ODBAE: a high-performance model identifying complex phenotypes in high-dimensional biological datasets
Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that cont...
Uložené v:
| Vydané v: | Communications biology Ročník 8; číslo 1; s. 1415 - 19 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
02.10.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2399-3642, 2399-3642 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.
ODBAE offers a powerful approach for detecting complex anomalies and characterizing unknown phenotypes within biological systems. |
|---|---|
| AbstractList | Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE's revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes-normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems. Abstract Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems. Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.ODBAE offers a powerful approach for detecting complex anomalies and characterizing unknown phenotypes within biological systems. Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE’s revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes—normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems. ODBAE offers a powerful approach for detecting complex anomalies and characterizing unknown phenotypes within biological systems. Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE's revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes-normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems.Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological indicators. Traditional approaches often focus on detecting outliers in single variables, overlooking the broader network of interactions that contribute to phenotype emergence. Here, we introduce ODBAE (Outlier Detection using Balanced Autoencoders), a machine learning method designed to uncover both subtle and extreme outliers by capturing latent relationships among multiple physiological parameters. ODBAE's revised loss function enhances its ability to detect two key types of outliers: influential points (IP), which disrupt latent correlations between dimensions, and high leverage points (HLP), which deviate from the norm but go undetected by traditional autoencoder-based methods. Using data from the International Mouse Phenotyping Consortium (IMPC), we show that ODBAE can identify knockout mice with complex, multi-indicator phenotypes-normal in individual traits, but abnormal when considered together. In addition, this method reveals novel metabolism-related genes and uncovers coordinated abnormalities across metabolic indicators. Our results highlight the utility of ODBAE in detecting joint abnormalities and advancing our understanding of homeostatic perturbations in biological systems. |
| ArticleNumber | 1415 |
| Author | Xu, Ying Liu, Zhiwei Kostelidou, Kalliopi Shen, Yafei Yang, Ling Zhang, Tao |
| Author_xml | – sequence: 1 givenname: Yafei surname: Shen fullname: Shen, Yafei organization: School of Mathematical Sciences, Soochow University, Center for Systems Biology, Soochow University – sequence: 2 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Jiangsu Province Engineering Research Center of Development and Translation of Key Technologies for Chronic Disease Prevention and Control, Suzhou Vocational Health College – sequence: 3 givenname: Zhiwei surname: Liu fullname: Liu, Zhiwei organization: Cambridge-Suda Genomic Research Center, Suzhou Medical College of Soochow University – sequence: 4 givenname: Kalliopi surname: Kostelidou fullname: Kostelidou, Kalliopi organization: KTL Research Acceleration LTD – sequence: 5 givenname: Ying orcidid: 0000-0002-6689-7768 surname: Xu fullname: Xu, Ying email: yingxu@suda.edu.cn organization: Cambridge-Suda Genomic Research Center, Suzhou Medical College of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou Medical College of Soochow University – sequence: 6 givenname: Ling orcidid: 0000-0002-4045-7457 surname: Yang fullname: Yang, Ling email: lyang@suda.edu.cn organization: School of Mathematical Sciences, Soochow University, Center for Systems Biology, Soochow University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41039035$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1TAQhSNURB_0D7BAkdiwCfgROza7UlqoVKkbWFuOPc71VWIHO1dq_j1uUwpiwWpGo--cGc05rY5CDFBVbzD6gBEVH3NLEKINIqxBQuCuWV9UJ4RK2VDekqO_-uPqPOc9QghLKTltX1XHbbGQiLKTyt19-Xxx9anW9c4Pu2aG5GKadDBQT9HCWHsLYfFu9WGoTZzmEe7reQchLusMufZhE1o_Qcg-Bj3WvY9jHLwprdWLzrDk19VLp8cM50_1rPpxffX98ltze_f15vLitjEtFUsDwDiiznBtpXHAO2aJACd62ve9ZQ4jCUA7wi2C1rXCGNkRy7XrMSVSEnpW3Wy-Nuq9mpOfdFpV1F49DmIalE6LNyMo1ONOO8mMpLTlEmmGRXmRYZwIpIktXu83rznFnwfIi5p8NjCOOkA8ZEUJ4wIj3uKCvvsH3cdDKr_YKI46Jh6Oe_tEHfoJ7PN5v9MoANkAk2LOCdwzgpF6SF1tqauSunpMXa1FRDdRLnAYIP3Z_R_VL07nrqg |
| Cites_doi | 10.1038/s41588-018-0047-6 10.3844/jcssp.2006.735.739 10.1093/nar/gkac1017 10.1093/bib/bbab276 10.1080/02664763.2013.822057 10.1186/s12893-022-01751-4 10.1093/nar/gkab447 10.1038/ncomms15475 10.3389/fendo.2022.1041616 10.1109/JSEN.2022.3230361 10.1186/s12902-023-01382-7 10.1038/ng.2383 10.1186/s12944-016-0221-8 10.3389/fendo.2023.1266692 10.1186/s12935-023-03089-0 10.1038/s41467-017-01995-2 10.1186/s12864-015-1721-z 10.3390/cells11162485 10.1038/ng.2797 10.1371/journal.pone.0131274 10.1007/978-94-007-7335-6_1 10.1007/978-3-030-32251-9_63 10.1109/JBHI.2018.2856820 10.1371/journal.pbio.3001723 10.1109/TIP.2017.2713048 10.1038/ncomms13357 10.1371/journal.pgen.1002254 10.1258/002367707779399518 10.1016/j.xcrm.2022.100844 10.1137/1.9781611975673.67 10.5244/C.29.8 10.1038/ng.3901 10.1016/j.eswa.2021.115736 10.1371/journal.pbio.1002033 10.1038/s41586-021-03221-y 10.1007/s10489-022-03613-1 10.1590/1519-6984.221405 10.1080/00365521.2023.2165417 10.1038/ng.3406 10.3389/fendo.2023.1239398 10.1371/journal.pgen.1009190 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s42003-025-08817-y |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2399-3642 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_0b17af95c9334690a518019c56280a2d 41039035 10_1038_s42003_025_08817_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12471467; 32100931 funderid: 501100001809 – fundername: Interdisciplinary basic Frontier Innovation Program of Suzhou Medical College of Soochow University (YXY2303022), National Center for International Research (2017B01012) – fundername: National Key Research and Development Program of China (2018YFA0801103) – fundername: Jiangsu Province Engineering Research Center of Development and Translation of Key Technologies for Chronic Disease Prevention and Control – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12471467 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 32100931 |
| GroupedDBID | 0R~ 53G 88I AAJSJ AASML ABDBF ABUWG ACGFS ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PUEGO RNT RPM SNYQT AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FE 8FH 8FK LK8 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c438t-ee5603fc6ad9cfe675d28ef8b3bbbd5f109ee3726d0e4f48cc972d6afb1329923 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586031700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2399-3642 |
| IngestDate | Mon Oct 13 19:21:29 EDT 2025 Mon Oct 06 18:01:14 EDT 2025 Fri Oct 03 07:31:41 EDT 2025 Mon Oct 06 01:44:07 EDT 2025 Sat Nov 29 07:17:13 EST 2025 Fri Oct 03 01:22:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-ee5603fc6ad9cfe675d28ef8b3bbbd5f109ee3726d0e4f48cc972d6afb1329923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4045-7457 0000-0002-6689-7768 |
| OpenAccessLink | https://doaj.org/article/0b17af95c9334690a518019c56280a2d |
| PMID | 41039035 |
| PQID | 3256607582 |
| PQPubID | 4669726 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0b17af95c9334690a518019c56280a2d proquest_miscellaneous_3256810641 proquest_journals_3256607582 pubmed_primary_41039035 crossref_primary_10_1038_s42003_025_08817_y springer_journals_10_1038_s42003_025_08817_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-02 |
| PublicationDateYYYYMMDD | 2025-10-02 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Communications biology |
| PublicationTitleAbbrev | Commun Biol |
| PublicationTitleAlternate | Commun Biol |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | C Zhou (8817_CR19) 2019; 23 8817_CR30 J Qiu (8817_CR39) 2023; 14 AP Morris (8817_CR32) 2012; 44 Y Liu (8817_CR20) 2022; 11 T Beck (8817_CR31) 2023; 51 J Rozman (8817_CR3) 2018; 9 Y Wu (8817_CR42) 2023; 58 W Lu (8817_CR13) 2017; 26 S He (8817_CR38) 2023; 14 Y Hu (8817_CR27) 2015; 16 8817_CR47 8817_CR48 8817_CR49 T Meehan (8817_CR5) 2017; 49 C Cao (8817_CR37) 2023; 23 JS Ried (8817_CR33) 2016; 7 G Nicholson (8817_CR6) 2022; 20 M Kanai (8817_CR10) 2018; 50 ELB Novelli (8817_CR26) 2007; 41 CJ Willer (8817_CR34) 2013; 45 C Cotsapas (8817_CR35) 2011; 7 S Chatterjee (8817_CR46) 1986; 1 AL Swan (8817_CR4) 2020; 16 V-T Le (8817_CR18) 2022; 53 C Cao (8817_CR45) 2022; 13 8817_CR12 8817_CR15 8817_CR16 8817_CR17 AHMR Imon (8817_CR21) 2013; 40 R Lyu (8817_CR11) 2021; 22 W Peng (8817_CR43) 2022; 22 L Antwarg (8817_CR22) 2021; 186 N Kurbatova (8817_CR1) 2015; 10 8817_CR7 B Bulik-Sullivan (8817_CR9) 2015; 47 8817_CR23 M Yang (8817_CR40) 2016; 2016 LAA Shalabi (8817_CR24) 2006; 2 Y Peng (8817_CR44) 2023; 23 MEM Elgart (8817_CR8) 2022; 3 Y Wei (8817_CR14) 2022; 23 NA Karp (8817_CR25) 2017; 8 AR Deans (8817_CR2) 2015; 13 APA Macêdo (8817_CR28) 2021; 81 D Bu (8817_CR36) 2021; 49 JF Rahbani (8817_CR29) 2021; 590 X Li (8817_CR41) 2016; 15 |
| References_xml | – volume: 50 start-page: 390 year: 2018 ident: 8817_CR10 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0047-6 – volume: 2 start-page: 735 year: 2006 ident: 8817_CR24 publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2006.735.739 – volume: 2016 start-page: 5412084 year: 2016 ident: 8817_CR40 publication-title: J. Diab. Res. – volume: 51 start-page: D986 year: 2023 ident: 8817_CR31 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1017 – volume: 22 start-page: bbab276 year: 2021 ident: 8817_CR11 publication-title: Brief. Bioinforma. doi: 10.1093/bib/bbab276 – volume: 40 start-page: 2601 year: 2013 ident: 8817_CR21 publication-title: J. Appl. Stat. doi: 10.1080/02664763.2013.822057 – volume: 22 year: 2022 ident: 8817_CR43 publication-title: BMC Surg. doi: 10.1186/s12893-022-01751-4 – volume: 49 start-page: W317 year: 2021 ident: 8817_CR36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab447 – volume: 8 year: 2017 ident: 8817_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms15475 – ident: 8817_CR30 – volume: 13 start-page: 1041616 year: 2022 ident: 8817_CR45 publication-title: Front. Endocrinol. doi: 10.3389/fendo.2022.1041616 – volume: 23 start-page: 3787 year: 2022 ident: 8817_CR14 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3230361 – ident: 8817_CR48 – volume: 23 year: 2023 ident: 8817_CR37 publication-title: BMC Endocr. Disord. doi: 10.1186/s12902-023-01382-7 – volume: 44 start-page: 981 year: 2012 ident: 8817_CR32 publication-title: Nat. Genet. doi: 10.1038/ng.2383 – ident: 8817_CR23 – volume: 15 year: 2016 ident: 8817_CR41 publication-title: Lipids Health Dis. doi: 10.1186/s12944-016-0221-8 – volume: 14 start-page: 1266692 year: 2023 ident: 8817_CR38 publication-title: Front. Endocrinol. doi: 10.3389/fendo.2023.1266692 – volume: 1 start-page: 379 year: 1986 ident: 8817_CR46 publication-title: Stat. Sci. – volume: 23 year: 2023 ident: 8817_CR44 publication-title: Cancer Cell Int. doi: 10.1186/s12935-023-03089-0 – ident: 8817_CR47 – volume: 9 year: 2018 ident: 8817_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01995-2 – volume: 16 year: 2015 ident: 8817_CR27 publication-title: BMC Genomics doi: 10.1186/s12864-015-1721-z – ident: 8817_CR12 – volume: 11 start-page: 2485 year: 2022 ident: 8817_CR20 publication-title: Cells doi: 10.3390/cells11162485 – volume: 45 start-page: 1274 year: 2013 ident: 8817_CR34 publication-title: Nat. Genet. doi: 10.1038/ng.2797 – volume: 10 start-page: e0131274 year: 2015 ident: 8817_CR1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0131274 – ident: 8817_CR7 doi: 10.1007/978-94-007-7335-6_1 – ident: 8817_CR16 doi: 10.1007/978-3-030-32251-9_63 – volume: 23 start-page: 103 year: 2019 ident: 8817_CR19 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2856820 – ident: 8817_CR49 – volume: 20 start-page: e3001723 year: 2022 ident: 8817_CR6 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001723 – volume: 26 start-page: 4321 year: 2017 ident: 8817_CR13 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2713048 – volume: 7 year: 2016 ident: 8817_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms13357 – volume: 7 start-page: e1002254 year: 2011 ident: 8817_CR35 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002254 – volume: 41 start-page: 111 year: 2007 ident: 8817_CR26 publication-title: Lab. Anim. doi: 10.1258/002367707779399518 – volume: 3 start-page: 100844 year: 2022 ident: 8817_CR8 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100844 – ident: 8817_CR15 doi: 10.1137/1.9781611975673.67 – ident: 8817_CR17 doi: 10.5244/C.29.8 – volume: 49 start-page: 1231 year: 2017 ident: 8817_CR5 publication-title: Nat. Genet. doi: 10.1038/ng.3901 – volume: 186 start-page: 115736 year: 2021 ident: 8817_CR22 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115736 – volume: 13 start-page: e1002033 year: 2015 ident: 8817_CR2 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002033 – volume: 590 start-page: 480 year: 2021 ident: 8817_CR29 publication-title: Nature doi: 10.1038/s41586-021-03221-y – volume: 53 start-page: 3240 year: 2022 ident: 8817_CR18 publication-title: Appl. Intell. doi: 10.1007/s10489-022-03613-1 – volume: 81 start-page: 246 year: 2021 ident: 8817_CR28 publication-title: Braz. J. Biol. doi: 10.1590/1519-6984.221405 – volume: 58 start-page: 789 year: 2023 ident: 8817_CR42 publication-title: Scand. J. Gastroenterol. doi: 10.1080/00365521.2023.2165417 – volume: 47 start-page: 1236 year: 2015 ident: 8817_CR9 publication-title: Nat. Genet. doi: 10.1038/ng.3406 – volume: 14 start-page: 1239398 year: 2023 ident: 8817_CR39 publication-title: Front. Endocrinol. doi: 10.3389/fendo.2023.1239398 – volume: 16 start-page: e1009190 year: 2020 ident: 8817_CR4 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1009190 |
| SSID | ssj0001999634 |
| Score | 2.304878 |
| Snippet | Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different physiological... Abstract Identifying complex phenotypes from high-dimensional biological data is challenging due to the intricate interdependencies among different... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 1415 |
| SubjectTerms | 631/1647/48 631/1647/794 Animals Biomedical and Life Sciences Datasets Disease Genes Genetic engineering Homeostasis Life Sciences Machine Learning Metabolism Mice Mice, Knockout Performance evaluation Phenotype Phenotypes Phenotyping Physiology |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDLZgAYkL70dhQUHiBtG2SaZNuaBd2BUHtOwB0N6iNHFWc2mH6Sxi_j1x0pkR4nHh2qSVUzu2Yzv-AF4i6qrpUHFUJXLllODWtw0ndanqEJ2KhLH09WNzeqrPz9uzKeA2TmWVG52YFLUfHMXID2S0zXW0b1q8XXzjhBpF2dUJQuMqXKMuCTKV7p3tYizkzUs13ZUppT4YVSrGIgzXuL2igl7_Yo9S2_4_-Zq_5UmT-Tm5_b-E34Fbk-PJDrOk3IUr2N-DGxmKcn0fwqf3R4fHb5hl1MCYL3b3CVgCy2HzdKM33YpiqQ4dfzCqDxsoiDuyeZ9f9IQWkDt9sNzgiaSAUSHqiKvxAXw5Of787gOfMBi4U1KvOGJ0iWRwdeSgCxiPF15oDLqTXdf5WajKFlE2ovYlqqC0c20jfG1DRwj20Xt8CHv90ONjYF66oIWLfyNYJRtly9rLUJLDE4e6toBXG06YRW61YVKKXGqT-WYi30zim1kXcETM2s6kNtnpwbC8MNOuM2VXNTa0M9dKSXEAO6uiRW4jDUKXVvgC9jc8M9PeHc2OYQW82A7HXUepFNvjcJnn6HiaVlUBj7KIbClRlF2Pyyrg9UZmdh__-4Ke_JuWp3BTkNhS7YLYh73V8hKfwXX3fTUfl8-T3P8EQBkJig priority: 102 providerName: ProQuest |
| Title | ODBAE: a high-performance model identifying complex phenotypes in high-dimensional biological datasets |
| URI | https://link.springer.com/article/10.1038/s42003-025-08817-y https://www.ncbi.nlm.nih.gov/pubmed/41039035 https://www.proquest.com/docview/3256607582 https://www.proquest.com/docview/3256810641 https://doaj.org/article/0b17af95c9334690a518019c56280a2d |
| Volume | 8 |
| WOSCitedRecordID | wos001586031700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M7P dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: PIMPY dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M2P dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxKXijcp7cpI3CBqYnsTh1uXbgUSXSIEaDlZiR_SXrJVs0Xdf98ZO7stAsSFiw-xE8Uz9vgbzwvgtXMqL1snUyczl0ojedrYqkxJXMrCI6gINZa-fypnMzWfV_WtUl_kExbTA0fCHWVtXja-GhvUvEmVa8Y5CtXK4LmtsoZbkr6Iem4pU-F2hXC8kEOUTCbUUS-DGxZVb8WNhaJ5_ctJFBL2_wll_mYhDQfP6UPYGxAjO45_-gjuuO4x3I81JNdPwH8-mRxP37GGUebh9PwmEICFKjdsEUJxQzgTCw7k7oqRY9eSbl97tujii5bS_McUHSxmZiL2MfIg7d2qfwrfTqdf339Ih-IJqZFCrVLnEMsIbwokvfEO9QLLlfOqFW3b2rHPs8o5UfLCZk56qYypSm6LxrdUeh5h3zPY6ZadewHMCuMVR4oXvpGilE1WWOEzQirY1VYJvNkQUp_HHBk62LaF0pHsGsmuA9n1OoEJ0Xo7kvJbhwfIdT1wXf-L6wkcbDilh03Xa4HwrUAIpHgCr7bduF3IBtJ0bnkZxyhUg2WewPPI4e2fSDKL47QSeLth-c3H_z6h_f8xoZfwgNPaJNcEfgA7q4tLdwj3zM_Vor8Ywd1yrkawO5nO6i-jsNSxPeM1tSW2u_XHs_rHNeIZABA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWxBceD8CBYwEJ4ia2N7EqYRQS1t11e2yh4LKySR-oL1sls0W2D_Fb6zHTnaFeNx64BonkR-fZ8bjmfkAXhgj0rwyPDY8MTFXnMalLvIYxSXPrDMqPMfSx2E-Gomzs2K8AT-7XBgMq-xkohfUulboI99mTjdnTr8J-nb2NUbWKLxd7Sg0AiyOzfK7O7I1bwb7bn1fUnp4cPruKG5ZBWLFmVjExjglz6zKXJ-UNc5g1lQYKypWVZXu2zQpjGE5zXRiuOVCqSKnOitthZzsBRY6cCJ_kzuwix5sjgcn409rrw6eHxhvs3MSJrYb7sO_kDXWbWinEpa_aEBPFPAn6_a3m1mv8A5v_m9TdQtutKY12Q174TZsmOkduBrINpd3wb7f39s92CElwRLN8WydMUE8HRCZ-Jxln_dFfKS9-UEwAq5GN3VDJtPwoUY-hFDLhIQSVohzgqG2jVk09-DDpQzyPvSm9dQ8BKKZsoIqN_u25CznZZJpZhM06VxTVUTwqlt5OQvFRKQPAmBCBpxIhxPpcSKXEewhOFZvYiFw_6Cef5GtXJFJlealLfqqYAw9HWU_dTZH4fpARVJSHcFWhxHZSqdGrgESwfNVs5MreFlUTk19Ht4RqTNY0wgeBEiuesIxfsANK4LXHUbXP__7gB79uy_P4NrR6clQDgej48dwneKWwUgNugW9xfzcPIEr6tti0syftruOwOfLRu8FR-1qwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ODBAE%3A+a+high-performance+model+identifying+complex+phenotypes+in+high-dimensional+biological+datasets&rft.jtitle=Communications+biology&rft.au=Yafei+Shen&rft.au=Tao+Zhang&rft.au=Zhiwei+Liu&rft.au=Kalliopi+Kostelidou&rft.date=2025-10-02&rft.pub=Nature+Portfolio&rft.eissn=2399-3642&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1038%2Fs42003-025-08817-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0b17af95c9334690a518019c56280a2d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |