AutoEncoder |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-ef37bc74c6fc502720a965dbbfcbdba59f8081d06c1d85c182003583e7fef0fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3254841322?pq-origsite=%requestingapplication% |
| PMID | 41006528 |
| PQID | 3254841322 |
| PQPubID | 2041939 |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4940db52ed7c40a5902a8859818dd136 proquest_miscellaneous_3254924073 proquest_journals_3254841322 pubmed_primary_41006528 crossref_primary_10_1038_s41598_025_89794_4 springer_journals_10_1038_s41598_025_89794_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-26 |
| PublicationDateYYYYMMDD | 2025-09-26 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Y Gao (89794_CR18) 2020; 16 Y-T Hsu (89794_CR13) 2023; 6 89794_CR27 89794_CR4 K Gunasekaran (89794_CR21) 2024 Y Wang (89794_CR38) 2016; 184 L Li (89794_CR20) 2024; 73 S Dhanasekaran (89794_CR22) 2022; 24 S Konno (89794_CR11) 2023; 7 W Liu (89794_CR17) 2022; 18 KE Narayana (89794_CR28) 2021; 45 H Fanliang (89794_CR9) 2024; 19 A Kar (89794_CR3) 2023; 22 J Gonzalez-Gomez (89794_CR8) 2023; 18 A Rehman (89794_CR29) 2022; 27 89794_CR35 AD Campos (89794_CR31) 2024; 12 IA Khan (89794_CR34) 2022; 127 IA Khan (89794_CR32) 2022; 9 Z Jiao (89794_CR5) 2023; 32 D Selvaraj (89794_CR23) 2024; 37 N Shrivastava (89794_CR1) 2022; 15 G Ha (89794_CR2) 2022; 28 W Song (89794_CR16) 2024; 73 H Kim (89794_CR7) 2024; 19 VP Hoang (89794_CR6) 2022; 15 S Abbas (89794_CR30) 2024; 12 89794_CR39 89794_CR37 SF Naz (89794_CR12) 2023; 24 Y Zhang (89794_CR26) 2019; 18 S Dhanasekaran (89794_CR24) 2023; 129 S Abbas (89794_CR45) 2024; 50 IA Khan (89794_CR33) 2024; 28 P Qiu (89794_CR19) 2023; 70 V Rega (89794_CR40) 2024; 12 M Wei (89794_CR36) 2020 D Chen (89794_CR14) 2020; 18 AR Javed (89794_CR44) 2023; 14 S-H Cheng (89794_CR10) 2022; 69 AG Dastider (89794_CR42) 2021; 132 Y Lu (89794_CR25) 2021; 22 89794_CR43 89794_CR41 J-Y Xie (89794_CR15) 2022; 17 |
| References_xml | – volume: 28 start-page: 1 issue: 1 year: 2022 ident: 89794_CR2 publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2021.9010071 – volume: 37 issue: 3 year: 2024 ident: 89794_CR23 publication-title: Int. J. Commun Syst doi: 10.1002/dac.5663 – volume: 32 start-page: 199 issue: 2 year: 2023 ident: 89794_CR5 publication-title: Chin. J. Electron. doi: 10.23919/cje.2021.00.089 – volume: 9 start-page: 11604 issue: 13 year: 2022 ident: 89794_CR32 publication-title: IEEE Int. Things J. doi: 10.1109/JIOT.2021.3130156 – volume: 15 start-page: 145 issue: 3 year: 2022 ident: 89794_CR6 publication-title: IEEE Embed. Syst. Lett. doi: 10.1109/LES.2022.3213443 – volume: 15 start-page: 141 issue: 3 year: 2022 ident: 89794_CR1 publication-title: IEEE Embed. Syst. Lett. doi: 10.1109/LES.2022.3196499 – volume: 18 start-page: 1008 issue: 3 year: 2019 ident: 89794_CR26 publication-title: IEEE Trans. Dependable Secure Comput. – volume: 6 start-page: 89 year: 2023 ident: 89794_CR13 publication-title: IEEE Solid State Circuits Lett. doi: 10.1109/LSSC.2023.3260952 – volume: 17 start-page: 2674 issue: 2 year: 2022 ident: 89794_CR15 publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2022.3204902 – volume: 12 start-page: 138904 year: 2024 ident: 89794_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3465662 – volume: 22 start-page: 53 issue: 1 year: 2023 ident: 89794_CR3 publication-title: IEEE Comput. Archit. Lett. doi: 10.1109/LCA.2023.3276709 – volume: 129 start-page: 102820 year: 2023 ident: 89794_CR24 publication-title: Simul. Modell. Pract. Theory doi: 10.1016/j.simpat.2023.102820 – ident: 89794_CR27 doi: 10.1109/NOMS54207.2022.9789783 – volume: 18 start-page: 804 year: 2022 ident: 89794_CR17 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2022.3227445 – volume: 18 start-page: 467 issue: 1 year: 2020 ident: 89794_CR14 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2020.3045161 – ident: 89794_CR41 – volume: 14 start-page: 4869 issue: 5 year: 2023 ident: 89794_CR44 publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-01770-0 – volume: 73 start-page: 1019 issue: 4 year: 2024 ident: 89794_CR16 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2024.3349659 – volume: 16 start-page: 770 year: 2020 ident: 89794_CR18 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.3023278 – volume: 12 start-page: 98450 year: 2024 ident: 89794_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3362670 – volume: 28 start-page: 3228 issue: 6 year: 2024 ident: 89794_CR33 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2024.3352013 – volume: 19 start-page: 1672 year: 2024 ident: 89794_CR7 publication-title: IEEE Trans. Inform’ Forensic. Secur. doi: 10.1109/TIFS.2023.3340088 – volume: 184 start-page: 232 year: 2016 ident: 89794_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 12 start-page: 170923 year: 2024 ident: 89794_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3491916 – ident: 89794_CR4 doi: 10.1109/ICC51166.2024.10622721 – volume: 24 start-page: 59 year: 2023 ident: 89794_CR12 publication-title: IEEE Trans. Device Mater. Reliab. doi: 10.1109/TDMR.2023.3346752 – volume: 27 start-page: 684 issue: 2 year: 2022 ident: 89794_CR29 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3171852 – volume: 70 start-page: 5048 year: 2023 ident: 89794_CR19 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2023.3298913 – start-page: 99 volume-title: Information and communications security: 21st international conference, ICICS 2019, Beijing, China, December 15–17, 2019, Revised Selected Papers year: 2020 ident: 89794_CR36 – volume: 45 start-page: 6465 year: 2021 ident: 89794_CR28 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.11.283 – ident: 89794_CR37 – ident: 89794_CR35 – volume: 73 start-page: 1457 year: 2024 ident: 89794_CR20 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2024.3377891 – volume: 127 start-page: 181 year: 2022 ident: 89794_CR34 publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2021.09.010 – ident: 89794_CR39 – volume: 24 start-page: 1601 issue: 11 year: 2022 ident: 89794_CR22 publication-title: Entropy doi: 10.3390/e24111601 – volume: 132 start-page: 104296 year: 2021 ident: 89794_CR42 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104296 – volume: 50 start-page: 877 issue: 2 year: 2024 ident: 89794_CR45 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-024-09046-x – volume: 69 start-page: 4008 issue: 10 year: 2022 ident: 89794_CR10 publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 22 start-page: 17529 issue: 18 year: 2021 ident: 89794_CR25 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3052782 – ident: 89794_CR43 doi: 10.1109/ACIT62333.2024.10712474 – volume: 18 start-page: 2440 year: 2023 ident: 89794_CR8 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2023.3266630 – volume: 19 start-page: 2051 year: 2024 ident: 89794_CR9 publication-title: IEEE Trans. Inform. Forensics Secur. doi: 10.1109/TIFS.2023.3343947 – volume: 7 start-page: 1 issue: 4 year: 2023 ident: 89794_CR11 publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2023.3259301 – year: 2024 ident: 89794_CR21 publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.6027 |
| SSID | ssj0000529419 |
| Score | 2.459832 |
| Snippet | Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit physical... Abstract Cryptographic systems are essential for securing sensitive information but are increasingly susceptible to side-channel attacks (SCAs) that exploit... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 32949 |
| SubjectTerms | 639/166 639/705 Access to information Cloud computing Convolutional neural networks Cryptographic systems Deep learning Humanities and Social Sciences Long short-term memory Machine learning multidisciplinary Neural networks Science Science (multidisciplinary) Side-channel attacks Software |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SKrgR304fEsGdhmYmySRZ2mJxVUQUugvJSaLFOrfcO1O4-Oebx9xrRcWN25kzIZPzhZPDyfk-hF6lKOAYtJw40faEa0aJ0zoSxjzEBJheBihiE_LsTJ2f6w-3pL7ynbBKD1wX7ohrTr0TXfASOLWZbcQqJXQKNN63rJBtU6lvJVOV1bvTvNVzlwxl6miVIlXuJusEUTqBkPBfIlEh7P_TKfO3CmkJPKcP0P35xIjf1pk-RHfC8AjdrRqS68fox8dwPcPHLtf46zq3YOGUnIbv7jJ47EO4wrM2xBdchG9wOqhiCzBlmghsB4-XCzetRpylO0luBR6SkR1HC9_S92O5rTXgiwHD5WLyGIoSRBruCfp8-u7TyXsyKyoQ4EyNJEQmHUgOfQRBcwnW6l545yI479LixizE4WkPrVcCMrk7ZUKxIGOINAb2FO0MiyE8RxiCA-hYMgo9b6VPpqptLRfJyVJD36DXm9U1V5U4w5SCN1Om-sIkX5jiC8MbdJwdsLXMpNflQYKCmaFg_gWFBh1s3GfmnbgyLGXAiuecu0Evt6_THsqFETuExVRtdE5tWYOeVbdvZ8LbfErrVIPebHDwc_C__9De__ihfXSvy4DNRbD-AO2Myykcol24Hi9WyxcF8TfQlAKB priority: 102 providerName: Directory of Open Access Journals |
| Title | Revolutionary hybrid ensembled deep learning model for accurate and robust side-channel attack detection in cloud computing |
| URI | https://link.springer.com/article/10.1038/s41598-025-89794-4 https://www.ncbi.nlm.nih.gov/pubmed/41006528 https://www.proquest.com/docview/3254841322 https://www.proquest.com/docview/3254924073 https://doaj.org/article/4940db52ed7c40a5902a8859818dd136 |
| Volume | 15 |
| WOSCitedRecordID | wos001582555000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3o-FsjISN7Aax05snxBFreDQ1aoCaTlF9thpK0qy7GYrrfjzeJzsVojHhYsPycRxNDPxPDzzEfIq7gJOAJfMFbxk0oiMOWNqJoSHOgpMqQIksAk1mejZzEyHgNtyOFa5-SemH7VvAWPkByJ6Mlqi7_R2_p0hahRmVwcIjR2yFy0bjke6TvLpNsaCWSzJzVArkwl9sIz7FdaU5QXTJooik7_sR6lt_59szd_ypGn7Ob77vwu_R-4Mhid910vKfXIjNA_IrR6Kcv2Q_DgNV4MU2sWanq-xkotGHzd8c5fBUx_CnA4QE2c04efQaO9SC7DCbhPUNp4uWrdadhQRQBlWFDeRyHadha_x-S4d-mroRUPhsl15CglQIk73iHw-Pvr0_gMbgBkYSKE7FmqhHCgJZQ1Fhplca8rCO1eD884WpkY8D5-VwL0uAHvEZ6LQIqg61FkdxGOy27RNeEooBAeQi0gUSsmVj6SacyuLKCvKQDkirzfsqeZ9_40q5c2FrnpmVpGZVWJmJUfkEDm4pcTe2elCuzirBlWspJGZd0UevAKZWexfY7WOM3HtPRfxlfsbRlaDQi-ray6OyMvt7aiKmF-xTWhXPY1BD1mMyJNebrYrkRyNvVyPyJuNIF1P_vcPevbvtTwnt3OUZcySlftkt1uswgtyE666i-ViTHbUTKVRj8ne4dFkejpOMYdxUhMcVRz3ph9Ppl9-AvalGHU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF92OhgJHgBFaT2EnsA0K8qlYtqwoVqTfXHjuloiTLbrZoxX_iN-Jxkq0Qj1sPXJOJYyffjD0ez3yEPAmzgOWQCmbztGBC8YRZpSrGuYMqAKYoPUSyiXI8lvv7aneF_BhyYfBY5WATo6F2DeAe-ToPnowU6Du9nHxlyBqF0dWBQqODxbZffAsu2-zF1tvwf59m2ca7vTebrGcVYCC4bJmveGmhFFBUkCcYhjSqyJ21FVhnTa4qJKNwSQGpkzlggfOE55L7svJVUnke2j1HzgusLIZHBbPd5Z4ORs1EqvrcnITL9VmYHzGHLcuZVAH6TPwy_0WagD-tbX-Ly8bpbuPq__ahrpEr_cKavuo04TpZ8fUNcrGj2lzcJN8_-JNey8x0QT8tMFONBh_ef7HH3lHn_YT2FBqHNPID0bCepwZgjtU0qKkdnTZ2PmspMpwyzJiug5BpWwOfw_NtPNRW06OawnEzdxQiYUZo7hb5eCYjv01W66b2dwkFbwEyHoR8IdLSBVGZpkbkQRdKBcWIPBvgoCddfREdzwVwqTvw6AAeHcGjxYi8RsQsJbE2eLzQTA91b2q0UCJxNs-8K0EkBuvzGClDS6l0LuXhlWsDcHRvsGb6FDUj8nh5O5gajB-Z2jfzTkbhDgAfkTsdTpc9ESkuZjM5Is8H4J42_vcB3ft3Xx6RS5t773f0ztZ4-z65nKEeYUSwWCOr7XTuH5ALcNIezaYPoyJScnDWgP4J54RwTQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFhAX3o-FAkaCE1ibxE5iHxACSsWqsFohkNqTscdOqSjJspstWvHP-HV48tgK8bj1wDWZOHbyzXjs8cxHyMMwC1gOsWA2jTMmFI-YVapgnDsoAmCy3ENDNpFPJnJvT003yI8-FwaPVfY2sTHUrgLcIx_xsJKRAtdOo6I7FjHd3nk2-8qQQQojrT2dRguRXb_6FpZvi6fj7fCvHyXJzqv3L1-zjmGAgeCyZr7guYVcQFZAGmFI0qgsddYWYJ01qSqQmMJFGcROpoDFziOeSu7zwhdR4Xlo9wzZDC65SAZkczp-O91f7_BgDE3EqsvUibgcLcJsiRltScqkCorAxC-zYUMa8CdP97cobTP57Vz6nz_bZXKxc7np81ZHrpANX14l51oSztU18v2dP-70z8xX9NMKc9hoWN37L_bIO-q8n9GOXOOANsxBNHj61AAssc4GNaWj88ouFzVF7lOGudRlEDJ1beBzeL5ujruV9LCkcFQtHYWGSiM0d518OJWR3yCDsir9LULBW4CEByGfiTh3QVTGsRFp0JJcQTYkj3to6FlbeUQ3Jwa41C2QdACSboCkxZC8QPSsJbFqeHOhmh_ozghpoUTkbJp4l4OIDFbuMVKGlmLpXMzDK7d6EOnOlC30CYKG5MH6djBCGFkypa-WrYzCvQE-JDdbzK57ImJ0cxM5JE96EJ80_vcB3f53X-6T8wHH-s14snuHXEhQpTBUmG2RQT1f-rvkLBzXh4v5vU4rKfl42oj-CZELepY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionary+hybrid+ensembled+deep+learning+model+for+accurate+and+robust+side-channel+attack+detection+in+cloud+computing&rft.jtitle=Scientific+reports&rft.au=Reddy%2C+C+Lakshminatha&rft.au=Malathi%2C+K&rft.date=2025-09-26&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=32949&rft_id=info:doi/10.1038%2Fs41598-025-89794-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |